$$
\begin{equation*}
f(\mathbf{x})=\|\mathbf{A} \mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{x}\|_{p}^{p} \tag{2.17}
\end{equation*}
$$

Such a result will be needed when we get to the regression chapter.
Lastly, we mention a useful fact that the α-sublevel sets of a convex function must be convex sets.

Theorem 2.5 Let $f: \Omega \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}$ be a convex function. For any $\alpha \in \mathbb{R}, S_{\alpha}(f)$ is a convex set in \mathbb{R}^{n}.

Proof Suppose $\mathbf{x}, \mathbf{y} \in S_{\alpha}(f)$, that is $f(\mathbf{x}) \leq \alpha$ and $f(\mathbf{y}) \leq \alpha$. For any $t \in(0,1)$,

$$
f(t \mathbf{x}+(1-t) \mathbf{y}) \leq t f(\mathbf{x})+(1-t) f(\mathbf{y}) \leq t \alpha+(1-t) \alpha=\alpha .
$$

Thus, $t \mathbf{x}+(1-t) \mathbf{y} \in S_{\alpha}(f)$. This shows that $S_{\alpha}(f)$ is indeed a convex set.
Example 2.5 The following are all convex sets in \mathbb{R}^{n} because they are sublevel sets of convex functions:

- ℓ_{p}-balls: $\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|_{p} \leq r\right\}$ where $p \geq 1$ and $r>0$;
- Half spaces: $\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}$ where $\mathbf{a} \neq \mathbf{0} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$;
- Ellipsoids (centered at the origin): $\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{T} \mathbf{A x} \leq b\right\}$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a positive definite matrix and $b \in \mathbb{R}$.

See Figure 2.7.

Fig. 2.7 Convex sets in \mathbb{R}^{n} : a solid ℓ_{1}-ball (left), a half-space (middle), and an ellipsoid (right).

2.3 Derivatives of a function of several variables

2.3.1 Basic concepts

Let $\Omega \subseteq \mathbb{R}^{n}$ be a set and $f: \Omega \mapsto \mathbb{R}$ a function over the set. The function f is said to be differentiable at an interior point $\mathbf{x}_{0} \in \Omega$ if all the partial derivatives of $f,\left\{\frac{\partial f}{\partial x_{i}}: i=1, \ldots, n\right\}$, exist at \mathbf{x}_{0}. If additionally all the partial derivatives of f are continuous at \mathbf{x}_{0}, then f is said to be continuously differentiable at the point.

Similarly, if all the second-order partial derivatives of $f,\left\{\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}: 1 \leq i, j \leq n\right\}$, exist at an interior point $\mathbf{x}_{0} \in \Omega$, we say that f is twice differentiable at \mathbf{x}_{0}. If additionally all the second-order partial derivatives of f are continuous at \mathbf{x}_{0}, then f is said to be twice continuously differentiable at the point.

Suppose that $f: \Omega \mapsto \mathbb{R}$ is differentiable in all or a nonempty subset of the interior of Ω. The gradient of f is a vector field (i.e., vector-valued function) whose components are the partial derivatives of f :

$$
\begin{equation*}
\nabla f: \Omega \subseteq \mathbb{R}^{n} \longmapsto \mathbb{R}^{n}, \quad \text { with } \quad \nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{T} \tag{2.18}
\end{equation*}
$$

When given a specific point $\mathbf{p} \in \Omega^{\mathrm{o}}$ at which f is differentiable, we may evaluate the gradient ∇f at \mathbf{p} to obtain a gradient vector:

$$
\begin{equation*}
\nabla f(\mathbf{p})=\left(\frac{\partial f}{\partial x_{1}}(\mathbf{p}), \ldots, \frac{\partial f}{\partial x_{n}}(\mathbf{p})\right)^{T} \in \mathbb{R}^{n} \tag{2.19}
\end{equation*}
$$

On the other hand, if any of the partial derivatives is undefined at \mathbf{p}, we say that the gradient of the function f does not exist at the location \mathbf{p}.

In the cases where the expression of the function f contains several parameters besides the variable \mathbf{x}, e.g., $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}$ where \mathbf{a} is a constant vector regarded as the parameter of the function, we denote the gradient of f by $\nabla_{\mathbf{x}} f$ or $\frac{\partial f}{\partial \mathbf{x}}$ instead (to indicate clearly that the partial derivatives are taken only with respect to \mathbf{x}).

