Hw0 (linear algebra review)

(1) Let $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$. Answer the following questions (be sure to provide your reasoning):
(a) Is the above matrix \mathbf{A} symmetric?
(b) Is the matrix $\mathbf{B}=\mathbf{A}^{T} \mathbf{A}$ symmetric?
(c) Is the matrix $\mathbf{C}=\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{T}\right)$ symmetric?
(d) What is $\mathbf{A}^{2} \mathbf{x}$, where $\mathbf{x}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$?
(2) Find the determinant of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 0 & -4 & -3 \\
2 & 3 & -7 & -6 \\
-1 & 0 & 6 & 4 \\
-4 & 9 & 9 & 8
\end{array}\right]
$$

Is the matrix invertible?
(3) Find a basis for each of the row and null spaces of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & 0 & 4 \\
1 & 0 & 3 & 4 \\
0 & 2 & -3 & 3
\end{array}\right]
$$

What is the rank of \mathbf{A} ?
(4) For the matrix \mathbf{A} specified in (3), find an orthonormal basis for its column space.
(5) Let

$$
\mathbf{A}=\left[\begin{array}{lll}
2 & 0 & 1 \\
0 & 3 & 0 \\
1 & 0 & 2
\end{array}\right]
$$

Find its eigenvalues, corresponding algebraic and geometric multiplicities, and associated eigenspaces (by specifying a basis for each of them).
(6) For the matrix \mathbf{A} defined in (5), is it diagonalizable? Orthogonally diagonalizable?

Depending on what your answer is, do one of the following accordingly:

- A is not diagonalizable: explain your reasoning why;
- A is only diagonalizable (and not orthogonally diagonalizable): explain why and find the diagonalization of \mathbf{A};
- A is orthogonally diagonalizable: explain why and find the orthogonal diagonalization of \mathbf{A}.

