Sampling distributions

Prof. Guangliang Chen
Chapter 1 Descriptive statistics

Section 5.3 Statistics and their distributions

Section 5.4 The distribution of the sample mean
Introduction

So far, we have covered the distribution of a single random variable (discrete or continuous) and the joint distribution of two discrete random variables.

Sampling distributions concern the randomness associated to a **statistic** based on a **random sample** from a **population**.

It serves as the bridge between probability and statistics.

We present this important concept using a practical example - egg weight (see next slide).
Sampling distributions

Motivating example

Suppose that the weights (in grams) of brown eggs produced at a local farm have a normal distribution: \[X \sim N(65, 2^2). \]
Those eggs are divided into cartons of size 12, to be sold on the market.

You randomly select a carton and measure the weights of all the 12 eggs in it.

Let \bar{X} be their average weight.

\bar{X} clearly may vary from carton to carton, and thus is a (continuous) random variable.

Question: What is the distribution of \bar{X}?
The above question is about the **sampling distribution of a statistic**.

- **Population**: all brown eggs produced at the farm
- **Sample**: a carton of 12 eggs
- **Statistic**: \bar{X} (average weight of the 12 eggs in the sample)
Sampling distributions

To study the distribution of \overline{X}, we denote individual weights of the 12 to-be-selected eggs as X_1, \ldots, X_{12}.

We then have

$$\overline{X} = \frac{X_1 + \cdots + X_{12}}{12}.$$

What we know about X_1, \ldots, X_{12}: They are identically and independently distributed (iid):

$$X_1, \ldots, X_{12} \sim iid N(65, 2^2)$$

and are called a random sample (of size 12) from the distribution $N(65, 2^2)$.
Random sample

Def 0.1. More generally, a collection of n random variables X_1, \ldots, X_n is called a random sample if they are

1. identically distributed according to some pmf/pdf $f(x)$, and
2. independent.

In short, we write $X_1, \ldots, X_n \overset{iid}{\sim} f(x)$.
Example 0.1. Suppose you toss a coin (with probability of heads p) repeatedly and independently for a total of n times, and let X_1, \ldots, X_n denote the numerical outcomes of individual trials: 1 (heads) or 0 (tails). This constitutes a random sample from the Bernoulli(p) distribution because

$$X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p).$$
Sampling distributions

Example 0.2. Let X_1, \ldots, X_n represent n repeated and independent measurements of an object’s length. They can be thought of as a random sample from a normal distribution

$$X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2)$$

where

- μ: true length (if the measurement process is unbiased)
- σ^2: variance of the measurement error.
Specific realizations of a random sample

Example 0.3. Suppose you actually buy a carton of \(n = 12 \) eggs from the farm and measure their weights individually. Then you may obtain a data set like the following (called a **specific sample**):

\[
\begin{align*}
x_1 &= 65.4, \quad x_2 = 65.0, \quad x_3 = 64.8, \quad x_4 = 65.1, \quad x_5 = 64.8, \quad x_6 = 64.4, \\
x_7 &= 65.0, \quad x_8 = 65.1, \quad x_9 = 65.5, \quad x_{10} = 64.8, \quad x_{11} = 64.8, \quad x_{12} = 65.2
\end{align*}
\]

Notation. We use lowercase letters such as \(x_1, x_2, \ldots \) to represent specific values of the random variables \((X_1, X_2, \ldots)\) in a random sample.
Remark. If we realize the sampling process again, then we may obtain a different set of weights. For example,

\[x_1 = 65.6, \ x_2 = 64.3, \ x_3 = 64.2, \ x_4 = 65.4, \ x_5 = 64.9, \ x_6 = 64.4, \]
\[x_7 = 65.2, \ x_8 = 65.2, \ x_9 = 65.0, \ x_{10} = 64.7, \ x_{11} = 64.5, \ x_{12} = 65.1 \]
Statistic