If $\nabla f(\mathbf{p}) \neq \mathbf{0}$ for some interior point $\mathbf{p} \in \Omega$, then at that point the gradient vector is perpendicular to the level set $L_{\alpha}(f)$ in \mathbb{R}^{n}, where $\alpha=f(\mathbf{p})$. That is, $\nabla f(\mathbf{p})$ is perpendicular to the tangent plane $L_{\alpha}(f)$ at the point \mathbf{p}. Figure 2.8 displays a function of two variables and an α-level set (contour curve) where $\alpha=f(\mathbf{p})$. The gradient at \mathbf{p} is perpendicular to the contour curve at location \mathbf{p}, which means that $\nabla f(\mathbf{p})$ is perpendicular to the tangent line of the curve at \mathbf{p}. Additionally, the direction of the gradient $\nabla f(\mathbf{p})$ is the direction in which the function f increases the most rapidly from the point \mathbf{p}, and the magnitude of $\nabla f(\mathbf{p})$ is the rate of increase in that direction. On the contrary, $-\nabla f(\mathbf{p})$ is the direction of the fastest decrease of f at location \mathbf{p}.

We say that a point in the domain of the given function $f, \mathbf{x}_{0} \in \Omega$, is a critical point of f if $\nabla f\left(\mathbf{x}_{0}\right)=\mathbf{0}$ (such as the point \mathbf{x}_{0} in Figure 2.8), or the gradient does not exist at \mathbf{x}_{0}. The critical values are the values of the function f at the critical points.

For any function $f: \Omega \longmapsto \mathbb{R}$ that is second-order differentiable with respect to each variable x_{i} in all or the same part of Ω^{o}, the Hessian of f, denoted as $\nabla^{2} f$, is a matrix-valued function whose components are the second-order partial derivatives of f :

$$
\begin{equation*}
\nabla^{2} f=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right)_{1 \leq i, j \leq n} \tag{2.20}
\end{equation*}
$$

Similarly, when the function f has several parameters besides the variables in \mathbf{x}, we denote the Hessian of f by $\nabla_{\mathbf{x}}^{2} f$ or $\frac{\partial^{2} f}{\partial \mathbf{x}^{2}}$ instead.

Fig. 2.8 The gradient vector at the point \mathbf{p} is the direction of fastest increase of the function f from the point. The other labeled point, \mathbf{x}_{0}, is a critical point of f where the gradient vector vanishes.

Given a point $\mathbf{p} \in \Omega^{\circ}$ at which f is twice differentiable, we may evaluate the components of the Hessian at \mathbf{p} to obtain the Hessian matrix of f at \mathbf{p} :

$$
\begin{equation*}
\nabla^{2} f(\mathbf{p})=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{p})\right) \in \mathbb{R}^{n \times n} \tag{2.21}
\end{equation*}
$$

If all the second-order partial derivatives of the function f are continuous at \mathbf{p}, then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{p})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{p}), \quad \text { for all } i \neq j \tag{2.22}
\end{equation*}
$$

In this case, $\nabla^{2} f(\mathbf{p})$ is a symmetric matrix.
Example 2.6 Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{2}^{2}+2 x_{1} x_{2}$ which is a function on \mathbb{R}^{2}. The gradient of f is

$$
\nabla f=\binom{\frac{\partial f}{\partial x_{1}}}{\frac{\partial f}{\partial x_{2}}}=\binom{2 x_{1}+2 x_{2}}{4 x_{2}+2 x_{1}}
$$

The gradient vector at $\mathbf{x}=\mathbf{1}$ is

$$
\nabla f(\mathbf{1})=\left.\binom{2 x_{1}+2 x_{2}}{4 x_{2}+2 x_{1}}\right|_{x_{1}=x_{2}=1}=\binom{4}{6} .
$$

The Hessian of f is constant everywhere in \mathbb{R}^{2}

$$
\nabla^{2} f=\left(\begin{array}{cc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}}
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 4
\end{array}\right)
$$

