2 Optimization of multivariate functions

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{x}\|_p^p.$$
(2.17)

Such a result will be needed when we get to the regression chapter.

Lastly, we mention a useful fact that the  $\alpha$ -sublevel sets of a convex function must be convex sets.

**Theorem 2.5** Let  $f : \Omega \subseteq \mathbb{R}^n \mapsto \mathbb{R}$  be a convex function. For any  $\alpha \in \mathbb{R}$ ,  $S_{\alpha}(f)$  is a convex set in  $\mathbb{R}^n$ .

**Proof** Suppose  $\mathbf{x}, \mathbf{y} \in S_{\alpha}(f)$ , that is  $f(\mathbf{x}) \leq \alpha$  and  $f(\mathbf{y}) \leq \alpha$ . For any  $t \in (0, 1)$ ,

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{y}) \le t\alpha + (1-t)\alpha = \alpha.$$

Thus,  $t\mathbf{x} + (1-t)\mathbf{y} \in S_{\alpha}(f)$ . This shows that  $S_{\alpha}(f)$  is indeed a convex set.

*Example 2.5* The following are all convex sets in  $\mathbb{R}^n$  because they are sublevel sets of convex functions:

- $\ell_p$ -balls: { $\mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_p \le r$ } where  $p \ge 1$  and r > 0;
- Half spaces:  $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b\}$  where  $\mathbf{a} \ne \mathbf{0} \in \mathbb{R}^n$  and  $b \in \mathbb{R}$ ;
- Ellipsoids (centered at the origin):  $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{A}\mathbf{x} \le b\}$  where  $\mathbf{A} \in \mathbb{R}^{n \times n}$  is a positive definite matrix and  $b \in \mathbb{R}$ .

See Figure 2.7.



**Fig. 2.7** Convex sets in  $\mathbb{R}^n$ : a solid  $\ell_1$ -ball (left), a half-space (middle), and an ellipsoid (right).

## 2.3 Derivatives of a function of several variables

## 2.3.1 Basic concepts

Let  $\Omega \subseteq \mathbb{R}^n$  be a set and  $f : \Omega \mapsto \mathbb{R}$  a function over the set. The function f is said to be *differentiable* at an interior point  $\mathbf{x}_0 \in \Omega$  if all the partial derivatives of f,  $\{\frac{\partial f}{\partial x_i} : i = 1, ..., n\}$ , exist at  $\mathbf{x}_0$ . If additionally all the partial derivatives of f are continuous at  $\mathbf{x}_0$ , then f is said to be *continuously differentiable* at the point.

## 2.3 Derivatives of a function of several variables

Similarly, if all the second-order partial derivatives of f,  $\{\frac{\partial^2 f}{\partial x_i \partial x_j} : 1 \le i, j \le n\}$ , exist at an interior point  $\mathbf{x}_0 \in \Omega$ , we say that f is *twice differentiable* at  $\mathbf{x}_0$ . If additionally all the second-order partial derivatives of f are continuous at  $\mathbf{x}_0$ , then f is said to be *twice continuously differentiable* at the point.

Suppose that  $f : \Omega \mapsto \mathbb{R}$  is differentiable in all or a nonempty subset of the interior of  $\Omega$ . The *gradient* of f is a vector field (i.e., vector-valued function) whose components are the partial derivatives of f:

$$\nabla f: \Omega \subseteq \mathbb{R}^n \longmapsto \mathbb{R}^n, \quad \text{with} \quad \nabla f = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}\right)^T.$$
 (2.18)

When given a specific point  $\mathbf{p} \in \Omega^{\circ}$  at which *f* is differentiable, we may evaluate the gradient  $\nabla f$  at  $\mathbf{p}$  to obtain a gradient vector:

$$\nabla f(\mathbf{p}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{p}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{p})\right)^T \in \mathbb{R}^n.$$
(2.19)

On the other hand, if any of the partial derivatives is undefined at  $\mathbf{p}$ , we say that the gradient of the function f does not exist at the location  $\mathbf{p}$ .

In the cases where the expression of the function f contains several parameters besides the variable **x**, e.g.,  $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$  where **a** is a constant vector regarded as the parameter of the function, we denote the gradient of f by  $\nabla_{\mathbf{x}} f$  or  $\frac{\partial f}{\partial \mathbf{x}}$  instead (to indicate clearly that the partial derivatives are taken only with respect to **x**).