Def 0.2. Mathematically, a statistic is just a summary of a random sample by certain combination rule g:

$$U = g(X_1, X_2, \ldots, X_n)$$
Remark. Depending on purpose, different statistics may be defined on the same random sample. Two common ones are

- **Sample mean**

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \quad \leftarrow \text{a measure of center, or location} \]

- **Sample variance**

\[S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \quad \leftarrow \text{a measure of variability} \]

\[= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - n \cdot \bar{X}^2 \right] \]
Other examples of statistics include

- sample median (also a measure of center)
- sample minimum or maximum
- sample range (i.e., sample maximum - sample minimum)
- trimmed mean

See Chapter 1 for details.
Sampling distributions

Statistics are random variables

Clearly, for different realizations of the sampling process, the values of the statistic may vary. For the egg weight example (and the statistic \bar{X}),

(1) One realization ($\bar{x} = 64.992$):

\[x_1 = 65.4, \ x_2 = 65.0, \ x_3 = 64.8, \ x_4 = 65.1, \ x_5 = 64.8, \ x_6 = 64.4, \]
\[x_7 = 65.0, \ x_8 = 65.1, \ x_9 = 65.5, \ x_{10} = 64.8, \ x_{11} = 64.8, \ x_{12} = 65.2 \]

(2) Another realization ($\bar{x} = 64.875$) :

\[x_1 = 65.6, \ x_2 = 64.3, \ x_3 = 64.2, \ x_4 = 65.4, \ x_5 = 64.9, \ x_6 = 64.4, \]
\[x_7 = 65.2, \ x_8 = 65.2, \ x_9 = 65.0, \ x_{10} = 64.7, \ x_{11} = 64.5, \ x_{12} = 65.1 \]
Sampling distributions

Sampling distribution of a statistic

Def 0.3. The probabilistic distribution of a statistic (as a random variable)

\[U = g(X_1, X_2, \ldots, X_n) \]

is called the *sampling distribution* of the statistic.
Simulation

We “selected” 500 cartons of eggs randomly from the farm (through computer simulation) and computed their average weights. Below shows 50 observations of \overline{x}:

65.0506 64.7592 65.0571 64.9674 65.4973 64.7503 65.0393 64.6714
65.3764 65.2525 65.2012 64.4910 65.6002 65.1868 65.0916 63.8280
65.2636 64.9638 65.2998 65.5587 63.9801 65.3903 64.9052 65.7352
64.6329 64.5109 65.7044 64.3291 65.1044 64.8036 66.0407 65.3560
65.3534 65.4668 64.7394 65.1690 64.5668 64.8478 64.0334 65.7562
64.8553 64.9939 65.6044 64.5237 64.2092 64.5860 65.2096 65.5114
64.6195 65.0312
We can display all 500 values through a histogram shown below.
The sample mean

We focus on the sample mean statistic

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

where

\[X_1, \ldots, X_n \overset{iid}{\sim} f(x) \]

and

\[\text{E}(X_i) = \mu, \quad \text{Var}(X_i) = \sigma^2, \text{ for all } i. \]
We present three different results for the statistic \bar{X}:

1. **Expectation and variance of \bar{X}** (for any distribution $f(x)$)

2. **Exact distribution of \bar{X}** when $f(x)$ is a normal distribution

3. **Approximate distribution of \bar{X}** for non-normal distributions in the setting of a large sample
General distributions: Expectation and variance of \bar{X}

Theorem 0.1. Suppose $X_1, \ldots, X_n \overset{iid}{\sim} f(x)$, with $E(X_i) = \mu$ (population mean) and $\text{Var}(X_i) = \sigma^2$ (population variance). Then

$$E(\bar{X}) = \mu, \quad \text{Var}(\bar{X}) = \frac{\sigma^2}{n}, \quad \text{Std}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

