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Outline of the lecture:

• Background

– Similarity graphs

– Spectral graph theory

• Laplacian Eigemaps (LE)

– For dimension reduction (covered in this lecture)

– For clustering (LE + kmeans = spectral clustering)

• Spectral clustering and scalability



Laplacian Eigenmaps (and spectral clustering)

Introduction
Consider themanifold learning problem again: Given a set of points along
a manifold embedded in a high dimensional Euclidean space, x1, . . . ,xn ∈
M ⊂ Rd, find another set of vectors in a low-dimensional Euclidean
space, y1, . . . ,yn ∈ Rk (for some k � d), such that yi “represents” xi
by preserving certain kind of information.
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Laplacian Eigenmaps (and spectral clustering)

We have already seen ISOmap as a nonlinear dimensionality reduction
approach to finding a low-dimensional representation for manifold data in
high dimensional Euclidean spaces.

It consists of the following steps:

1. Build a neighborhood (dissimilarity) graph from the given data

2. Compute the shortest-path distances along the graph

3. Apply MDS to find a low-dimensional representation

The goal of ISOmap is to directly preserve the global (nonlinear) geometry.
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Laplacian Eigenmaps (and spectral clustering)

In contrast, Laplacian Eigenmaps will focus on preserving the local geometry
- nearby points in the original space remain nearby in the reduced space.

It consists of the following steps:

1. Build a similarity graph from the given data

2. Compute the graph Laplacian matrix

3. Use the eigenvectors of the Laplcian matrix to form a low-dimensional
embedding of the data
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Laplacian Eigenmaps (and spectral clustering)

Similarity graphs

A similarity graph is a weighted
graph whose edge weights are lev-
els of similarities of the connected
vertices.

For example, the following is a simi-
larity graph on 5 vertices:
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Its weight matrix is displayed below:

W =


0 .8 .8 0 0
.8 0 .8 0 0
.8 .8 0 .1 0
0 0 .1 0 .9
0 0 0 .9 0



In general, W is square, symmetric,
and nonnegative.
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Laplacian Eigenmaps (and spectral clustering)

How to construct similarity graphs from data
• The ε-neighborhood graph: connect with weight 1 any two points

xi,xj whose distance is less than ε

• The rNN graph: connect with weight 1 any two points xi,xj if
one is among the r nearest neighbors of the other;
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Laplacian Eigenmaps (and spectral clustering)

• The fully connected graph: connect any two points xi,xj with
weight according to some similarity function s:

wij = s(xi,xj), for all i, j = 1, . . . , n

For example,

– Gaussian weights: s(xi,xj) = e−
‖xi−xj‖

2

2σ2 , where σ > 0 is a
scale parameter whose value is fixed.

– Cosine weights: s(xi,xj) = xi
‖xi‖ ·

xj
‖xj‖ , which is often used

in documents clustering

It is also possible to mix up the different kinds of graphs.
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Laplacian Eigenmaps (and spectral clustering)

1D dimension reduction by Laplacian Eigenmaps

Assuming a weighted similarity graph (constructed on the given data set),
we first consider the problem of mapping the graph to a line in a way
such that close neighbors on the graph are still close on the line. ←−
Locality-preserving
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Laplacian Eigenmaps (and spectral clustering)

Let f = (f1, . . . , fn)T represent the 1D embedding of the nodes. We then
formulate the following problem:

min
f∈Rn

1
2
∑
i

∑
j

wij(fi − fj)2

Interpretation:

• If wij is large (close to 1, meaning xi,xj are originally very close),
then fi, fj must still be close (otherwise there is a heavy penalty).

• If wij is small (close to 0, meaning xi,xj are originally very far),
then there is much flexibility in putting fi, fj on the line.
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Laplacian Eigenmaps (and spectral clustering)

However, the problem

min
f∈Rn

1
2
∑
i

∑
j

wij(fi − fj)2

is not well defined yet. Why?
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Laplacian Eigenmaps (and spectral clustering)

To remove the scaling and translational invariances in f (and get rid of
the trivial solutions 0,1), we add the following constraints on f (for now):

min
f∈Rn

1
2
∑
i

∑
j

wij(fi − fj)2

subject to
fT1 =

∑
fi = 0, ‖f‖2 =

∑
f2
i = 1.