Lastly, we mention the notion of the Jacobian of a vector-valued function (such as the gradient function). Let $\mathbf{f}: \Omega \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}^{m}$ be a vector-valued function with differentiable component functions f_{i}, i.e.,

$$
\mathbf{f}(\mathbf{x})=\left(\begin{array}{c}
f_{1}(\mathbf{x}) \tag{2.23}\\
\vdots \\
f_{m}(\mathbf{x})
\end{array}\right), \quad \text { for all } \mathbf{x} \in \Omega
$$

The Jacobian of \mathbf{f} is a matrix-valued function

$$
\begin{equation*}
\nabla \mathbf{f}: \Omega \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}^{n \times m}, \quad \text { with } \quad(\nabla \mathbf{f})_{i j}=\frac{\partial f_{j}}{\partial x_{i}} \tag{2.24}
\end{equation*}
$$

Using this terminology, the Hessian of a scalar-valued function $f: \Omega \subseteq \mathbb{R}^{n} \mapsto \mathbb{R}$ is just the Jacobian of the gradient of f, namely,

$$
\begin{equation*}
\nabla^{2} f=\nabla(\nabla f) \tag{2.25}
\end{equation*}
$$

Given a point $\mathbf{p} \in \Omega$ at which all f_{i} 's are differentiable, we can evaluate every component of the Jacobian $\nabla \mathbf{f}$ at \mathbf{p} to obtain the Jacobian matrix of \mathbf{f} at \mathbf{p} :

$$
\begin{equation*}
\nabla \mathbf{f}(\mathbf{p})=\left(\frac{\partial f_{j}}{\partial x_{i}}(\mathbf{p})\right)_{1 \leq i \leq n, 1 \leq j \leq m} \tag{2.26}
\end{equation*}
$$

2.3.2 Useful formulas

Next, we derive a few formulas concerning the gradients and Hessians of functions of \mathbf{x} like $\mathbf{x}^{T} \mathbf{A x}$ and $\|\mathbf{x}\|^{2}$. These formulas are frequently needed in the derivation of statistics and machine learning algorithms.

Theorem 2.6 For any fixed symmetric matrix $\mathbf{A} \in S^{n}(\mathbb{R})$, fixed matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$, and fixed vector $\mathbf{a} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{a}^{T} \mathbf{x}\right) & =\mathbf{a} \\
\frac{\partial}{\partial \mathbf{x}}\left(\|\mathbf{x}\|^{2}\right) & =2 \mathbf{x} \\
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right) & =2 \mathbf{A} \mathbf{x} \\
\frac{\partial}{\partial \mathbf{x}}\left(\|\mathbf{B} \mathbf{x}\|^{2}\right) & =2 \mathbf{B}^{T} \mathbf{B} \mathbf{x}
\end{aligned}
$$

Proof The top two identities can be verified by direct calculation of the k th partial derivative: For each $1 \leq k \leq n$:

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}}\left(\mathbf{a}^{T} \mathbf{x}\right) & =\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} a_{i} x_{i}\right)=a_{k} \\
\frac{\partial}{\partial x_{k}}\left(\|\mathbf{x}\|^{2}\right) & =\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} x_{i}^{2}\right)=2 x_{k}
\end{aligned}
$$

For the third identity involving $\mathbf{x}^{T} \mathbf{A x}$,

$$
\begin{aligned}
\frac{\partial}{\partial x_{k}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right) & =\frac{\partial}{\partial x_{k}}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}\right) \\
& =\frac{\partial}{\partial x_{k}}\left(\sum_{j \neq k} a_{k j} x_{k} x_{j}+\sum_{i \neq k} a_{i k} x_{i} x_{k}+a_{k k} x_{k}^{2}\right) \\
& =\sum_{j \neq k} a_{k j} x_{j}+\sum_{i \neq k} a_{i k} x_{i}+2 a_{k k} x_{k} \\
& =\sum_{j=1}^{n} a_{k j} x_{j}+\sum_{i=1}^{n} x_{i} a_{i k} \\
& =A_{k} \mathbf{x}+\mathbf{x}^{T} \mathbf{a}_{k} \\
& =2 A_{k} \mathbf{x} \quad \quad \text { (since } \mathbf{A} \text { is symmetric) }
\end{aligned}
$$

