San José State University
 Math 161A: Applied Probability \& Statistics

Sampling distributions

Prof. Guangliang Chen

Chapter 1 Descriptive statistics

Section 5.3 Statistics and their distributions

Section 5.4 The distribution of the sample mean

Sampling distributions

Introduction

So far, we have covered the distribution of a single random variable (discrete or continuous) and the joint distribution of two discrete random variables.

Sampling distributions concern the randomness associated to a statistic based on a random sample from a population.

It serves as the bridge between probability and statistics.
We present this important concept using a practical example - egg weight (see next slide).

Sampling distributions

Motivating example

Suppose that the weights (in grams) of brown eggs produced at a local farm have a normal distribution: $X \sim N\left(65,2^{2}\right)$.

Prof. Guangliang Chen | Mathematics \& Statistics, San José State University

Sampling distributions

Those eggs are divided into cartons of size 12, to be sold on the market.

You randomly select a carton and measure the weights of all the 12 eggs in it.

Let \bar{X} be their average weight.
\bar{X} clearly may vary from carton to carton, and thus is a (continuous) random variable.

Question: What is the distribution of \bar{X} ?

Sampling distributions

The above question is about the sampling distribution of a statistic.

- Population: all brown eggs produced at the farm
- Sample: a carton of 12 eggs
- Statistic: \bar{X} (average weight of the 12 eggs in the sample)

Sampling distributions

To study the distribution of \bar{X}, we denote individual weights of the 12 to-be-selected eggs as X_{1}, \ldots, X_{12}.

We then have

$$
\bar{X}=\frac{X_{1}+\cdots+X_{12}}{12}
$$

What we know about X_{1}, \ldots, X_{12} :
They are identically and independently distributed (iid):

$$
X_{1}, \ldots, X_{12} \stackrel{i i d}{\sim} N\left(65,2^{2}\right)
$$

and are called a random sample (of size 12) from the distribution $N\left(65,2^{2}\right)$.

Sampling distributions

Random sample

Def 0.1. More generally, a collection of n random variables X_{1}, \ldots, X_{n} is called a random sample if they are
(1) identically distributed according to some pmf/pdf $f(x)$, and
(2) independent.

In short, we write $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} f(x)$.

Sampling distributions

Example 0.1. Suppose you toss a coin (with probability of heads p) repeatedly and independently for a total of n times, and let X_{1}, \ldots, X_{n} denote the numerical outcomes of individual trials: 1 (heads) or 0 (tails). This constitutes a random sample from the $\operatorname{Bernoulli}(p)$ distribution because

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bernoulli}(p) .
$$

Sampling distributions

Example 0.2. Let X_{1}, \ldots, X_{n} represent n repeated and independent measurements of an object's length. They can be thought of as a random sample from a normal distribution

$$
X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)
$$

where

- μ : true length (if the measurement process is unbiased)
- σ^{2} : variance of the measurement error.

Sampling distributions

Specific realizations of a random sample

Example 0.3. Suppose you actually buy a carton of $n=12$ eggs from the farm and measure their weights individually. Then you may obtain a data set like the following (called a specific sample):

$$
\begin{aligned}
& x_{1}=65.4, x_{2}=65.0, x_{3}=64.8, x_{4}=65.1, x_{5}=64.8, x_{6}=64.4 \\
& x_{7}=65.0, x_{8}=65.1, x_{9}=65.5, x_{10}=64.8, x_{11}=64.8, x_{12}=65.2
\end{aligned}
$$

Notation. We use lowercase letters such as x_{1}, x_{2}, \ldots to represent specific values of the random variables $\left(X_{1}, X_{2}, \ldots\right)$ in a random sample.