If  $\nabla f(\mathbf{p}) \neq \mathbf{0}$  for some interior point  $\mathbf{p} \in \Omega$ , then at that point the gradient vector is perpendicular to the level set  $L_{\alpha}(f)$  in  $\mathbb{R}^n$ , where  $\alpha = f(\mathbf{p})$ . That is,  $\nabla f(\mathbf{p})$  is perpendicular to the tangent plane  $L_{\alpha}(f)$  at the point  $\mathbf{p}$ . Figure 2.8 displays a function of two variables and an  $\alpha$ -level set (contour curve) where  $\alpha = f(\mathbf{p})$ . The gradient at  $\mathbf{p}$  is perpendicular to the contour curve at location  $\mathbf{p}$ , which means that  $\nabla f(\mathbf{p})$  is perpendicular to the tangent line of the curve at  $\mathbf{p}$ . Additionally, the direction of the gradient  $\nabla f(\mathbf{p})$  is the direction in which the function f increases the most rapidly from the point  $\mathbf{p}$ , and the magnitude of  $\nabla f(\mathbf{p})$  is the rate of increase in that direction. On the contrary,  $-\nabla f(\mathbf{p})$  is the direction of the fastest decrease of f at location  $\mathbf{p}$ .

We say that a point in the domain of the given function f,  $\mathbf{x}_0 \in \Omega$ , is a *critical* point of f if  $\nabla f(\mathbf{x}_0) = \mathbf{0}$  (such as the point  $\mathbf{x}_0$  in Figure 2.8), or the gradient does not exist at  $\mathbf{x}_0$ . The *critical values* are the values of the function f at the critical points.

For any function  $f : \Omega \mapsto \mathbb{R}$  that is second-order differentiable with respect to each variable  $x_i$  in all or the same part of  $\Omega^0$ , the *Hessian* of f, denoted as  $\nabla^2 f$ , is a matrix-valued function whose components are the second-order partial derivatives of f:

$$\nabla^2 f = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{1 \le i,j \le n}.$$
(2.20)

Similarly, when the function f has several parameters besides the variables in **x**, we denote the Hessian of f by  $\nabla_{\mathbf{x}}^2 f$  or  $\frac{\partial^2 f}{\partial \mathbf{x}^2}$  instead.

2 Optimization of multivariate functions



at the point  $\mathbf{p}$  is the direction of fastest increase of the function f from the point. The other labeled point,  $\mathbf{x}_0$ , is a critical point of f where the gradient vector vanishes.

Fig. 2.8 The gradient vector

Given a point  $\mathbf{p} \in \Omega^{\circ}$  at which f is twice differentiable, we may evaluate the components of the Hessian at  $\mathbf{p}$  to obtain the *Hessian matrix* of f at  $\mathbf{p}$ :

$$\nabla^2 f(\mathbf{p}) = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{p})\right) \in \mathbb{R}^{n \times n}.$$
(2.21)

If all the second-order partial derivatives of the function f are continuous at **p**, then

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{p}) = \frac{\partial^2 f}{\partial x_j \partial x_i}(\mathbf{p}), \quad \text{for all } i \neq j$$
(2.22)

In this case,  $\nabla^2 f(\mathbf{p})$  is a symmetric matrix.

*Example 2.6* Let  $f(x_1, x_2) = x_1^2 + 2x_2^2 + 2x_1x_2$  which is a function on  $\mathbb{R}^2$ . The gradient of f is

$$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \end{pmatrix} = \begin{pmatrix} 2x_1 + 2x_2 \\ 4x_2 + 2x_1 \end{pmatrix}$$

The gradient vector at  $\mathbf{x} = \mathbf{1}$  is

$$\nabla f(\mathbf{1}) = \begin{pmatrix} 2x_1 + 2x_2 \\ 4x_2 + 2x_1 \end{pmatrix} \Big|_{x_1 = x_2 = 1} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}.$$

The Hessian of f is constant everywhere in  $\mathbb{R}^2$ 

$$\nabla^2 f = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix}.$$

Lastly, we mention the notion of the Jacobian of a vector-valued function (such as the gradient function). Let  $\mathbf{f} : \Omega \subseteq \mathbb{R}^n \mapsto \mathbb{R}^m$  be a vector-valued function with differentiable component functions  $f_i$ , i.e.,