Equivalently, it can be reformulated as

min
fT 1=0, ‖f‖=1

1
2
∑
i

∑
j

wij(fi−fj)2, or min
f 6=0, fT 1=0

1
2
∑
i

∑
j wij(fi − fj)2∑

i f
2
i
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Laplacian Eigenmaps (and spectral clustering)

Spectral graph theory (a little bit)
Let G = (V,E,W) be a weighted graph with vertices V = {1, . . . , n}
and weights wij ≥ 0 (there is an edge eij ∈ E connecting nodes i and j
if and only if wij > 0).

The degree of a vertex i ∈ V is defined as di =
∑n
j=1wij . It measures

the connectivity of the vertex in the graph.

The degrees of all vertices can be used to form a degree matrix

D = diag(d1, . . . , dn) ∈ Rn×n.

An equivalent way of defining the degree matrix is D = diag(W1).
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Laplacian Eigenmaps (and spectral clustering)

Example 0.1. For the following graph, D = diag(1.6, 1.6, 1.7, 1, 0.9).
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W =


0 .8 .8 0 0
.8 0 .8 0 0
.8 .8 0 .1 0
0 0 .1 0 .9
0 0 0 .9 0
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Laplacian Eigenmaps (and spectral clustering)

A subgraph of a given graph G = (V,E,W) is another graph, formed
from a subset of the vertices of the graph, A ⊂ V by keeping only all of
the edges connecting pairs of vertices in A.

A path in the graph is a sequence of vertices and edges in between such
that no vertex or edge can repeat.

A subgraph A ⊂ V of a graph is connected if any two vertices in A can
be joined by a path such that all intermediate points also lie in A.

A subgraph A ⊂ V is called a connected component if it is connected
and if there are no edges between A and its complement Ā = V −A.

A graph is said to be connected if it has only one connected component.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.2. The following graph has only 1 connected component, and
thus is a connected graph.
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0.8 0.1

0.9

The left three nodes (and the three edges connecting them to each other)
form a subgraph, and is connected (but is not a connected component).
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Laplacian Eigenmaps (and spectral clustering)

A graph G = (V,E,W) is called a bipartite graph if there is a partition
of the nodes V = A∪B such that there is no edge inside each of the two
parts A and B:

wij = 0, i, j ∈ A, and wij = 0, i, j ∈ B.

In other words, all the edges in E are between A and B.
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Laplacian Eigenmaps (and spectral clustering)

The graph Laplacian is a very important (yet challenging) concept in
spectral graph theory.

Def 0.1. Given a graph G = (V,E,W) with size |V | = n, the graph
Laplacian is defined as the following matrix

L = D−W ∈ Rn×n, where D = diag(W1).

Example 0.3. For the previous graph, the graph Laplacian matrix is

L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9
−0.9 0.9
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Laplacian Eigenmaps (and spectral clustering)

The graph Laplacian has many interesting properties.

Theorem 0.1. Let L ∈ Rn×n be a graph Laplacian matrix. Then

• L is symmetric.

• All the rows (and columns) sum to 0, i.e., L1 = 0. This implies
that L has a eigenvalue 0 with eigenvector 1 ∈ Rn.

• For every vector f ∈ Rn we have

f ′Lf = 1
2

n∑
i=1

n∑
j=1

wij(fi − fj)2.

This implies that L is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
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Laplacian Eigenmaps (and spectral clustering)

• The algebraic (and also geometric) multiplicity of the eigenvalue 0
equals the number of connected components of the graph.

Proof. The first two are obvious. We prove the third result below:∑
i,j

wij(fi − fj)2 =
∑
i,j

wijf
2
i +

∑
i,j

wijf
2
j − 2

∑
i,j

wijfifj

=
∑
i

dif
2
i +

∑
j

djf
2
j − 2

∑
i,j

wijfifj

= 2fTDf − 2fTWf
= 2fT (D−W)f = 2fTLf ,

and skip the proof for the last one.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.4. For the graph below (which is connected), the eigenvalues
of the graph Laplacian are 0 < 0.0788 < 1.8465 < 2.4000 < 2.4747.

b

b b b b

0.8 0.8

0.8 0.1

0.9

L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9
−0.9 0.9
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Laplacian Eigenmaps (and spectral clustering)

Example 0.5. Consider the modified graph by removing the middle edge
with weight 0.1 (which now has two connected components)

W =


0 .8 .8 0 0
.8 .0 .8 0 0
.8 .8 0 0 0
0 0 0 0 .9
0 0 0 .9 0

 , L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.6

0.9 −0.9
−0.9 0.9


It can be shown that

det(λI− L) = λ(λ− 2.4)2 · λ(λ− 1.8).

