San José State University
Math 250: Mathematical Data Visualization

Matrix Algebra

Dr. Guangliang Chen

Matrix Algebra

Introduction

This course is based on the following mathematical objects:

- Vectors: 1-D arrays;
- Matrices: 2-D arrays
- Tensors: 3-D arrays (or higher)
Scalar

Matrix Algebra

Notation: vectors

Vectors are denoted by boldface lowercase letters (such as $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}$):

$$
\mathbf{a}=(1,2,3)^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \in \mathbb{R}^{3}
$$

The i th element of a vector \mathbf{a} is written as a_{i} or $\mathbf{a}(i)$.
For any $p \geq 1$, the ℓ_{p} norm, or simply p-norm, of a vector $\mathbf{a} \in \mathbb{R}^{n}$ is

$$
\|\mathbf{a}\|_{p}=\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}
$$

In the case of $p=2$ (default), the norm is called the Euclidean norm.

Matrix Algebra

Some special vectors:

- The zero vector: $\mathbf{0}_{n}=(0,0, \ldots, 0)^{T} \in \mathbb{R}^{n}$
- The vector of ones: $\mathbf{1}_{n}=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$
- The canonical basis vectors of \mathbb{R}^{n} :

$$
\mathbf{e}_{i}=(0, \ldots, 0, \underbrace{1}_{i \mathrm{hh}}, 0, \ldots, 0)^{T} \in \mathbb{R}^{n}, \quad i=1, \ldots, n
$$

When the dimension of each of these vectors is not specified, it is implied by the context, e.g.,

$$
\mathbf{a} \cdot \mathbf{1}(\text { dot product }), \quad \text { where } \quad \mathbf{a}=(1,2,3)^{T}
$$

Matrix Algebra

Notation: matrices

Matrices are denoted by boldface UPPERCASE letters (such as $\mathbf{A}, \mathbf{B}, \mathbf{U}, \mathbf{V}$). We write $\mathbf{A} \in \mathbb{R}^{m \times n}$ to indicate that \mathbf{A} has m rows and n columns. The (i, j) entry of \mathbf{A} is denoted by $a_{i j}$, or $\mathbf{A}(i, j)$, or $\mathbf{A}_{i j}$.

The i th row of \mathbf{A} is denoted by A_{i} or $\mathbf{A}(i,:)$
The j th column is written as \mathbf{a}_{j} or $\mathbf{A}(:, j)$.
$\mathrm{A}=$

A_{i}

Matrix Algebra

Special matrices:

- The zero matrix: $\mathbf{O}_{m \times n} \in \mathbb{R}^{m \times n}$
- The identity matrix: $\mathbf{I}_{n} \in \mathbb{R}^{n \times n}$
- The matrix of ones: $\mathbf{J}_{m \times n} \in \mathbb{R}^{m \times n}$

Similarly, we may drop the subscripts when the size of the matrix is clear based on the context.

$$
\mathbf{O}=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right), \quad \mathbf{I}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{J}=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1
\end{array}\right)
$$

Matrix Algebra

Notation: tensors

Tensors are multidimensional arrays that generalize vectors and matrices.

We use calligraphic UPPERCASE letters to denote them and write $\mathcal{T} \in$ $\mathbb{R}^{c \times r \times l}$ to indicate the size of a 3D tensor \mathcal{T}.

Tensor algebra is a big, interesting filed on its own, but we will only use 3D tensors to store information for simple and efficient coding which requires knowing a little bit of how to unfold a 3D tensor to a matrix (and to assemble the tensor back).

Matrix Algebra

Matrix Algebra

Descriptions of a matrix

One way to characterize a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is based on its shape:
Square matrix
Long matrix
Tall matrix

Matrix Algebra

A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to be positive/nonnegative if all of its entries are positive $\left(a_{i j}>0, \forall i, j\right) /$ nonnegative $\left(a_{i j} \geq 0, \forall i, j\right)$.

If a matrix has mostly zero entries, then we say that the matrix is sparse and often leave the zero entries blank when writing it out.

A diagonal matrix is a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ whose off diagonal entries are all zero ($a_{i j}=0$ for all $i \neq j$), e.g.,

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & & \\
& 2 & \\
& & 3
\end{array}\right)=\operatorname{diag}(1,2,3)
$$

Matrix Algebra

Sometimes, a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is also said to be diagonal if $a_{i j}=0$ for all $i \neq j$.