Sampling distributions

Remark. If we realize the sampling process again, then we may obtain a different set of weights. For example,

$$
\begin{aligned}
& x_{1}=65.6, x_{2}=64.3, x_{3}=64.2, x_{4}=65.4, x_{5}=64.9, x_{6}=64.4 \\
& x_{7}=65.2, x_{8}=65.2, x_{9}=65.0, x_{10}=64.7, x_{11}=64.5, x_{12}=65.1
\end{aligned}
$$

Specific samples

Sampling distributions

Statistic

Def 0.2. Mathematically, a statistic is just a summary of a random sample by certain combination rule g :

$$
U=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

Statistic

Sampling distributions

Remark. Depending on purpose, different statistics may be defined on the same random sample. Two common ones are

- Sample mean

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \longleftarrow \text { a measure of center, or location }
$$

- Sample variance

$$
\begin{aligned}
S^{2} & =\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \longleftarrow \text { a measure of variability } \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i}^{2}-n \cdot \bar{X}^{2}\right]
\end{aligned}
$$

Sampling distributions

Other examples of statistics include

- sample median (also a measure of center)
- sample minimum or maximum
- sample range (i.e., sample maximum - sample minimum)
- trimmed mean

See Chapter 1 for details.

Sampling distributions

Statistics are random variables

Clearly, for different realizations of the sampling process, the values of the statistic may vary. For the egg weight example (and the statistic \bar{X}),
(1) One realization ($\bar{x}=64.992$):

$$
\begin{aligned}
& x_{1}=65.4, x_{2}=65.0, x_{3}=64.8, x_{4}=65.1, x_{5}=64.8, x_{6}=64.4 \\
& x_{7}=65.0, x_{8}=65.1, x_{9}=65.5, x_{10}=64.8, x_{11}=64.8, x_{12}=65.2
\end{aligned}
$$

(2) Another realization $(\bar{x}=64.875)$:

$$
\begin{aligned}
& x_{1}=65.6, x_{2}=64.3, x_{3}=64.2, x_{4}=65.4, x_{5}=64.9, x_{6}=64.4 \\
& x_{7}=65.2, x_{8}=65.2, x_{9}=65.0, x_{10}=64.7, x_{11}=64.5, x_{12}=65.1
\end{aligned}
$$

Sampling distributions

Sampling distribution of a statistic

Def 0.3. The probabilistic distribution of a statistic (as a random variable)

$$
U=g\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

is called the sampling distribution of the statistic.

Sampling distributions

Simulation

We "selected" 500 cartons of eggs randomly from the farm (through computer simulation) and computed their average weights. Below shows 50 observations of \bar{X} :
65.050664 .759265 .057164 .967465 .497364 .750365 .039364 .6714 65.376465 .252565 .201264 .491065 .600265 .186865 .091663 .8280 65.263664 .963865 .299865 .558763 .980165 .390364 .905265 .7352 64.632964 .510965 .704464 .329165 .104464 .803666 .040765 .3560 65.353465 .466864 .739465 .169064 .566864 .847864 .033465 .7562 64.855364 .993965 .604464 .523764 .209264 .586065 .209665 .5114 64.619565 .0312

Sampling distributions

We can display all 500 values through a histogram shown below

Sampling distributions

The sample mean

We focus on the sample mean statistic

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

where

$$
X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} f(x)
$$

and

$$
\mathrm{E}\left(X_{i}\right)=\mu, \quad \operatorname{Var}\left(X_{i}\right)=\sigma^{2}, \text { for all } i
$$

Sampling distributions

We present three different results for the statistic \bar{X} :

1. Expectation and variance of \bar{X} (for any distribution $f(x)$)
2. Exact distribution of \bar{X} when $f(x)$ is a normal distribution
3. Approximate distribution of \bar{X} for nonnomral distributions in the setting of a large sample

Sampling distributions

General distributions: Expectation and variance of \bar{X}

Theorem 0.1. Suppose $X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} f(x)$, with $\mathrm{E}\left(X_{i}\right)=\mu$ (population mean) and $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$ (population variance). Then

$$
\mathrm{E}(\bar{X})=\mu, \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}, \quad \operatorname{Std}(\bar{X})=\frac{\sigma}{\sqrt{n}}
$$

Remark. This result does NOT concern the specific distribution of \bar{X} !