2.3 Derivatives of a function of several variables

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{pmatrix}, \quad \text{for all } \mathbf{x} \in \Omega.$$
 (2.23)

The Jacobian of  $\mathbf{f}$  is a matrix-valued function

$$\nabla \mathbf{f} : \Omega \subseteq \mathbb{R}^n \mapsto \mathbb{R}^{n \times m}, \quad \text{with} \quad (\nabla \mathbf{f})_{ij} = \frac{\partial f_j}{\partial x_i}$$
 (2.24)

Using this terminology, the Hessian of a scalar-valued function  $f : \Omega \subseteq \mathbb{R}^n \mapsto \mathbb{R}$  is just the Jacobian of the gradient of f, namely,

$$\nabla^2 f = \nabla(\nabla f). \tag{2.25}$$

Given a point  $\mathbf{p} \in \Omega$  at which all  $f_i$ 's are differentiable, we can evaluate every component of the Jacobian  $\nabla \mathbf{f}$  at  $\mathbf{p}$  to obtain the Jacobian matrix of  $\mathbf{f}$  at  $\mathbf{p}$ :

$$\nabla \mathbf{f}(\mathbf{p}) = \left(\frac{\partial f_j}{\partial x_i}(\mathbf{p})\right)_{1 \le i \le n, \ 1 \le j \le m}.$$
(2.26)

## 2.3.2 Useful formulas

Next, we derive a few formulas concerning the gradients and Hessians of functions of **x** like  $\mathbf{x}^T \mathbf{A} \mathbf{x}$  and  $\|\mathbf{x}\|^2$ . These formulas are frequently needed in the derivation of statistics and machine learning algorithms.

**Theorem 2.6** For any fixed symmetric matrix  $\mathbf{A} \in S^n(\mathbb{R})$ , fixed matrix  $\mathbf{B} \in \mathbb{R}^{m \times n}$ , and fixed vector  $\mathbf{a} \in \mathbb{R}^n$ , we have

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{a}^T \mathbf{x}) = \mathbf{a}$$
$$\frac{\partial}{\partial \mathbf{x}} (\|\mathbf{x}\|^2) = 2\mathbf{x}$$
$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A} \mathbf{x}$$
$$\frac{\partial}{\partial \mathbf{x}} (\|\mathbf{B} \mathbf{x}\|^2) = 2\mathbf{B}^T \mathbf{B} \mathbf{x}$$

**Proof** The top two identities can be verified by direct calculation of the *k*th partial derivative: For each  $1 \le k \le n$ :

2 Optimization of multivariate functions

$$\frac{\partial}{\partial x_k} \left( \mathbf{a}^T \mathbf{x} \right) = \frac{\partial}{\partial x_k} \left( \sum_{i=1}^n a_i x_i \right) = a_k$$
$$\frac{\partial}{\partial x_k} \left( \|\mathbf{x}\|^2 \right) = \frac{\partial}{\partial x_k} \left( \sum_{i=1}^n x_i^2 \right) = 2x_k.$$

For the third identity involving  $\mathbf{x}^T \mathbf{A} \mathbf{x}$ ,

$$\frac{\partial}{\partial x_k} (\mathbf{x}^T \mathbf{A} \mathbf{x}) = \frac{\partial}{\partial x_k} \left( \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j \right)$$
$$= \frac{\partial}{\partial x_k} \left( \sum_{j \neq k} a_{kj} x_k x_j + \sum_{i \neq k} a_{ik} x_i x_k + a_{kk} x_k^2 \right)$$
$$= \sum_{j \neq k} a_{kj} x_j + \sum_{i \neq k} a_{ik} x_i + 2a_{kk} x_k$$
$$= \sum_{j=1}^n a_{kj} x_j + \sum_{i=1}^n x_i a_{ik}$$
$$= A_k \mathbf{x} + \mathbf{x}^T \mathbf{a}_k$$
$$= 2A_k \mathbf{x} \quad (\text{since } \mathbf{A} \text{ is symmetric})$$

Collectively, we have

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^T \mathbf{A} \mathbf{x}) = \begin{bmatrix} \frac{\partial}{\partial x_1} (\mathbf{x}^T \mathbf{A} \mathbf{x}) \\ \vdots \\ \frac{\partial}{\partial x_n} (\mathbf{x}^T \mathbf{A} \mathbf{x}) \end{bmatrix} = \begin{bmatrix} 2A_1 \mathbf{x} \\ \vdots \\ 2A_n \mathbf{x} \end{bmatrix} = 2\mathbf{A} \mathbf{x}$$

The last identity can then be verified by writing

$$\|\mathbf{B}\mathbf{x}\|^2 = (\mathbf{B}\mathbf{x})^T (\mathbf{B}\mathbf{x}) = \mathbf{x}^T (\mathbf{B}^T \mathbf{B})\mathbf{x}$$

and applying the third identity.