Remark. This result does NOT concern the specific distribution of \bar{X}!
Proof. By linearity and independence,

\[
E(\bar{X}) = \frac{1}{n} (E(X_1) + \cdots + E(X_n)) = \frac{1}{n} (\mu + \cdots + \mu) = \mu
\]

\[
\text{Var}(\bar{X}) = \frac{1}{n^2} (\text{Var}(X_1) + \cdots + \text{Var}(X_n)) = \frac{1}{n^2} (\sigma^2 + \cdots + \sigma^2) = \frac{\sigma^2}{n}.
\]

Remark. The theorem indicates that

- expectation of \bar{X} is μ (population mean), and

- variance of \bar{X} is only $1/n$ of the population variance (for single X_i)
Example 0.4. Weights of 500 single eggs (left) and average weights of 500 cartons (right), all selected at random.
Sampling distributions

Normal populations: Exact distribution of \bar{X}

Assume a random sample

$$X_1, \ldots, X_n \overset{iid}{\sim} N(\mu, \sigma^2).$$

Theorem 0.2. We have

$$\bar{X} \sim N(\mu, \frac{\sigma^2}{n}).$$

This also implies that

$$\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0, 1).$$
Remark. In this setting of a normal population, the sample variance statistic S^2, after being properly scaled, can be shown to follow a chi-square distribution:

$$\frac{(n - 1)S^2}{\sigma^2} \sim \chi^2(n - 1) \quad \leftarrow \quad \text{Gamma}(\alpha = \frac{n - 1}{2}, \beta = 2).$$
Example 0.5. In the brown egg example, suppose the population distribution is $N(65, 2^2)$. For a random sample of size 12, what is the probability that the sample mean \bar{X} is within 65 ± 1? What about an individual egg? (Answers: .9164, .3829)
Example 0.6. In the library elevator of a large university, there is a sign indicating a 16-person limit as well as a weight limit of 2500 lbs. When the elevator is full, we can think of the 16 people in the elevator as a random sample of people on campus. Suppose that the weight of students, faculty, and staff is normally distributed with a mean weight of 150 lbs and a standard deviation of 27 lbs. What is the probability that the total weight of a random sample of 16 people in the elevator will exceed the weight limit? (Answer: .1762)
Sampling distributions

Solution:
Sampling distributions

Nonnormal populations: Approximate distribution of \bar{X}

Assume a random sample

$$X_1, \ldots, X_n \overset{iid}{\sim} f(x) \quad \leftarrow \text{any distribution}$$

and that the population has finite mean μ and variance σ^2.

Theorem 0.3. If n is large (30 or greater), then

$$\bar{X} \overset{\text{approx.}}{\sim} N\left(\mu, \frac{\sigma^2}{n}\right), \quad \text{and} \quad \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \overset{\text{approx.}}{\sim} N(0, 1).$$

Remark. This is called the **Central Limit Theorem (CLT)**, one of the most important results in probability and statistics.
Example 0.7. Suppose salaries of all SJSU employees follow an exponential distribution with average salary $= 45K$ (which means that $\lambda = \frac{1}{45}$). We draw a random sample of size n from the population, and compute the sample mean \bar{X}.

We display the histograms of the simulated values of \bar{X} through 500 repetitions for each of $n = 1, 3, 12, 30$.
Sampling distributions

For $n=1$:

For $n=3$:

Prof. Guangliang Chen | Mathematics & Statistics, San José State University
Sampling distributions

\(n = 12 \)

\(n = 30 \)
Example 0.8 (Employee salary distribution, cont’d). Suppose we draw a random sample of size 30 from the population. Find $P(\bar{X} > 55)$. Answer: 0.1118 (CLT), 0.1157 (exact)
The normal approximation to Binomial is a direct consequence of the CLT.

Corollary 0.4. Let $X \sim B(n, p)$. If n is large (i.e., $np, n(1 - p) \geq 10$), then

$$
\frac{X - np}{\sqrt{np(1 - p)}} \text{ approx. } \sim N(0, 1)
$$

Proof. Consider the experiment of tossing a coin independently for a total of n times, and denote the results by X_1, \ldots, X_n. Then

$$X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p), \quad \text{and} \quad X = \sum_{i=1}^{n} X_i \sim B(n, p).$$

According to the CLT,

$$
\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{\bar{X} - p}{\sqrt{p(1 - p)/n}} = \frac{X - np}{\sqrt{np(1 - p)}} \text{ approx. } \sim N(0, 1).
$$
Remark. In the setting of a random sample from a Bernoulli distribution,

\[X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p) \]

the sample mean

\[\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \]

represents the proportion of successes in the sample.