Thus, the graph Laplacian has a repeated eigenvalue 0, with multiplicity 2
(which is equal to the number of connected components).
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Laplacian Eigenmaps (and spectral clustering)

Returning to the 1D Laplacian Eigenmaps problem
which embeds the nodes of a similarity graph G = (V,E,W) into a line:

min
f 6=0∈Rn
fT 1=0

1
2
∑
i

∑
j wij(fi − fj)2∑

i f
2
i

.

Applying the theorem on graph Laplacians, we can rewrite the above
problem as follows:

min
f 6=0∈Rn
fT 1=0

fTLf
fT f .

Again, we have encountered a Rayleigh quotient problem (but with an
extra constraint this time)!
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Laplacian Eigenmaps (and spectral clustering)

Without the extra constraint fT1 = 0, a minimizer of the Rayleigh quotient
is an eigenvector of the graph Laplacian L = D −W corresponding to
the smallest eigenvalue λ1 = 0, i.e.,

v1 = 1.

However, as previously pointed out, this is a trivial solution which puts all
nodes of the graph at the same point of a line.

With the extra constraint, we force f to be perpendicular to the eigenvector
1. The minimizer of this new problem is given by the second smallest
eigenvector of L:

f∗ = v2,

and the minimum value of the Rayleigh quotient is λ2.
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Laplacian Eigenmaps (and spectral clustering)

If the similarity graph is connected (which is the interesting, nontrivial
case), the algebraic multiplicity of the eigenvalue 0 is one.

Consequently, we must have λ2 > 0, and

0 < (f∗)T Lf∗ = 1
2

n∑
i,j=1

wij(f∗i − f∗j )2

This shows that f∗ = v2 will lead to a nontrivial embedding of the graph.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.6. For the graph below (which is connected), the 2nd smallest
eigenvector is v2 = (−.3771,−.3771,−.3400, .5221, .5722).
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Laplacian Eigenmaps (and spectral clustering)

So far so good (for the sake of presenting ideas), but the original Laplacian
Eigenmaps algorithm proposed by Belkin and Niyogi (2003) corresponds
to solving the following problem:

min
f 6=0∈Rn
fTD1=0

fTLf
fTDf ,

where

• The denominator fTDf is for removing the scaling factor in f , and

• The condition fTD1 = 0 is for removing the translational invariance:

0 = fTD1 =
∑

difi

and also for removing a trivial solution, which we show later.
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Laplacian Eigenmaps (and spectral clustering)

To better understand the situation, we need to study the matrix D−1L,
which is a normalized graph Laplacian.

Def 0.2. For any graph G = (V,E,W) with graph Laplacian L = D−W,
let

L̃rw = D−1L = I−D−1W︸ ︷︷ ︸
P

.

It is called the random-walk normalized graph Laplacian, because the
matrix P is the `1 row normalized version of W and thus is row-stochastic.
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Laplacian Eigenmaps (and spectral clustering)

Remark. It is easy to show that

L̃rwv = λv if and only if Pv = (1− λ)v

That is, (λ,v) is an eigenpair for L̃rw if and only if (1−λ,v) is an eigenpair
for P.

This relationship is useful in computing, as later we will need to compute
the bottom eigenvectors of L̃rw, which can be equivalently computed as
the top eigenvectors of P.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.7. For the graph below (which is connected),

b

b b b b

0.8 0.8

0.8 0.1

0.9

the normalized graph Laplacian is

L̃rw =


1 −0.5 −0.5
−0.5 1 −0.5
−0.4706 −0.4706 1 −0.0588 0

−0.1 1 −0.9
−1 1
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Laplacian Eigenmaps (and spectral clustering)

Theorem 0.2. Properties of the normalized graph Laplacian:

• L̃rw1 = 0 (rows sums are 1; it has eigenvalue 0 with eigenvector 1).