The next theorem concerns the Hessians of functions like  $\mathbf{x}^T \mathbf{A} \mathbf{x}$  and  $\|\mathbf{x}\|^2$ .

**Theorem 2.7** For any fixed symmetric matrix  $\mathbf{A} \in S^n(\mathbb{R})$ , fixed matrix  $\mathbf{B} \in \mathbb{R}^{m \times n}$ and fixed vector  $\mathbf{a} \in \mathbb{R}^n$ , we have

2.3 Derivatives of a function of several variables

$$\frac{\partial^2}{\partial \mathbf{x}^2} (\mathbf{a}^T \mathbf{x}) = \mathbf{O}$$
$$\frac{\partial^2}{\partial \mathbf{x}^2} (\|\mathbf{x}\|^2) = 2\mathbf{I}$$
$$\frac{\partial^2}{\partial \mathbf{x}^2} (\mathbf{x}^T \mathbf{A} \mathbf{x}) = 2\mathbf{A}$$
$$\frac{\partial^2}{\partial \mathbf{x}^2} (\|\mathbf{B} \mathbf{x}\|^2) = 2\mathbf{B}^T \mathbf{B}$$

**Proof** The first three results can be proved by using the corresponding partial derivatives derived in the proof of the preceding theorem: For any  $1 \le k, \ell \le n$ ,

$$\frac{\partial}{\partial x_{\ell}} \left[ \frac{\partial}{\partial x_{k}} \left( \mathbf{a}^{T} \mathbf{x} \right) \right] = \frac{\partial}{\partial x_{\ell}} (a_{k}) = 0 \qquad \implies \qquad \frac{\partial^{2}}{\partial \mathbf{x}^{2}} (\mathbf{a}^{T} \mathbf{x}) = \mathbf{O}$$
$$\frac{\partial}{\partial x_{\ell}} \left[ \frac{\partial}{\partial x_{k}} \left( \|\mathbf{x}\|^{2} \right) \right] = \frac{\partial}{\partial x_{\ell}} (2x_{k}) = 2\delta_{k\ell} \qquad \implies \qquad \frac{\partial^{2}}{\partial \mathbf{x}^{2}} (\|\mathbf{x}\|^{2}) = 2\mathbf{I}$$
$$\frac{\partial}{\partial x_{\ell}} \left[ \frac{\partial}{\partial x_{k}} (\mathbf{x}^{T} \mathbf{A} \mathbf{x}) \right] = \frac{\partial}{\partial x_{\ell}} (2A_{k} \mathbf{x}) = 2a_{k\ell} \qquad \implies \qquad \frac{\partial^{2}}{\partial \mathbf{x}^{2}} (\mathbf{x}^{T} \mathbf{A} \mathbf{x}) = 2\mathbf{A}$$

The last result can be proved similarly by writing  $||\mathbf{B}\mathbf{x}||^2 = \mathbf{x}^T (\mathbf{B}^T \mathbf{B})\mathbf{x}$  and applying the third result.

Lastly, we introduce the gradient of a function  $f : \mathbb{R}^{m \times n} \mapsto \mathbb{R}$  whose inputs are matrices (regarded as vectors). That is, for any  $\mathbf{X} \in \mathbb{R}^{m \times n}$ , we think of  $f(\mathbf{X})$  as  $f(\text{vec}(\mathbf{X}))$  and compute the gradient of f with respect to each component of  $\text{vec}(\mathbf{X})$ , but we will represent the gradient in a matrix form consistent in size and order with  $\mathbf{X}$ .