Sampling distributions

Proof. By linearity and independence,

$$
\begin{aligned}
\mathrm{E}(\bar{X}) & =\frac{1}{n}\left(\mathrm{E}\left(X_{1}\right)+\cdots+\mathrm{E}\left(X_{n}\right)\right)=\frac{1}{n}(\mu+\cdots+\mu)=\mu \\
\operatorname{Var}(\bar{X}) & =\frac{1}{n^{2}}\left(\operatorname{Var}\left(X_{1}\right)+\cdots+\operatorname{Var}\left(X_{n}\right)\right)=\frac{1}{n^{2}}\left(\sigma^{2}+\cdots+\sigma^{2}\right)=\frac{\sigma^{2}}{n}
\end{aligned}
$$

Remark. The theorem indicates that

- expectation of \bar{X} is μ (population mean), and
- variance of \bar{X} is only $1 / n$ of the population variance (for single X_{i})

Sampling distributions

Example 0.4. Weights of 500 single eggs (left) and average weights of 500 cartons (right), all selected at random.

Sampling distributions

Normal populations: Exact distribution of \bar{X}

Assume a random sample

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} N\left(\mu, \sigma^{2}\right)
$$

Theorem 0.2. We have

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

This also implies that

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)
$$

Sampling distributions

Remark. In this setting of a normal population, the sample variance statistic S^{2}, after being properly scaled, can be shown to follow a chi-square distribution:

$$
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi^{2}(n-1) \quad \longleftarrow \operatorname{Gamma}\left(\alpha=\frac{n-1}{2}, \beta=2\right)
$$

Sampling distributions

Example 0.5. In the brown egg example, suppose the population distribution is $N\left(65,2^{2}\right)$. For a random sample of size 12 , what is the probability that the sample mean \bar{X} is within 65 ± 1 ? What about an individual egg? (Answers: .9164, .3829)

Sampling distributions

Example 0.6. In the library elevator of a large university, there is a sign indicating a 16 -person limit as well as a weight limit of 2500 lbs . When the elevator is full, we can think of the 16 people in the elevator as a random sample of people on campus. Suppose that the weight of students, faculty, and staff is normally distributed with a mean weight of 150 lbs and a standard deviation of 27 lbs . What is the probability that the total weight of a random sample of 16 people in the elevator will exceed the weight limit? (Answer: .1762)

Sampling distributions

Solution:

Sampling distributions

Nonnormal populations: Approximate distribution of \bar{X}

Assume a random sample

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} f(x) \longleftarrow \text { any distribution }
$$

and that the population has finite mean μ and variance σ^{2}.
Theorem 0.3. If n is large (30 or greater), then

$$
\bar{X} \stackrel{\text { approx. }}{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right), \quad \text { and } \quad \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \stackrel{\text { approx. }}{\sim} N(0,1) .
$$

Remark. This is called the Central Limit Theorem (CLT), one of the most important results in probability and statistics.

Sampling distributions

Example 0.7. Suppose salaries of all SJSU employees follow an exponential distribution with average salary $=45 \mathrm{~K}$ (which means that $\lambda=\frac{1}{45}$). We draw a random sample of size n from the population, and compute the sample mean \bar{X}.

We display the histograms of the simulated values of \bar{X} through 500 repetitions for each of $n=1,3,12,30$.

Sampling distributions

Sampling distributions

Sampling distributions

Example 0.8 (Employee salary distribution, cont'd). Suppose we draw a random sample of size 30 from the population. Find $P(\bar{X}>55)$. Answer: 0.1118 (CLT), 0.1157 (exact)

Sampling distributions

The normal approximation to Binomial is a direct consequence of the CLT.
Corollary 0.4. Let $X \sim B(n, p)$. If n is large (i.e., $n p, n(1-p) \geq 10$), then

$$
\frac{X-n p}{\sqrt{n p(1-p)}} \stackrel{\text { approx. }}{\sim} N(0,1)
$$

Proof. Consider the experiment of tossing a coin independently for a total of n times, and denote the results by X_{1}, \ldots, X_{n}. Then

$$
X_{1}, \ldots, X_{n} \stackrel{\mathrm{iid}}{\sim} \operatorname{Bernoulli}(p), \quad \text { and } \quad X=\sum_{i=1}^{n} X_{i} \sim B(n, p)
$$

According to the CLT,

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{\bar{X}-p}{\sqrt{p(1-p)} / \sqrt{n}}=\frac{X-n p}{\sqrt{n p(1-p)}} \stackrel{\text { approx. }}{\sim} N(0,1) .
$$