• L̃rw is asymmetric, but has n nonnegative eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

Additionally, the multiplicity of the 0 eigenvalue is also equal to the
number of connected components in the graph.

• For all weighted graphs, λn ≤ 2, with bipartite graphs attaining the
upper bound.
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Laplacian Eigenmaps (and spectral clustering)

Now consider the original Laplacian Eigenmaps problem again:

min
f 6=0∈Rn
fTD1=0

fTLf
fTDf .

This is a restricted generalized Rayleigh quotient problem, with the smallest
generalized eigenvector 1 being excluded.

Thus, the minimizer is given by the second smallest eigenvector of L̃rw =
D−1L:

L̃rwv2 = λ2v2 ⇐⇒ Lv2 = λ2Dv2.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.8. For the graph below (which is connected),

b
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0.9

the normalized graph Laplacian L̃rw has the following eigenvalues

0 < 0.0693 < 1.4773 < 1.5000 < 1.9534

Its second smallest eigenvector (corresponding to λ2 = 0.0693) is

v2 = (−0.2594,−0.2594,−0.2235, 0.6152, 0.6610).
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Laplacian Eigenmaps (and spectral clustering)

Remark. For which graph Laplacian, L, L̃rw, should we use its eigenvectors
for embedding graph data?

They correspond to two different formulations of the embedding problem:

min
f 6=0∈Rn
fT 1=0

fTLf
fT f , versus min

f 6=0∈Rn
fTD1=0

fTLf
fTDf .

The two criteria work (nearly) the same when all nodes of the graph have
(nearly) the same degrees (i.e., D ≈ γI for some γ > 0).

In general, the normalized graph Laplacian should be used.
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Laplacian Eigenmaps (and spectral clustering)

Embedding graph data to 2D or higher
To produce a k-dimensional embedding of the nodes of a connected graph
G = (V,E,W), one can just take more eigenvectors of the normalized
Laplacian L̃rw = D−1L:

L̃rwvi = λivi ⇐⇒ Lvi = λiDvi, i = 2, . . . , k + 1

to form the embedding matrix

Y = [v2, . . . ,vk+1] ∈ Rn×k

(Rows of Y are new coordinates for the original data points xi ∈ Rd)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 35/70



Laplacian Eigenmaps (and spectral clustering)

The Laplacian Eigenmaps algorithm
Input: Similarity graph G = (V,E,W), embedding dimension k

Output: A k-dimensional representation of the input data (Y ∈ Rn×k).

1. Compute the row-stochastic matrix P = D−1W.

2. Find the the 2nd to (k + 1)st largest eigenvectors of P (note that
λ1 = 1,v1 = 1):

Pvi = λivi, i = 2, . . . , k + 1

3. Return: Y = [v2 . . .vk+1] ∈ Rn×k.
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Laplacian Eigenmaps (and spectral clustering)

Implementation details

Assume vector data x1, . . . ,xn ∈ Rd combined with Gaussian weights:

wii = 0; wij = exp
(
−‖xi − xj‖2/(2σ2)

)
, i 6= j

The parameter σ can be set directly as the average distance of the data
points to their respective rNNs in the data: σ = 1

n

∑n
i=1 ‖xi − x(rnn)

i ‖.

For fast speed, use a subset of 30 to 50 randomly selected points to
calculate σ. Additionally, r = O(log(n)) and typically, r is 6 to 10.

When the data set has several groups, the embedding dimension k should
be set to the number of groups.
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Computer demonstration
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Laplacian Eigenmaps (and spectral clustering)

Comments on Laplacian Eigenmaps

Handles nonlinear geometry well.

Can reveal/separate clusters (by mapping points in each cluster together).

Choice of the parameter σ in the Gaussian similarity function is important.

High computational complexity though.
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Laplacian Eigenmaps (and spectral clustering)

Connections to spectral clustering
Laplacian Eigenmaps is originally proposed as a nonlinear dimension re-
duction method by preserving local geometry of the given data.

