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Matrix Algebra

Introduction
This course is based on the following mathematical objects:

• Vectors: 1-D arrays;

• Matrices: 2-D arrays

• Tensors: 3-D arrays (or higher)
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Matrix Algebra

Notation: vectors
Vectors are denoted by boldface lowercase letters (such as a,b,u,v,x,y):

a = (1, 2, 3)T =

1
2
3

 ∈ R3

The ith element of a vector a is written as ai or a(i).

For any p ≥ 1, the `p norm, or simply p-norm, of a vector a ∈ Rn is

‖a‖p =
(

n∑
i=1
|ai|p

)1/p

.

In the case of p = 2 (default), the norm is called the Euclidean norm.
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Matrix Algebra

Some special vectors:

• The zero vector: 0n = (0, 0, . . . , 0)T ∈ Rn

• The vector of ones: 1n = (1, 1, . . . , 1)T ∈ Rn

• The canonical basis vectors of Rn:

ei = (0, . . . , 0, 1︸︷︷︸
ith

, 0, . . . , 0)T ∈ Rn, i = 1, . . . , n

When the dimension of each of these vectors is not specified, it is implied
by the context, e.g.,

a · 1 (dot product), where a = (1, 2, 3)T
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Matrix Algebra

Notation: matrices
Matrices are denoted by boldface UPPERCASE letters (such as A,B,U,V).

We write A ∈ Rm×n to indicate that A has m rows and n columns.

The (i, j) entry of A is denoted by aij , or A(i, j), or Aij .

The ith row of A is denoted by Ai or A(i, :)

The jth column is written as aj or A(:, j).

Ai

aj

baijA =

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 5/72



Matrix Algebra

Special matrices:

• The zero matrix: Om×n ∈ Rm×n

• The identity matrix: In ∈ Rn×n

• The matrix of ones: Jm×n ∈ Rm×n

Similarly, we may drop the subscripts when the size of the matrix is clear
based on the context.

O =


0 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , I =


1 0 0 0
0 1 0 0
...

...
. . .

...
0 0 0 1

 , J =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1
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Matrix Algebra

Notation: tensors

Tensors are multidimensional arrays that generalize vectors and matrices.

We use calligraphic UPPERCASE letters to denote them and write T ∈
Rc×r×l to indicate the size of a 3D tensor T .

Tensor algebra is a big, interesting filed on its own, but we will only use 3D
tensors to store information for simple and efficient coding which requires
knowing a little bit of how to unfold a 3D tensor to a matrix (and to
assemble the tensor back).
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Matrix Algebra

T ∈ Rc×r×ℓ

c

r
ℓ T (:, :, 1) T (:, :, ℓ)b b b b

M ∈ Rc×(rℓ)
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Matrix Algebra

Descriptions of a matrix

One way to characterize a matrix A ∈ Rm×n is based on its shape:
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Matrix Algebra

A matrix A ∈ Rm×n is said to be positive/nonnegative if all of its entries
are positive (aij > 0, ∀i, j) / nonnegative (aij ≥ 0, ∀i, j).

If a matrix has mostly zero entries, then we say that the matrix is sparse
and often leave the zero entries blank when writing it out.

A diagonal matrix is a square matrix A ∈ Rn×n whose off diagonal entries
are all zero (aij = 0 for all i 6= j), e.g.,

A =

1
2

3

 = diag(1, 2, 3)
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Matrix Algebra

Sometimes, a rectangular matrix A ∈ Rm×n is also said to be diagonal if
aij = 0 for all i 6= j.

For example,

B =


1

2
3

0

 ∈ R5×4, C =

2
0

4

 ∈ R3×5

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/72



Matrix Algebra

Matrix multiplication
Let A ∈ Rm×n and B ∈ Rn×p. Their matrix product is an m× p matrix

AB = C = (cij), cij = Aibj =
n∑
k=1

aikbkj .

=C A B
b

i

j

i

j

m× p m× n n× p

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 12/72



Matrix Algebra

It is possible to obtain one full row (or column) of C at a time via
matrix-vector multiplication:

Ci = AiB, cj = Abj

=C BA
b b b b b b

=C A B

b
b
b
b
b
b
b
b
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Matrix Algebra

The full matrix C can be written as a sum of rank-1 matrices:

C =
n∑
k=1

akBk.