For example,

Matrix Algebra

Matrix multiplication

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Their matrix product is an $m \times p$ matrix

$$
\mathbf{A B}=\mathbf{C}=\left(c_{i j}\right), \quad c_{i j}=A_{i} \mathbf{b}_{j}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

Matrix Algebra

It is possible to obtain one full row (or column) of \mathbf{C} at a time via matrix-vector multiplication:

$$
C_{i}=A_{i} \mathbf{B}, \quad \mathbf{c}_{j}=\mathbf{A} \mathbf{b}_{j}
$$

Matrix Algebra

The full matrix \mathbf{C} can be written as a sum of rank-1 matrices:

$$
\mathbf{C}=\sum_{k=1}^{n} \mathbf{a}_{k} B_{k}
$$

Matrix Algebra

Further interpretation of $\mathbf{A B}$ when one of the matrices is actually a vector:

- If $\mathbf{A}=\left(a_{1}, \ldots, a_{n}\right)$ is a row vector $(m=1)$:
$\mathbf{A B}=\sum_{i=1}^{n} a_{i} B_{i} \quad \longleftarrow$ linear combination of rows of \mathbf{B}

Matrix Algebra

- If $\mathbf{B}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ is a column vector $(p=1)$:

$$
\mathbf{A B}=\sum_{j=1}^{n} b_{j} \mathbf{a}_{j} \quad \longleftarrow \text { linear combination of columns of } \mathbf{A}
$$

Matrix Algebra

Finally, below are some identities involving the vector $1 \in \mathbb{R}^{n}$:

$$
\mathbf{1}^{T} \mathbf{1}=n, \quad \mathbf{1 1}^{T}=\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right)\left(\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right)=\mathbf{J}_{n}
$$

For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
\begin{aligned}
\mathbf{A 1} & =\sum_{j} \mathbf{a}_{j}, & & \text { (vector of row sums) } \\
\mathbf{1}^{T} \mathbf{A} & =\sum_{i} A_{i}, & & \text { (horizontal vector of column sums) } \\
\mathbf{1}^{T} \mathbf{A} \mathbf{1} & =\sum_{i} \sum_{j} a_{i j} & & \text { (total sum of all entries) }
\end{aligned}
$$

Matrix Algebra

Graphical illustration

$$
\left.(1,1,1,1) \begin{array}{|ccc|}
\hline & \bullet & \ldots \\
\vdots \\
\vdots & \mathbf{A} \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

The Hadamard product

A different way to multiply two matrices of the same size, $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, is through the Hadamard product, also called the entrywise product:

$$
\mathbf{C}=\mathbf{A} \circ \mathbf{B} \in \mathbb{R}^{m \times n}, \quad \text { with } \quad c_{i j}=a_{i j} b_{i j}
$$

For example,

$$
\left(\begin{array}{ccc}
0 & 2 & -3 \\
-1 & 0 & -4
\end{array}\right) \circ\left(\begin{array}{ccc}
1 & 0 & -3 \\
2 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 9 \\
-2 & 0 & 4
\end{array}\right)
$$

Hadamard products are very useful in computing, as we shall see.

Matrix Algebra

Matrix algebra

Use Math 39 course webpage ${ }^{1}$ to review the following matrix operations:

- Transpose
- Rank
- Trace*
- Determinant*
- Inverse*
*Defined only for square matrices
${ }^{1}$ https://www.sjsu.edu/faculty/guangliang.chen/Math39.html

Matrix Algebra

Characterization of rank-1 matrices

Rank-1 matrices are the simplest matrices (besides the zero matrices), and can be used as building blocks for getting more complicated matrices.

- Any nonzero row or column vector (as a matrix) has rank 1 .
- A nonzero matrix is of rank 1 if and only if all of its nonzero rows (or columns) are multiples of each other.
- A nonzero matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ has rank 1 if and only if there exist nonzero vectors $\mathbf{u} \in \mathbb{R}^{m}, \mathbf{v} \in \mathbb{R}^{n}$, such that $\mathbf{A}=\mathbf{u v}^{T}$.

Matrix Algebra

For example, the following is a rank-1 matrix:

$$
\left(\begin{array}{lll}
2 & 0 & 3 \\
4 & 0 & 6 \\
6 & 0 & 9
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)\left(\begin{array}{lll}
2 & 0 & 3
\end{array}\right)
$$

Its rows are multiples of each other, and so are its 2 nonzero columns.

Another example of rank-1 matrices is $\mathbf{J}_{n}=\mathbf{1 1}{ }^{T}$.

Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The characteristic polynomial of \mathbf{A} is

$$
p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) .
$$

We define the eigenvalues of \mathbf{A} as the real roots of the characteristic equation $p(\lambda)=0$ (and will never work with complex eigenvalues).

For a specific eigenvalue λ_{0}, any nonzero vector $\mathbf{v}_{0} \in \mathbb{R}^{n}$ satisfying

$$
\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right) \mathbf{v}_{0}=\mathbf{0} \quad \Longleftrightarrow \quad \mathbf{A} \mathbf{v}_{0}=\lambda_{0} \mathbf{v}_{0}
$$

is called an eigenvector of \mathbf{A} (associated to the eigenvalue λ_{0}).