In fact, the new coordinates found by the algorithm, Y = [y1, . . . ,yn]T ∈
Rn×k, can be directly used for clustering purposes:

xi ∈ Rd 7−→ yi ∈ Rk, i = 1, . . . , n

The combination of Laplacian Eigemaps with k-means (for the clustering
step) is exactly the Normalized Cut algorithm proposed by Shi and Malik
(2000), which is one of the standard spectral clustering methods.
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Laplacian Eigenmaps (and spectral clustering)

What is spectral clustering?
A family of clustering algorithms that utilize the spectral decomposition
of a similarity matrix constructed on the given data x1, . . . ,xn ∈ Rd:

W = (wij) ∈ Rn×n, wij =

s(xi,xj), if i 6= j

0, if i = j.

Here, s(·, ·) is a similarity function, such as

• a 0/1-valued indicator function,

• the Gaussian radial basis function (RBF), and

• the cosine similarity.
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Laplacian Eigenmaps (and spectral clustering)

SC via a graph cut point of view

W (as a weight matrix) defines a
weighted graph on the given data.
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Therefore, clustering = finding an
optimal cut (under some criterion).

Some graph terminology:
–Degree matrix: D = diag(W1)
with Dii =

∑
j Wij .

–Graph Laplacian: L = D−W
and its normalized version:

Lrw = D−1L = I− D−1W︸ ︷︷ ︸
P (row stochastic)

Remark. P defines a random walk
on the graph.
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Laplacian Eigenmaps (and spectral clustering)

We (need to) introduce more graph terminology below.

Given a subset of vertices A ⊂ V , we define the indicator vector 1A of A
as

1A = (a1, . . . , an)T , ai = 1 (if i ∈ A) and ai = 0 (if i ∈ Ā).

There are two ways to measure the “size” of a subset A ⊂ V :

|A| = #vertices in A;

Vol(A) =
∑
i∈A

di

The former simply counts the number of vertices in A while the latter
measures how strongly the vertices in A are connected to all vertices of G.
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Laplacian Eigenmaps (and spectral clustering)

Example 0.9. In the graph below, the left three vertices induce a subgraph
A with 1A = (1, 1, 1, 0, 0)T , |A| = 3 and Vol(A) = 1.6 + 1.6 + 1.7 = 4.9 .

b

b b b b

0.8 0.8

0.8 0.1

0.9

D =


1.6

1.6
1.7

1
0.9
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Laplacian Eigenmaps (and spectral clustering)

For any two subsets A,B ⊂ V (not necessarily disjoint), define

W (A,B) =
∑

i∈A, j∈B
wij .

Two special cases:

• If B = Ā, W (A, Ā) is called a cut:

Cut(A, Ā) = W (A, Ā) =
∑

i∈A, j∈Ā

wij

• If B = V ,

W (A, V ) =
∑

i∈A, j∈V
wij =

∑
i∈A

di = Vol(A)
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Laplacian Eigenmaps (and spectral clustering)

To find the “optimal” bipartition of a graph V = A ∪B with B = Ā, Shi
and Malik (2003) proposed to minimize the following normalized cut

NCut(A,B) = Cut(A,B)
( 1

Vol(A) + 1
Vol(B)

)
such that

• Cut(A,B) is as small as possible (minimal loss of edge weights);

• both Vol(A) and Vol(B) are large (for achieving a balanced cut).

This is a combinatorial optimization problem which is NP-hard.
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Laplacian Eigenmaps (and spectral clustering)

To solve the NCut problem, consider
any partition V = A ∪ B. Denote
Vol(A) = a,Vol(B) = b.

Define

f = 1
a

1A −
1
b

1B ∈ Rn

with

fi =


1
a , i ∈ A
−1
b , i ∈ B

Note that f is an indicator variable
for the bipartition.

b

b b b b

0.8 0.8

0.8 0.1

0.9

A B

a = Vol(A) b = Vol(B)

1
a

−1
b

i ∈ A i ∈ B

f
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Laplacian Eigenmaps (and spectral clustering)

We have

fTLf =
∑
i,j

wij(fi − fj)2

=
∑

i∈A, j∈B
wij

(1
a

+ 1
b

)2

= Cut(A,B)
(1
a

+ 1
b

)2

fTDf =
∑
i

diif
2
i

=
∑
i∈A

1
a2dii +

∑
j∈B

1
b2
dii

= 1
a2 Vol(A) + 1

b2
Vol(B) = 1

a
+ 1
b
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It follows that

fTLf
fTDf = Cut(A,B)