=C BA
b b b b

b

b

= + + · · ·+
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Matrix Algebra

Further interpretation of AB when one of the matrices is actually a vector:

• If A = (a1, . . . , an) is a row vector (m = 1):

AB =
n∑
i=1

aiBi ←− linear combination of rows of B

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 15/72



Matrix Algebra

• If B = (b1, . . . , bn)T is a column vector (p = 1):

AB =
n∑
j=1

bjaj ←− linear combination of columns of A
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Matrix Algebra

Finally, below are some identities involving the vector 1 ∈ Rn:

1T1 = n, 11T =


1
1
...
1


(
1 1 . . . 1

)
=


1 1 . . . 1
1 1 . . . 1
...

... . . . ...
1 1 . . . 1

 = Jn

For any matrix A ∈ Rm×n,

A1 =
∑
j

aj , (vector of row sums)

1TA =
∑
i

Ai, (horizontal vector of column sums)

1TA1 =
∑
i

∑
j

aij (total sum of all entries)
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Matrix Algebra

Graphical illustration

1
1
1
1
1
1

bc b b b b b

b

b

b

(1, 1, 1, 1)

A
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Matrix Algebra

The Hadamard product
A different way to multiply two matrices of the same size, A,B ∈ Rm×n,
is through the Hadamard product, also called the entrywise product:

C = A ◦B ∈ Rm×n, with cij = aijbij .

For example,(
0 2 −3
−1 0 −4

)
◦
(

1 0 −3
2 1 −1

)
=
(

0 0 9
−2 0 4

)
.

Hadamard products are very useful in computing, as we shall see.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/72



Matrix Algebra

Matrix algebra
Use Math 39 course webpage1 to review the following matrix operations:

• Transpose

• Rank

• Trace*

• Determinant*

• Inverse*

*Defined only for square matrices

1https://www.sjsu.edu/faculty/guangliang.chen/Math39.html
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Matrix Algebra

Characterization of rank-1 matrices

Rank-1 matrices are the simplest matrices (besides the zero matrices), and
can be used as building blocks for getting more complicated matrices.

• Any nonzero row or column vector (as a matrix) has rank 1.

• A nonzero matrix is of rank 1 if and only if all of its nonzero rows
(or columns) are multiples of each other.

• A nonzero matrix A ∈ Rm×n has rank 1 if and only if there exist
nonzero vectors u ∈ Rm,v ∈ Rn, such that A = uvT .
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Matrix Algebra

For example, the following is a rank-1 matrix:2 0 3
4 0 6
6 0 9

 =

1
2
3

(2 0 3
)

Its rows are multiples of each other, and so are its 2 nonzero columns.

Another example of rank-1 matrices is Jn = 11T .
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Matrix Algebra

Eigenvalues and eigenvectors
Let A ∈ Rn×n. The characteristic polynomial of A is

p(λ) = det(A− λI).

We define the eigenvalues of A as the real roots of the characteristic
equation p(λ) = 0 (and will never work with complex eigenvalues).

For a specific eigenvalue λ0, any nonzero vector v0 ∈ Rn satisfying

(A− λ0I)v0 = 0 ⇐⇒ Av0 = λ0v0

is called an eigenvector of A (associated to the eigenvalue λ0).
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Matrix Algebra

All eigenvectors of A associated to an eigenvalue λ0 span a linear subspace,
called the eigenspace of A corresponding to λ0:

E(λ0) = {v ∈ Rn | (A− λ0I)v = 0} = Nul(A− λ0I).

The dimension g0 of E(λ0) is called the geometric multiplicity of λ0,
while the degree a0 of the factor (λ−λ0)a0 in p(λ) is called the algebraic
multiplicity of λ0.

Note that for any matrix A ∈ Rn×n with k distinct eigenvalues λ1, . . . , λk,
we have

1 ≤ gi ≤ ai, 1 ≤ i ≤ k
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Matrix Algebra

Example 0.1. For the matrix A =

 3 0 0
5 1 −1
−2 2 4

 , find its eigenvalues

and associated eigenvectors.

Answer. The eigenvalues are λ1 = 3, λ2 = 2 with algebraic multiplicities
a1 = 2, a2 = 1, and geometric multiplicities g1 = g2 = 1. In fact,
E(λ1) = span{(0, 1,−2)T } and E(λ2) = span{(0, 1,−1)T }.
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Matrix Algebra

The following theorem indicates that for any n×nmatrix with n eigenvalues,
all of its rank, trace, and determinant can be computed from the eigenvalues
of the matrix.