Sampling distributions

Remark. In the setting of a random sample from a Bernoulli distribution,

$$
X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim} \operatorname{Bernoulli}(p)
$$

the sample mean

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad \longleftarrow \text { sample proportion } \hat{p}
$$

represents the proportion of successes in the sample.
We have showed that if n is large, then

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{\hat{p}-p}{\sqrt{p(1-p) / n}} \stackrel{\text { approx. }}{\sim} N(0,1) .
$$

Sampling distributions

A "large-sample" joke

One day there was a fire in a wastebasket in the Dean's office and in rushed a physicist, a chemist, and a statistician.

The physicist immediately starts to work on how much energy would have to be removed from the fire to stop the combustion. The chemist works on which reagent would have to be added to the fire to prevent oxidation.

While they are doing this, the statistician is setting fires to all the other wastebaskets in the office.
"What are you doing?" they demanded. "Well to solve the problem, obviously you need a large sample size" the statistician replies.

Sampling distributions

The distribution of a linear combination

Def 0.4. Given random variables X_{1}, \ldots, X_{n} and constants a_{1}, \ldots, a_{n},

$$
Y=a_{1} X_{1}+\cdots+a_{n} X_{n}=\sum_{i=1}^{n} a_{i} X_{i}
$$

is called a linear combination of the $X_{i}{ }^{\prime}$ s.
Example 0.9. For three variables X_{1}, X_{2}, X_{3}, the following are all linear combinations of them: $X_{1}+2 X_{2}-3 X_{3}, \frac{1}{3}\left(X_{1}+X_{2}+X_{3}\right), X_{1}-X_{2}$

Remark. The sample mean is a special linear combination of a random sample $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} f(x)$ with equal weights: $a_{1}=\cdots=a_{n}=1 / n$.

Sampling distributions

We have the following general result.
Theorem 0.5 . Any linear combination of independent normal random variables is still normal. That is, if

$$
X_{1} \sim N\left(\mu_{1}, \sigma_{1}^{2}\right), \ldots, X_{n} \sim N\left(\mu_{n}, \sigma_{n}^{2}\right)
$$

are independent random variables, then for any constants a_{1}, \cdots, a_{n},

$$
Y=\sum_{i=1}^{n} a_{i} X_{i} \sim N\left(\sum_{i=1}^{n} a_{i} \mu_{i}, \sum_{i=1}^{n} a_{i}^{2} \sigma_{i}^{2}\right) .
$$

Remark. This reduces to $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ when $a_{1}=\cdots=a_{n}=1 / n$, $\mu_{1}=\cdots=\mu_{n}=\mu$ and $\sigma_{1}^{2}=\cdots=\sigma_{n}^{2}=\sigma^{2}$.

Sampling distributions

Summary

This presentation covers the following:

- Basic concepts

- Population: set of all individuals (whose certain characteristic is of interest)
- Sample: a subset of the population (to be measured)
- Random sample: a collection of random variables $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ $f(x)$, where $f(x)$ represents the $\mathrm{pmf} / \mathrm{pdf}$ of the population
- Statistic: a numerical summary of the sample, such as \bar{X}, S^{2}

Sampling distributions

- Sampling distribution of a statistic: probabilistic distribution of the statistic as a random variable
- The sample mean statistic: For any random sample $X_{1}, \ldots, X_{n} \stackrel{\text { iid }}{\sim}$ $f(x)$, define

$$
\bar{X}=\frac{1}{n} \sum X_{i}
$$

If the population distribution $f(x)$ has mean μ and variance σ^{2}, then

$$
\mathrm{E}(\bar{X})=\mu, \quad \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}, \quad \operatorname{Std}(\bar{X})=\frac{\sigma}{\sqrt{n}}
$$

Sampling distributions

- Sampling distributions of \bar{X}
- If the population is normal $\left(N\left(\mu, \sigma^{2}\right)\right)$, then the sample mean has the following sampling distribution:

$$
\bar{X} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

- For non-normal populations, if the sample size is large (i.e., $n \geq 30$), then

$$
\bar{X} \stackrel{\operatorname{approx}}{\sim} N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

This is called the central limit theorem (CLT).