(1
a

+ 1
b

)
= NCut(A,B)

Additionally, f satisfies

fTD1 =
∑
i

fidii =
∑
vi∈A

1
a
dii −

∑
vi∈B

1
b
dii = 1

a
Vol(A)− 1

b
Vol(B) = 0

Therefore, we can obtain the following equivalent problem

min
A∪B=V
A∩B=∅

NCut(A,B) ⇐⇒ min
f∈{α,−β}n

fTD1=0

fTLf
fTDf
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This problem is still discrete in nature. To find an approximate solution,
we eliminate the condition f ∈ {α,−β}n to solve the relaxed problem

min
f 6=0∈Rn
fTD1=0

fTLf
fTDf

This is exactly the same generalized Rayleigh quotient problem we obtained
for Laplacian Eigenmaps, with the same minimizer f∗ = v2 (the second
smallest eigenvector of L̃rw = D−1L).

New interpretation: The eigenvector v2 represents an approximate solution
to the NCut problem, providing information about the labels of the data.
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Example 0.10. For the graph below (which is connected),
b

b b b b

0.8 0.8

0.8 0.1

0.9

the second smallest eigenvector of the normalized graph Laplacian L̃rw is
v2 = (0.2594, 0.2594, 0.2235,−0.6152,−0.6610).
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Computer demonstration
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Remark. The RatioCut algorithm uses | · | instead of Vol(·) to measure
the size of each cluster so as to seek a balanced cut:

RatioCut(A,B) = Cut(A,B)
( 1
|A|

+ 1
|B|

)
It can be shown to lead to the following relaxed problem

min
f 6=0∈Rn
fT 1=0

fTLf
fT f

whose solution is given by the second smallest eigenvector of L.

In general, the NCut algorithm works better, especially when the cluster
sizes vary a lot.
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What if k > 2?

Use the subsequent eigenvectors (besides v2) of P:

V = [v2,v3, . . . ,vk] ∈ Rn×(k−1)

since they represent suboptimal 2-way partitions.

Now regard the rows of V as an embedding of the original data in X,

X(i, :) ∈ Rd −→ V(i, :) ∈ Rk−1, i = 1, . . . , n

and apply k-means to group the row vectors of V into k clusters.
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Algorithm 1 Normalized Cut (by Shi and Malik)
Input: Data x1, . . . ,xn ∈ Rd, #clusters k, scale parameter σ
Output: A partition C1, . . . , Ck

1: Construct a weighted graph by assigning weights

W = (wij), wij = e−
‖xi−xj‖

2

2σ2

2: Find the degree matrix D = diag(W1) and use it to normalize W to
get P = D−1W.

3: Find the 2nd to kth largest eigenvectors V = [v2 . . .vk] of P.
4: Apply k-means to group the rows of V into k clusters.
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Computer demonstration
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Computational challenges
Spectral clustering has achieved superior results in many applications (such
as image segmentation, documents clustering, social network partitioning),
but requires significant computational power:

• Extensive memory requirement by W ∈ Rn×n: O(n2)

• High computational cost:

– Construction of W: O(n2d)

– Spectral decomposition of W: O(n3)

Consequently, there has been an urgent need to develop fast, approximate
spectral clustering algorithms that are scalable to large data.
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Landmark-based scalable methods
Most existing scalable methods use a small landmark set y1, . . . ,ym ∈ Rd,
selected from the given data x1, . . . ,xn ∈ Rd (e.g., uniformly at random
or via k-means), to construct a (sparse) similarity matrix between them:

A = (aij) ∈ Rn×m (m� n), aij = s(xi,yj) for r nearest yj
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Afterwards, different methods use the similarity matrix A in different ways:

• cSPEC (Wang et al., 2009): Regards A as a column-sampled
version of W and uses linear algebra to estimate eigenvectors of W

• KASP (Yan, Huang and Jordan, 2009): Uses vector quantization
technique (i.e., kmeans) to aggressively reduce the given data to a
collection of centroids (landmarks) and applies spectral clustering to
group them