Theorem 0.1. For any A ∈ Rn×n with n eigenvalues, λ1, . . . , λn ∈ R (not
necessarily distinct),

rank(A) =
n∑
i=1

1λi 6=0

trace(A) =
n∑
i=1

λi

det(A) =
n∏
i=1

λi
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Matrix Algebra

Similar matrices
Two square matrices of the same size A,B ∈ Rn×n are said to be similar
if there exists an invertible matrix P ∈ Rn×n such that

B = PAP−1

Similar matrices have the same

• rank, trace, determinant

• characteristic polynomial

• eigenvalues and their multiplicities (but not eigenvectors)
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Matrix Algebra

Diagonalizability of square matrices
Def 0.1. A square matrix A ∈ Rn×n is diagonalizable if it is similar to
a diagonal matrix, i.e., there exist an invertible matrix P ∈ Rn×n and a
diagonal matrix Λ ∈ Rn×n such that

A = PΛP−1, or equivalently, P−1AP = Λ.

Remark. If we write P = [p1, . . . ,pn] and Λ = diag(λ1, . . . , λn), then
the above equation can be rewritten as

AP = PΛ,
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Matrix Algebra

or in columns

A[p1 . . .pn] = [p1 . . .pn]

λ1

. . .
λn

.
From this we get that

Api = λipi, 1 ≤ i ≤ n.

This shows that A has n eigenvalues λ1, . . . , λn ∈ R (not necessarily
distinct) with corresponding eigenvectors p1, . . . ,pn ∈ Rn.

Thus, the above factorization of a diagonalizable matrix A is called the
eigendecomposition, or spectral decomposition, of A.
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Matrix Algebra

Example 0.2. The matrix

A =
(

0 1
3 2

)

is diagonalizable because(
0 1
3 2

)
=
(

1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

but the matrix
B =

(
0 1
−1 2

)
is not (we will see why later).
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Matrix Algebra

Why are diagonalizable matrices important?
Every diagonalizable matrix is similar to a diagonal matrix (that consists
of its eigenvalues), and is easy to deal with in a lot of ways.

For example, it can help compute matrix powers (Ak). To see this,
suppose A ∈ Rn×n is diagonalizable, that is, A = PΛP−1 for some
invertible matrix P and a diagonal matrix Λ. Then

A2 = PΛP−1 ·PΛP−1 = PΛ2P−1

A3 = PΛP−1 ·PΛP−1 ·PΛP−1 = PΛ3P−1

Ak = PΛkP−1 (for any positive integer k)

where Λk = diag(λk1, . . . , λkn).
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Matrix Algebra

If a diagonalizable matrix is also invertible, then we must have

A−1 = PΛ−1P−1,

where
Λ−1 = diag

( 1
λ1
, . . . ,

1
λn

)
.
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Matrix Algebra

Checking diagonalizability of a square matrix
Theorem 0.2. A matrix A ∈ Rn×n is diagonalizable if and only if it has n
linearly independent eigenvectors (i.e.,

∑
gi = n).

Proof.

A = PΛP−1 ⇐⇒ AP = PΛ ⇐⇒ Api = λipi, 1 ≤ i ≤ n

The pi’s are linearly independent if and only if P is is nonsingular.

Remark. A diagonalizable matrix A ∈ Rn×n must have n eigenvalues.
Additionally, for each distinct eigenvalue, we must have ai = gi, because

n =
∑

gi ≤
∑

ai ≤ n
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Matrix Algebra

Example 0.3. The matrix B =
(

0 1
−1 2

)
is not diagonalizable because

it has only one distinct eigenvalue λ1 = 1 with a1 = 2 and g1 = 1.
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Matrix Algebra

Two special classes of square matrices are always diagonalizable:

• Idempotent matrices:

In(R) = {A ∈ Rn×n | A2 = A}

For example,

(
1 0
1 0

)
,

(
3 −6
1 −2

)
,

1 0 0
0 1 0
0 0 0

 ,
 2 −2 −4
−1 3 4
1 −2 −3


• Symmetric matrices:

Sn(R) = {A ∈ Rn×n | AT = A}
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Idempotent matrices
The following are some exemplar idempotent matrices:

O, I, 1
n

Jn, and Cn = In −
1
n

Jn = In −
1
n

1n1Tn .