We have showed that if \(n \) is large, then

\[\frac{\bar{X} - \mu}{\sigma/\sqrt{n}} = \frac{\hat{p} - p}{\sqrt{p(1-p)/n}} \overset{\text{approx.}}{\sim} N(0, 1). \]
A “large-sample” joke

One day there was a fire in a wastebasket in the Dean’s office and in rushed a physicist, a chemist, and a statistician.

The physicist immediately starts to work on how much energy would have to be removed from the fire to stop the combustion. The chemist works on which reagent would have to be added to the fire to prevent oxidation.

While they are doing this, the statistician is setting fires to all the other wastebaskets in the office.

“What are you doing?” they demanded. “Well to solve the problem, obviously you need a large sample size” the statistician replies.
The distribution of a linear combination

Def 0.4. Given random variables X_1, \ldots, X_n and constants a_1, \ldots, a_n,

$$Y = a_1 X_1 + \cdots + a_n X_n = \sum_{i=1}^{n} a_i X_i$$

is called a linear combination of the X_i's.

Example 0.9. For three variables X_1, X_2, X_3, the following are all linear combinations of them: $X_1 + 2X_2 - 3X_3, \frac{1}{3}(X_1 + X_2 + X_3), X_1 - X_2$

Remark. The sample mean is a special linear combination of a random sample $X_1, \ldots, X_n \overset{iid}{\sim} f(x)$ with equal weights: $a_1 = \cdots = a_n = 1/n$.
We have the following general result.

Theorem 0.5. Any linear combination of independent normal random variables is still normal. That is, if

\[X_1 \sim N(\mu_1, \sigma_1^2), \ldots, X_n \sim N(\mu_n, \sigma_n^2) \]

are independent random variables, then for any constants \(a_1, \cdots, a_n\),

\[Y = \sum_{i=1}^{n} a_i X_i \sim N \left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right). \]

Remark. This reduces to \(\bar{X} \sim N(\mu, \sigma^2/n) \) when \(a_1 = \cdots = a_n = 1/n \), \(\mu_1 = \cdots = \mu_n = \mu \) and \(\sigma_1^2 = \cdots = \sigma_n^2 = \sigma^2 \).
Summary

This presentation covers the following:

- **Basic concepts**
 - *Population*: set of all individuals (whose certain characteristic is of interest)
 - *Sample*: a subset of the population (to be measured)
 - *Random sample*: a collection of random variables $X_1, \ldots, X_n \iid \sim f(x)$, where $f(x)$ represents the pmf/pdf of the population
 - *Statistic*: a numerical summary of the sample, such as \bar{X}, S^2
– **Sampling distribution of a statistic**: probabilistic distribution of the statistic as a random variable

The sample mean statistic: For any random sample $X_1, \ldots, X_n \overset{iid}{\sim} f(x)$, define

$$\bar{X} = \frac{1}{n} \sum X_i$$

If the population distribution $f(x)$ has mean μ and variance σ^2, then

$$E(\bar{X}) = \mu, \quad \text{Var}(\bar{X}) = \frac{\sigma^2}{n}, \quad \text{Std}(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$
Sampling distributions

- Sampling distributions of \bar{X}

 - If the population is normal ($N(\mu, \sigma^2)$), then the sample mean has the following sampling distribution:

 $$\bar{X} \sim N \left(\mu, \frac{\sigma^2}{n} \right)$$

 - For non-normal populations, if the sample size is large (i.e., $n \geq 30$), then

 $$\bar{X} \approx N \left(\mu, \frac{\sigma^2}{n} \right)$$

This is called the central limit theorem (CLT).