Collectively, we have

$$
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=\left[\begin{array}{c}
\frac{\partial}{\partial x_{1}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right) \\
\vdots \\
\frac{\partial}{\partial x_{n}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)
\end{array}\right]=\left[\begin{array}{c}
2 A_{1} \mathbf{x} \\
\vdots \\
2 A_{n} \mathbf{x}
\end{array}\right]=2 \mathbf{A} \mathbf{x}
$$

The last identity can then be verified by writing

$$
\|\mathbf{B} \mathbf{x}\|^{2}=(\mathbf{B} \mathbf{x})^{T}(\mathbf{B} \mathbf{x})=\mathbf{x}^{T}\left(\mathbf{B}^{T} \mathbf{B}\right) \mathbf{x}
$$

and applying the third identity.
The next theorem concerns the Hessians of functions like $\mathbf{x}^{T} \mathbf{A x}$ and $\|\mathbf{x}\|^{2}$.
Theorem 2.7 For any fixed symmetric matrix $\mathbf{A} \in S^{n}(\mathbb{R})$, fixed matrix $\mathbf{B} \in \mathbb{R}^{m \times n}$ and fixed vector $\mathbf{a} \in \mathbb{R}^{n}$, we have

$$
\begin{aligned}
\frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\mathbf{a}^{T} \mathbf{x}\right) & =\mathbf{O} \\
\frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\|\mathbf{x}\|^{2}\right) & =2 \mathbf{I} \\
\frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right) & =2 \mathbf{A} \\
\frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\|\mathbf{B} \mathbf{x}\|^{2}\right) & =2 \mathbf{B}^{T} \mathbf{B}
\end{aligned}
$$

Proof The first three results can be proved by using the corresponding partial derivatives derived in the proof of the preceding theorem: For any $1 \leq k, \ell \leq n$,

$$
\begin{aligned}
\frac{\partial}{\partial x_{\ell}}\left[\frac{\partial}{\partial x_{k}}\left(\mathbf{a}^{T} \mathbf{x}\right)\right] & =\frac{\partial}{\partial x_{\ell}}\left(a_{k}\right)=0 & & \Longrightarrow \frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\mathbf{a}^{T} \mathbf{x}\right)=\mathbf{0} \\
\frac{\partial}{\partial x_{\ell}}\left[\frac{\partial}{\partial x_{k}}\left(\|\mathbf{x}\|^{2}\right)\right] & =\frac{\partial}{\partial x_{\ell}}\left(2 x_{k}\right)=2 \delta_{k \ell} & & \Longrightarrow \frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\|\mathbf{x}\|^{2}\right)=2 \mathbf{I} \\
\frac{\partial}{\partial x_{\ell}}\left[\frac{\partial}{\partial x_{k}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\right] & =\frac{\partial}{\partial x_{\ell}}\left(2 A_{k} \mathbf{x}\right)=2 a_{k \ell} & & \Longrightarrow \frac{\partial^{2}}{\partial \mathbf{x}^{2}}\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)=2 \mathbf{A}
\end{aligned}
$$

The last result can be proved similarly by writing $\|\mathbf{B x}\|^{2}=\mathbf{x}^{T}\left(\mathbf{B}^{T} \mathbf{B}\right) \mathbf{x}$ and applying the third result.

Lastly, we introduce the gradient of a function $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ whose inputs are matrices (regarded as vectors). That is, for any $\mathbf{X} \in \mathbb{R}^{m \times n}$, we think of $f(\mathbf{X})$ as $f(\operatorname{vec}(\mathbf{X}))$ and compute the gradient of f with respect to each component of $\operatorname{vec}(\mathbf{X})$, but we will represent the gradient in a matrix form consistent in size and order with X.

Formally, the gradient of a function $f: \mathbf{X} \in \mathbb{R}^{m \times n} \mapsto f(\mathbf{X}) \in \mathbb{R}$ is a matrixvalued function $\nabla f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}^{m \times n}$, whose components are the partial derivatives of f with respect to each input variable $x_{i j}$:

$$
\begin{equation*}
\nabla f=\left(\frac{\partial f}{\partial x_{i j}}\right)_{1 \leq i \leq m, 1 \leq j \leq n} \tag{2.27}
\end{equation*}
$$