Note that Jn alone is not idempotent, because J2
n = nJn.

To see why Cn is idempotent:

C2
n =

(
In −

1
n

Jn
)(

In −
1
n

Jn
)

= In −
1
n

Jn −
1
n

Jn + 1
n2 J2

n

= Cn.
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Matrix Algebra

Important fact: Cn is a centering matrix.

For any point x = (x1, . . . , xn)T ∈ Rn,

Cnx =
(

In −
1
n

11T
)

x

= x− 1
n

1(1Tx)

= x− 1x̄
= [x1 − x̄, . . . , xn − x̄]T

where
x̄ = 1

n
1Tx = 1

n

n∑
i=1

xi.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 37/72



Matrix Algebra

An important result is the following. A proof based on minimal polynomials
can be found in [Horn and Johnson, matrix analysis, 2nd ed].

Theorem 0.3. Every idempotent matrix A ∈ In(R) is diagonalizable, i.e.,
there exist an invertible matrix P ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n

such that A = PΛP−1.

Additionally, idempotent matrices can only have eigenvalues 0 or 1 or both.
To see this, suppose Av = λv. Using A = A2, we then get

λv = Av =
(
A2
)

v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Since v 6= 0, we must have λ = λ2 and thus λ = 0 or 1.
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Matrix Algebra

For any A ∈ In(R), let a0 and a1 be the algebraic multiplicities of the
eigenvalues 0 and 1.

Because A is diagonalizable, we must have a0 + a1 = n, and

trace(A) = a1 = rank(A).

Consider the following cases:

• a0 = n, a1 = 0: A = O;

• a0 = 0, a1 = n: A = I (the only nonsingular matrix in In(R));

• 1 ≤ a0, a1 ≤ n− 1: All other idempotent matrices
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Example 0.4. Since 1
nJn ∈ Rn×n is idempotent and

rank
( 1
n

Jn
)

= 1 = trace
( 1
n

Jn
)
,

it has an eigenvalue of 1 with algebraic multiplicity a1 = 1, and the other
eigenvalue is 0 with a0 = n− 1.

This implies that Jn has eigenvalues n and 0 with algebraic multiplicities
1, n− 1 respectively:

1
n

Jn · v = λ · v ⇐⇒ Jn · v = nλ · v.
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Example 0.5. Consider the centering matrix Cn = In − 1
nJn. Since

trace(Cn) = trace(In)− 1
n

trace(Jn) = n− 1
n
· n = n− 1.

we conclude that

• a0 = 1 and a1 = n− 1.

• rank(Cn) = n− 1 and det(Cn) = 0.
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Furthermore, the unique eigenvalue 0 has a corresponding eigenvector 1,
because

Cn1 =
(

In −
1
n

11T
)

1 = In1−
1
n

1 1T1︸︷︷︸
n

= 1− 1 = 0 = 0 · 1,

Another interpretation is that all the rows of Cn sum to zero (and because
of the symmetry of Cn, all its columns sum to zero as well):

C1 = (0), C2 =
(

1
2 −1

2
−1

2
1
2

)
, C3 =


2
3 −1

3 −1
3

−1
3

2
3 −1

3
−1

3 −1
3

2
3
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Matrix Algebra

Symmetric matrices
Symmetric matrices have many nice properties. For example, all their
eigenvalues are real and they can be diagonalized via orthogonal matrices.

Theorem 0.4 (The Spectral Theorem). Let A ∈ Sn(R). Then there exist
an orthogonal matrix Q = [q1 . . .qn] ∈ Rn×n and a diagonal matrix
Λ = diag(λ1, . . . , λn), such that

A = QΛQT (we say that A is orthogonally diagonalizable)

Remark. The above factorization also represents a spectral decomposition
of A: The λi’s represent eigenvalues of A while the qi’s are the associated
eigenvectors (with unit norm and orthogonal to each other).
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Remark. One can rewrite the matrix decomposition

A = QΛQT

into a sum of rank-1 matrices:

A =
[
q1 . . . qn

]
λ1

. . .
λn



qT1
...

qn

 =
n∑
i=1

λiqiqTi

For convenience, the diagonal elements of Λ are often sorted in decreasing
order (and the columns of Q should be arranged in matching order):

λ1 ≥ λ2 ≥ · · · ≥ λn
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Example 0.6. Find the spectral decomposition of the following matrix

A =
(

0 2
2 3

)

Answer.