• LSC (Cai and Chen, 2015): Obtains the matrix A from a sparse
coding perspective with the landmarks as a dictionary and then
applies spectral clustering to the rows of A (after performing certain
row and column normalizations).
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Overview of our approaches
We propose two new landmark-based scalable spectral clustering methods:
(1) The documents model: We regard A as a “documents” data set
and cluster them based on the cosine similarity.
(2) The bipartite graph model: We use A to form a bipartite graph
with the given data and selected landmarks as the two parts.
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Main papers:

1. “Large-scale spectral clustering using diffusion coordinates on land-
mark based bipartite graphs", K. Pham and G. Chen (TextGraphs
2018, New Orleans, LA)

2. “Scalable spectral clustering with cosine similarity”, G. Chen (ICPR
2018, Beijing)

3. “A general framework for scalable spectral clustering based on docu-
ment models”, G. Chen (Pattern Recognition Letters, June 2019)

We present the bipartite graph model next.
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Motivation
Dhillon (2001) proposed a bipartite graph model for the setting of docu-
ments data, with the goal to co-cluster documents and terms.

r
r
r
r
rr
r
r
r

r
r

×
×
×
×
×r

r
r
r
rr
r
r
r

r
r

×× × × × documents terms
5
42

0000
0 0 0 5

24

b

b

b

Frequency matrix (under bag of words model)

The vertices of the bipartite graph
are documents and terms combined.

The weight matrix is

W =
(

0 A
AT 0

)
∈ R(n+m)×(n+m).

Note that there is no edge inside
each part of the graph.
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Next, in principle, they just apply the NCut algorithm to the bipartite
graph with W as the weight matrix, in order to co-cluster the documents
and terms.

Computing the eigenvectors of P = D−1W directly is costly because of
the size of W. However, there is a shortcut method by using the SVD of
the following normalized version of A:

Ã = D−1/2
1 AD−1/2

2 ,

where
D1 = diag(A1), D2 = diag(AT1)

contain the row and column sums of A, respectively.
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Let the singular values and singular vectors of Ã be

Ãṽi = σiũi, 1 ≤ i ≤ m.

Define

wi =
(

D−1/2
1

D−1/2
2

)(
ũi
ṽi

)
=
(

D−1/2
1 ũi

D−1/2
2 ṽi

)
.

Then
Pwi = σiwi, 1 ≤ i ≤ m

This shows that P has eigenvalues σi with corresponding eigenvectors wi.

Note that in each wi space, the documents and terms appear together,
thus enabling co-clustering to be done (via kmeans).
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Our bipartite graph model
We adapt the bipartite graph model by Dhillon (2001) for landmark-based
clustering by using the given data and a landmark set as the two parts.
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We then apply kmeans in the eigenvector space to first co-cluster the data
and landmarks (and then remove the landmark points later).
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Algorithm 2: Scalable spectral clustering

Input:

• Data x1, . . . ,xn ∈ Rd

• similarity function s (e.g., Gaussian)

• #clusters k

• #landmark points m (at most a few hundred)

• #nearest landmark points r (between 3 and 10)

Output: Clusters C1, . . . , Ck
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Steps:

1. Select m landmark points {yj} by uniform sampling.

2. Compute the similarity matrix A = (aij) ∈ Rn×m, aij = s(xi,yj)
between each given data point xi and the r nearest landmarks yj .

3. Find the row and columns of A: D1 = diag(A1),D2 = diag(AT1),
and use them to normalize A: Ã = D−1/2

1 AD−1/2
2 .

4. Perform the rank-k SVD of Ã to obtain its left and right singular
vector matrices, Ũk ∈ Rn×k and Ṽk ∈ Rm×k.

5. Apply kmeans to cluster the rows of
(

D−1/2
1 Ũk

D−1/2
2 Ṽk

)
.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 67/70



Laplacian Eigenmaps (and spectral clustering)

Algorithmic complexity
Total running time is linear in the size of the data:

O(nmd),

where

• n: number of given data points

• m: number of landmark points

• d: dimension of the data

As a result, the algorithm is scalable to large data.
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Computer demonstration
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Numerical considerations

The total number of selected landmark points (m) should grow with the
size of the data (n), but should be at most a few hundred.

The quality of the landmark points is more important. Ideally, they should
be local centers and cover the given data well.

A better landmark selection method is to first use kmeans to divide the
data into m small subsets and then take the centroids as landmark points
(extra computational burden).
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