Worksheet 13: hypothesis testing

Example 0.103. In the brown egg problem, suppose the true population standard deviation $\sigma=2$ grams. A person decides to use the following decision rule (for a sample of size $n=12$, i.e., a carton of eggs)

$$
|\bar{x}-65|>1
$$

to conduct the two-sided test

$$
H_{0}: \mu=65 \quad \text { vs } \quad H_{1}: \mu \neq 65 .
$$

What is the probability α of making a type-I error? (Answer: 0.0836)

Example 0.104. (cont'd) Consider two different decision rules:

- $|\bar{x}-65|>0.5$
- $|\bar{x}-65|>2$
for conducting the same two-sided test. Verify that the corresponding probabilities of making a type-I error are $0.3844,0.0006$, respectively.

Example 0.105. Compute the probability of making a type-I error for the one-sided test $H_{1}: \mu<65$ with each of the following decision rules

- $\bar{x}<65-0.5=64.5$
- $\bar{x}<65-1=64$
- $\bar{x}<65-2=63$
(Answers: 0.1922, $0.0418,0.0003$)

Example 0.106. Consider the two-sided test in the eggs example:

$$
H_{0}: \mu=65 \quad \text { vs } \quad H_{1}: \mu \neq 65 .
$$

and the following decision rule:

$$
|\bar{x}-65|>c
$$

Find the probability of making a type-II error when $\mu=64$ for $c=1 / 2,1,2$. (Answer: $\beta=P(|\bar{X}-65|<c \mid \mu=64)=0.1875,0.4997,0.9582$)

Example 0.107. Assume the setting of the brown eggs example (with known $\sigma=2$, but sample size $n \mathrm{TBD}$). Consider the following one-sided test

$$
H_{0}: \mu=65 \quad \text { vs } \quad H_{a}: \mu<65
$$

with decision rule

$$
\bar{x}<65-c
$$

Choose n, c so that the test has level 5% and power 80% (at $\mu=64$).
Answer: $c=z_{\alpha} \frac{\sigma}{\sqrt{n}}=0.658, n=\left(\frac{\sigma\left(z_{\alpha}+z_{\beta}\right)}{\mu_{0}-\mu^{\prime}}\right)^{2}=25$

Example 0.108. Redo the preceding example but instead for a two-sided test

$$
H_{0}: \mu=65 \quad \text { vs } \quad H_{a}: \mu \neq 65
$$

with corresponding decision rule

$$
|\bar{x}-65|>c
$$

Answer: $c=z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}=0.693, n \approx\left(\frac{\sigma\left(z_{\alpha / 2}+z_{\beta}\right)}{\mu_{0}-\mu^{\prime}}\right)^{2}=32$

Example 0.109. In the brown eggs example, suppose we observed $\bar{x}=63.8$.

- $H_{1}: \mu \neq 65$: The more contradictory values are $\bar{x}<63.8$ and $\bar{x}>66.2$ (mirror point). Thus, for a 2 -sided test,

$$
\begin{aligned}
\operatorname{pval}(63.8) & =2 \cdot P\left(\bar{X} \leq 63.8 \mid H_{0} \text { true }\right) \\
& =2 \cdot P\left(\left.\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq \frac{63.8-65}{2 / \sqrt{12}} \right\rvert\, \mu=65\right) \\
& =2 \cdot P(Z \leq-2.08)=2 \cdot .019=.038
\end{aligned}
$$

- $H_{1}: \mu \neq 65$: The more contradictory values are only $\bar{x}<63.8$. In this case, the p-value is

$$
\operatorname{pval}(63.8)=P\left(\bar{X} \leq 63.8 \mid H_{0} \text { true }\right)=.019
$$

Example 0.110. In the previous example, what is your conclusion if $\alpha=5 \%$? 1% ?

Example 0.111. Consider the egg-weight example again. Conduct the following test at level 95%

$$
H_{0}: \mu=65 \quad \text { vs } \quad H_{1}: \mu \neq 65
$$

for a specific sample of 12 eggs with $\bar{x}=64$ and $s^{2}=4.69$. Conduct the test at level $\alpha=.05$. What is the p-value of the sample?
(Answer: $\left|\frac{\bar{x}-65}{s / \sqrt{n}}\right|=1.6<t_{\alpha / 2, n-1}=2.201$, thus failing to reject the null. p-value $=.138$)

Example 0.112 (Continuation of previous example). Conduct the following test at level 5% :

$$
H_{0}: \sigma^{2}=2^{2} \quad \text { vs } \quad H_{1}: \sigma^{2}>2^{2}
$$

What is the p-value?
(Answer: $\frac{(n-1) s^{2}}{\sigma_{0}^{2}}=12.9<\chi_{\alpha, n-1}^{2}=19.7$, thus failing to reject the null. $p \mathrm{val}=.3$)