A = 1√
5

(
1 −2
2 1

)
︸ ︷︷ ︸

Q

·
(

4
−1

)
︸ ︷︷ ︸

Λ

· 1√
5

(
1 −2
2 1

)T
︸ ︷︷ ︸

QT

= 4

 1√
5

2√
5

( 1√
5

2√
5

)
+ (−1)

− 2√
5

1√
5

(− 2√
5

1√
5

)
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Quadratic forms
Symmetric matrices can be used to define the so-called quadratic forms.

Def 0.2. Let A ∈ Rn×n be a symmetric matrix. A quadratic form based
on A is a function Q : Rn 7→ R with

Q(x) = xTAx, for all x ∈ Rn.

Remark. A quadratic form is a second-order polynomial in the components
of x without linear or constant terms:

xTAx =
n∑
i=1

n∑
j=1

aijxixj =
n∑
i=1

aiix
2
i + 2

∑
i<j

aijxixj
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Matrix Algebra

For example, if A =
(

1 3
3 2

)
and x =

(
x1
x2

)
, then

Q(x) = xTAx = x2
1 + 2x2

2 + 6x1x2

Question: Which symmetric matrix corresponds to

Q(x) = x2
1 + 2x2

2 + 3x2
3 + 6x1x2 − 4x1x3 + 10x2x3
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Positive (semi)definite matrices
A symmetric matrix A ∈ Sn(R) is said to be positive semidefinite
(PSD) if Q(x) = xTAx ≥ 0 for all x ∈ Rn.

If the equality holds true only for x = 0 (i.e., xTAx > 0 for all x 6= 0),
then A is further said to be positive definite (PD).

We denote by Sn0+(R) and Sn+(R) the sets of positive semidefinite and of
positive definite matrices of size n× n, respectively.

Note that we must have

Sn+(R) ⊂ Sn0+(R) ⊂ Sn(R) ⊂ Rn×n.
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Theorem 0.5. A symmetric matrix is positive definite (positive semidefinite)
if and only if all of its eigenvalues are strictly positive (nonnegative).

Remark. There is a quick way of determining the positive (semi)definiteness
of a 2× 2 nonzero matrix A:

• A ∈ S2
+(R) if and only if det(A) > 0 and trace(A) > 0;

• A ∈ S2
0+(R) if and only if det(A) = 0 and trace(A) > 0.

This is due to det(A) = λ1λ2 and trace(A) = λ1 + λ2.
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Example 0.7. Determine the positive definiteness of each of the following
matrices: (

1 2
2 4

)
,

(
2 3
3 2

)
,

(
2 3
3 5

)
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Spectral decomposition of PSD matrices in reduced form

The preceding theorem implies that for a PSD matrix A ∈ Sn0+(R),

λ1 ≥ λ2 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λn, r = rank(A).

Correspondingly, we may obtain

A =
r∑
i=1

λiqiqTi =
[
q1 . . . qr

]
λ1

. . .
λr



qT1
...

qr

 = QrΛrQT
r

where Qr = [q1 . . . qr] ∈ Rn×r is a tall matrix with orthonormal columns,
and Λr = diag(λ1, . . . , λr) ∈ Rr×r.
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b
b
b
b
b=

A Qr QT
rΛr
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Example 0.8. Let A =
(

1 2
2 4

)
∈ S2

0+(R), which has a rank of r = 1.

The spectral decomposition is(
1 2
2 4

)
=

 1√
5

2√
5

2√
5 − 1√

5

(5
0

) 1√
5

2√
5

2√
5 − 1√

5


=

 1√
5

2√
5

(5
) (

1√
5

2√
5

)
←− reduced from

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 54/72



Matrix Algebra

Matrix square roots
An interesting aspect of positive semidefinite matrices is that they have
square roots (which are also matrices), just like nonnegative numbers have
square roots (which are still numbers).

Def 0.3. Let A ∈ Sn0+(R). The square root of A is defined as the
matrix R ∈ Sn0+(R) such that R2 = A. We denote it by R = A1/2.

Note that if A ∈ Sn+(R), then R = A1/2 ∈ Sn+(R) because

0 6= det(A) = det(R2) = det(R)2 −→ det(R) 6= 0.