Other kinds of notation for the gradient are $\nabla_{\mathbf{X}} f$ and $\frac{\partial f}{\partial \mathbf{X}}$.
For example, let

$$
\mathbf{X}=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right), \quad \text { and } \quad f(\mathbf{X})=x_{11}^{2}+x_{22}-x_{12} x_{21}
$$

Then

$$
\frac{\partial f}{\partial \mathbf{X}}=\left(\begin{array}{ll}
\frac{\partial f}{\partial x_{11}} & \frac{\partial f}{\partial x_{12}} \\
\frac{\partial f}{\partial x_{21}} & \frac{\partial f}{\partial x_{22}}
\end{array}\right)=\left(\begin{array}{cc}
2 x_{11} & x_{21} \\
x_{12} & 1
\end{array}\right) .
$$

We are now ready to present the following results.
Theorem 2.8 Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be a matrix of mn variables. For any fixed matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, and fixed symmetric matrix $\mathbf{B} \in \mathbb{R}^{m \times m}$, we have

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}\right)=\mathbf{A}, \quad \text { and } \quad \frac{\partial}{\partial \mathbf{X}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{B X}\right)=2 \mathbf{B} \mathbf{X} \tag{2.28}
\end{equation*}
$$

In particular, if $\mathbf{B}=\mathbf{I}$, then the second identity reduces to

$$
\begin{equation*}
\frac{\partial}{\partial \mathbf{X}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{X}\right)=2 \mathbf{X} \tag{2.29}
\end{equation*}
$$

Proof We just need to verify the entrywise partial derivatives. For any integers $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$
\frac{\partial}{\partial x_{i j}} \operatorname{tr}\left(\mathbf{A}^{T} \mathbf{X}\right)=\frac{\partial}{\partial x_{i j}} \sum_{k=1}^{m}\left(\mathbf{A}^{T} \mathbf{X}\right)_{k k}=\frac{\partial}{\partial x_{i j}} \sum_{k=1}^{m}\left(\sum_{s=1}^{n} a_{s k} x_{s k}\right)=\frac{\partial}{\partial x_{i j}}\left(a_{i j} x_{i j}\right)=a_{i j}
$$

The completes the proof of the first identity.
For any integers $1 \leq i \leq m$ and $1 \leq j \leq n$,

$$
\frac{\partial}{\partial x_{i j}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{B X}\right)=\frac{\partial}{\partial x_{i j}} \sum_{k=1}^{n}\left(\mathbf{X}^{T} \mathbf{B} \mathbf{X}\right)_{k k}=\frac{\partial}{\partial x_{i j}} \sum_{k=1}^{n}\left(\sum_{s=1}^{m} \sum_{t=1}^{m} x_{s k} b_{s t} x_{t k}\right)
$$

Observe that the term-by-term partial derivatives are zero unless $k=j$. Thus,

$$
\frac{\partial}{\partial x_{i j}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{B X}\right)=\frac{\partial}{\partial x_{i j}} \sum_{s=1}^{m} \sum_{t=1}^{m} x_{s j} b_{s t} x_{t j}
$$

To proceed further, we divide the double sum into four terms depending on whether each of s, t is equal to i :

$$
\begin{aligned}
\frac{\partial}{\partial x_{i j}} \operatorname{tr}\left(\mathbf{X}^{T} \mathbf{B X}\right) & =\frac{\partial}{\partial x_{i j}}\left(b_{i i} x_{i j}^{2}+\sum_{t=1, t \neq i}^{m} x_{i j} b_{i t} x_{t j}+\sum_{s=1, s \neq i}^{m} x_{s j} b_{s i} x_{i j}+\sum_{s \neq i} \sum_{t \neq i} x_{s j} b_{s t} x_{t j}\right) \\
& =2 b_{i i} x_{i j}+\sum_{t=1, t \neq i}^{m} b_{i t} x_{t j}+\sum_{s=1, s \neq i}^{m} x_{s j} b_{s i}+0 \\
& =\sum_{t=1}^{m} b_{i t} x_{t j}+\sum_{s=1}^{m} x_{s j} b_{s i} \\
& =(\mathbf{B X})_{i j}+\left(\mathbf{B}^{T} \mathbf{X}\right)_{i j} \\
& =2(\mathbf{B X})_{i j} \quad(\text { by using the symmetry of } \mathbf{B}) .
\end{aligned}
$$

This thus completes the proof of the second identity.