Formally, the gradient of a function  $f : \mathbf{X} \in \mathbb{R}^{m \times n} \mapsto f(\mathbf{X}) \in \mathbb{R}$  is a matrixvalued function  $\nabla f : \mathbb{R}^{m \times n} \mapsto \mathbb{R}^{m \times n}$ , whose components are the partial derivatives of f with respect to each input variable  $x_{ij}$ :

$$\nabla f = \left(\frac{\partial f}{\partial x_{ij}}\right)_{1 \le i \le m, \ 1 \le j \le n}.$$
(2.27)

Other kinds of notation for the gradient are  $\nabla_{\mathbf{X}} f$  and  $\frac{\partial f}{\partial \mathbf{X}}$ . For example, let

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}, \quad \text{and} \quad f(\mathbf{X}) = x_{11}^2 + x_{22} - x_{12}x_{21}$$

Then

$$\frac{\partial f}{\partial \mathbf{X}} = \begin{pmatrix} \frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} \\ \frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}} \end{pmatrix} = \begin{pmatrix} 2x_{11} & x_{21} \\ x_{12} & 1 \end{pmatrix}.$$

We are now ready to present the following results.

**Theorem 2.8** Let  $\mathbf{X} \in \mathbb{R}^{m \times n}$  be a matrix of mn variables. For any fixed matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , and fixed symmetric matrix  $\mathbf{B} \in \mathbb{R}^{m \times m}$ , we have

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{A}^T \mathbf{X}) = \mathbf{A}, \quad \text{and} \quad \frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = 2\mathbf{B} \mathbf{X}$$
 (2.28)

In particular, if  $\mathbf{B} = \mathbf{I}$ , then the second identity reduces to

$$\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}(\mathbf{X}^T \mathbf{X}) = 2\mathbf{X}$$
(2.29)

**Proof** We just need to verify the entrywise partial derivatives. For any integers  $1 \le i \le m$  and  $1 \le j \le n$ ,

$$\frac{\partial}{\partial x_{ij}}\operatorname{tr}(\mathbf{A}^T\mathbf{X}) = \frac{\partial}{\partial x_{ij}}\sum_{k=1}^m (\mathbf{A}^T\mathbf{X})_{kk} = \frac{\partial}{\partial x_{ij}}\sum_{k=1}^m \left(\sum_{s=1}^n a_{sk}x_{sk}\right) = \frac{\partial}{\partial x_{ij}}(a_{ij}x_{ij}) = a_{ij}.$$

The completes the proof of the first identity.

For any integers  $1 \le i \le m$  and  $1 \le j \le n$ ,

$$\frac{\partial}{\partial x_{ij}}\operatorname{tr}(\mathbf{X}^T\mathbf{B}\mathbf{X}) = \frac{\partial}{\partial x_{ij}}\sum_{k=1}^n (\mathbf{X}^T\mathbf{B}\mathbf{X})_{kk} = \frac{\partial}{\partial x_{ij}}\sum_{k=1}^n \left(\sum_{s=1}^m \sum_{t=1}^m x_{sk}b_{st}x_{tk}\right).$$

Observe that the term-by-term partial derivatives are zero unless k = j. Thus,

$$\frac{\partial}{\partial x_{ij}}\operatorname{tr}(\mathbf{X}^T\mathbf{B}\mathbf{X}) = \frac{\partial}{\partial x_{ij}}\sum_{s=1}^m\sum_{t=1}^m x_{sj}b_{st}x_{tj}.$$

To proceed further, we divide the double sum into four terms depending on whether each of s, t is equal to i:

$$\frac{\partial}{\partial x_{ij}} \operatorname{tr}(\mathbf{X}^T \mathbf{B} \mathbf{X}) = \frac{\partial}{\partial x_{ij}} \left( b_{ii} x_{ij}^2 + \sum_{t=1, t \neq i}^m x_{ij} b_{it} x_{tj} + \sum_{s=1, s \neq i}^m x_{sj} b_{si} x_{ij} + \sum_{s \neq i}^m x_{sj} b_{st} x_{tj} \right)$$
$$= 2b_{ii} x_{ij} + \sum_{t=1, t \neq i}^m b_{it} x_{tj} + \sum_{s=1, s \neq i}^m x_{sj} b_{si} + 0$$
$$= \sum_{t=1}^m b_{it} x_{tj} + \sum_{s=1}^m x_{sj} b_{si}$$
$$= (\mathbf{B} \mathbf{X})_{ij} + (\mathbf{B}^T \mathbf{X})_{ij}$$
$$= 2(\mathbf{B} \mathbf{X})_{ij} \quad \text{(by using the symmetry of } \mathbf{B}).$$

This thus completes the proof of the second identity.