In such a case, we can further define the reciprocal square root of A as
A−1/2 = (A1/2)−1 ∈ Sn+(R).
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Special case: If A ∈ Sn0+(R) happens to be diagonal, i.e.,

A = diag(a1, . . . , an), where a1, . . . , an ≥ 0,

then there is an easy way to find its square root. Define

R = diag
(
a

1/2
1 , . . . , a1/2

n

)
∈ Sn0+(R).

Clearly, R2 = A. This shows that R is indeed a square root of Λ.

Note that without the positive semidefiniteness requirement in the definition
of matrix square roots, it won’t be unique as we can arbitrarily modify the
signs of the diagonals a1/2

i without violating the equality condition.
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Theorem 0.6. Let A ∈ Sn0+(R) with spectral decomposition A = QΛQT ,
where Q ∈ Rn×n is an orthogonal matrix and Λ = diag(λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn ≥ 0. Then A has a unique matrix square root

R = QΛ1/2QT .

Proof. First, such defined matrix R is PSD. By direct calculation,

R2 = (QΛ1/2QT )(QΛ1/2QT ) = Q Λ1/2Λ1/2︸ ︷︷ ︸
Λ

QT = A.

We omit the proof of the uniqueness part in class.

Remark. For any A ∈ Sn+(R) with eigendecomposition A = QΛQT ,

A−1/2 = QΛ−1/2QT , Λ−1/2 = diag
(
λ
−1/2
1 , . . . , λ−1/2

n

)
.
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Example 0.9. Consider(
5 4
4 5

)
︸ ︷︷ ︸

A

= 1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

Q

(
9

1

)
︸ ︷︷ ︸

Λ

1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

QT

The square root of A is

A1/2 = 1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

Q

(
3

1

)
︸ ︷︷ ︸

Λ1/2

1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

QT

=
(

2 1
1 2

)
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and the reciprocal square root of A is

A−1/2 = 1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

Q

(
1
3

1

)
︸ ︷︷ ︸

Λ−1/2

1√
2

(
1 1
1 −1

)
︸ ︷︷ ︸

QT

=
(

2
3 −1

3
−1

3
2
3

)
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Remark. Using the reduced form of the eigendecomposition of A ∈ Sn0+(R),
we obtain the following reduced form for the square root of A:

A = QrΛrQT
r −→ A1/2 = QrΛ1/2

r QT
r .

This formula is more efficient for computing the matrix square roots, as
it only requires computing the eigenvectors corresponding to the positive
eigenvalues.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 60/72



Matrix Algebra

Example 0.10. Let A =
(

1 2
2 4

)
∈ S2

0+(R), which has two nonnegative

eigenvalues λ1 = 5, λ2 = 0. To find the matrix square root of A, we only
need to find its orthogonal diagonalization in reduced form:(

1 2
2 4

)
=

 1√
5

2√
5

(5
) (

1√
5

2√
5

)
It follows that

A1/2 =

 1√
5

2√
5

(√5
) (

1√
5

2√
5

)
=

 1√
5

2√
5

2√
5

4√
5
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The generalized eigenvalue problem
Let A,B ∈ Rn×n be two square matrices of the same size. We say that
λ ∈ R is a generalized eigenvalue of (A,B) if there exists a nonzero
vector v ∈ Rn such that

Av = λBv.

The vector v is called a generalized eigenvector of (A,B) corresponding
to λ.

Remark. In the above definition, if we let B = I, then the generalized
eigenvalues of (A,B) would reduce to the ordinary eigenvalues of A:

Av = λv.
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Now, let us rewrite the definition as

(A− λB)v = 0.

Note that there exists a nonzero solution v if and only if A−λB is singular.
Thus, λ is a generalized eigenvalue of (A,B) if and only if

det(A− λB) = 0.

Let pA,B(λ) = det(A− λB), the characteristic polynomial of (A,B).

Interestingly, pA,B(λ) is also a polynomial in λ, but it can have an arbitrary
order between 0 and n, as we show next.
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Example 0.11. Let

A =
(

1 2
2 4

)
, B =

(
1 1
1 1

)
.

To find the generalized eigenvalues of (A,B), compute

det(A− λB) =
∣∣∣∣∣1− λ 2− λ
2− λ 4− λ

∣∣∣∣∣ = (1− λ)(4− λ)− (2− λ)2 = −λ.

Thus, (A,B) has a generalized eigenvalue of λ = 0, with corresponding
generalized eigenvectors

0 = (A− 0 ·B)v = Av −→ v = k

(
−2
1

)
, k ∈ R.
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Example 0.12. Let

A =
(

1 2
2 4

)
, B =

(
1 2
3 6

)
.

To find the generalized eigenvalues of (A,B), compute

det(A−λB) =
∣∣∣∣∣ 1− λ 2− 2λ
2− 3λ 4− 6λ

∣∣∣∣∣ = (1−λ)(4−6λ)−(2−2λ)(2−3λ) = 0.

Thus, any scalar λ is a generalized eigenvalue of (A,B). This pair of
matrices has infinitely many generalized eigenvalues!
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For an arbitrary generalized eigenvalue λ ∈ R, we find its corresponding
generalized eigenvector as follows:

0 = (A−λ·B)v =
(

1− λ 2− 2λ
2− 3λ 4− 6λ

)
v −→ v = k

(
−2
1

)
, k ∈ R.

This indicates that all the generalized eigenvalues share the same general-
ized eigenvector!
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Generalized symmetric-definite eigenvalue problems

Let A ∈ Sn(R) and B ∈ Sn+(R). The generalized eigenvalue problem

Av = λBv

is called a generalized symmetric-definite eigenvalue problem. Such
problems have very nice properties and have a lot of applications.

Theorem 0.7. The above generalized symmetric-definite eigenvalue problem
has n generalized eigenvalues λ1, . . . , λn ∈ R with linearly independent
generalized eigenvectors v1, . . . ,vn ∈ Rn which can be normalized such
that

vTi Bvj = δij , for all 1 ≤ i, j ≤ n.
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Remark. We derive a few more results from the theorem. Let Λ =
diag(λ1, . . . , λn) and V = [v1, . . . ,vn] ∈ Rn×n. Then

vTi Bvj = δij =⇒ VTBV = I

Next, using Avi = λiBvi, 1 ≤ i ≤ n, we have

A[v1, . . . ,vn] = [Bv1, . . . ,Bvn]


λ1

. . .
λn

 −→ AV = BVΛ.

Lastly, V also diagonalizes A:

VTAV = VT (AV) = VT (BVΛ) = (VTBV)Λ = IΛ = Λ.
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Proof of the theorem. Since B ∈ Sn+(R), we can rewrite

Av = λBv =⇒ B−1/2AB−1/2 ·B1/2v = λ ·B1/2v

Letting
Ã = B−1/2AB−1/2, and ṽ = B1/2v

we further obtain that
Ãṽ = λṽ

Since Ã ∈ Sn(R), there are n eigenpairs (λi, ṽi), 1 ≤ i ≤ n, with

δij = ṽTi ṽj =
(
B1/2vi

)T
B1/2vj = vTi Bvj .

Consequently, (A,B) has n generalized eigenvalues λi with associated
generalized eigenvectors vi = B−1/2ṽi.
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Some observations:

• The generalized eigenvalues of (A,B), for A ∈ Sn(R),B ∈ Sn+(R),
are identical to the eigenvalues of Ã = B−1/2AB−1/2 ∈ Sn(R).

• The generalized eigenvectors of (A,B) are vi = B−1/2ṽi, where ṽi
are the unit-norm eigenvectors of Ã.

Furthermore, the generalized eigenvalues/eigenvectors of (A,B) coincide
with the eigenvalues/eigenvectors of B−1A:

Av = λBv ⇐⇒ B−1Av = λv

In fact, Ã = B−1/2AB−1/2 and B−1A are two similar matrices:

B−1/2AB−1/2 = B1/2 ·B−1A ·B−1/2
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Example 0.13. Let A =
(

2 3
3 2

)
∈ S2(R) and B =

(
2 3
3 5

)
∈ S2

+(R).

Find the generalized eigenvalues and eigenvectors of (A,B).
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Next time: Matrix Computing in MATLAB
Be sure to complete the following activities before next class:

• Install MATLAB on your computer with the Statistics and Machine
Learning Toolbox2

• MATLAB fundamentals3

• Introduction to Linear Algebra with MATLAB4

2https://www.mathworks.com/products/statistics.html
3https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
4https://matlabacademy.mathworks.com/details/

introduction-to-linear-algebra-with-matlab/linalg
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