Matrix Algebra

All eigenvectors of \mathbf{A} associated to an eigenvalue λ_{0} span a linear subspace, called the eigenspace of \mathbf{A} corresponding to λ_{0} :

$$
\mathrm{E}\left(\lambda_{0}\right)=\left\{\mathbf{v} \in \mathbb{R}^{n} \mid\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right) \mathbf{v}=\mathbf{0}\right\}=\operatorname{Nul}\left(\mathbf{A}-\lambda_{0} \mathbf{I}\right) .
$$

The dimension g_{0} of $\mathrm{E}\left(\lambda_{0}\right)$ is called the geometric multiplicity of λ_{0}, while the degree a_{0} of the factor $\left(\lambda-\lambda_{0}\right)^{a_{0}}$ in $p(\lambda)$ is called the algebraic multiplicity of λ_{0}.

Note that for any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with k distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, we have

$$
1 \leq g_{i} \leq a_{i}, \quad 1 \leq i \leq k
$$

Matrix Algebra

Example 0.1. For the matrix $\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right)$, find its eigenvalues and associated eigenvectors.

Answer. The eigenvalues are $\lambda_{1}=3, \lambda_{2}=2$ with algebraic multiplicities $a_{1}=2, a_{2}=1$, and geometric multiplicities $g_{1}=g_{2}=1$. In fact, $\mathrm{E}\left(\lambda_{1}\right)=\operatorname{span}\left\{(0,1,-2)^{T}\right\}$ and $\mathrm{E}\left(\lambda_{2}\right)=\operatorname{span}\left\{(0,1,-1)^{T}\right\}$.

Matrix Algebra

The following theorem indicates that for any $n \times n$ matrix with n eigenvalues, all of its rank, trace, and determinant can be computed from the eigenvalues of the matrix.

Theorem 0.1. For any $\mathbf{A} \in \mathbb{R}^{n \times n}$ with n eigenvalues, $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ (not necessarily distinct),

$$
\begin{aligned}
\operatorname{rank}(\mathbf{A}) & =\sum_{i=1}^{n} 1_{\lambda_{i} \neq 0} \\
\operatorname{trace}(\mathbf{A}) & =\sum_{i=1}^{n} \lambda_{i} \\
\operatorname{det}(\mathbf{A}) & =\prod_{i=1}^{n} \lambda_{i}
\end{aligned}
$$

Matrix Algebra

Similar matrices

Two square matrices of the same size $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ are said to be similar if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{B}=\mathbf{P A} \mathbf{P}^{-1}
$$

Similar matrices have the same

- rank, trace, determinant
- characteristic polynomial
- eigenvalues and their multiplicities (but not eigenvectors)

Matrix Algebra

Diagonalizability of square matrices

Def 0.1. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if it is similar to a diagonal matrix, i.e., there exist an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\boldsymbol{\Lambda} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}, \quad \text { or equivalently, } \quad \mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\boldsymbol{\Lambda}
$$

Remark. If we write $\mathbf{P}=\left[\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right]$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then the above equation can be rewritten as

$$
\mathbf{A P}=\mathbf{P} \boldsymbol{\Lambda}
$$

or in columns

$$
\mathbf{A}\left[\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right]=\left[\mathbf{p}_{1} \ldots \mathbf{p}_{n}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

From this we get that

$$
\mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n
$$

This shows that \mathbf{A} has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ (not necessarily distinct) with corresponding eigenvectors $\mathrm{p}_{1}, \ldots, \mathbf{p}_{n} \in \mathbb{R}^{n}$.

Thus, the above factorization of a diagonalizable matrix \mathbf{A} is called the eigendecomposition, or spectral decomposition, of \mathbf{A}.

Matrix Algebra

Example 0.2. The matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)
$$

is diagonalizable because

$$
\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & \\
& -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)^{-1}
$$

but the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

is not (we will see why later).

Matrix Algebra

Why are diagonalizable matrices important?

Every diagonalizable matrix is similar to a diagonal matrix (that consists of its eigenvalues), and is easy to deal with in a lot of ways.

For example, it can help compute matrix powers $\left(\mathbf{A}^{k}\right)$. To see this, suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable, that is, $\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}$ for some invertible matrix \mathbf{P} and a diagonal matrix $\boldsymbol{\Lambda}$. Then

$$
\begin{aligned}
& \mathbf{A}^{2}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{2} \mathbf{P}^{-1} \\
& \mathbf{A}^{3}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{3} \mathbf{P}^{-1} \\
& \mathbf{A}^{k}=\mathbf{P} \boldsymbol{\Lambda}^{k} \mathbf{P}^{-1} \quad(\text { for any positive integer } k)
\end{aligned}
$$

where $\boldsymbol{\Lambda}^{k}=\operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right)$.

Matrix Algebra

If a diagonalizable matrix is also invertible, then we must have

$$
\mathbf{A}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{-1} \mathbf{P}^{-1}
$$

where

$$
\boldsymbol{\Lambda}^{-1}=\operatorname{diag}\left(\frac{1}{\lambda_{1}}, \ldots, \frac{1}{\lambda_{n}}\right)
$$

Matrix Algebra

Checking diagonalizability of a square matrix

Theorem 0.2. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors (i.e., $\sum g_{i}=n$).

Proof.

$$
\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \Longleftrightarrow \mathbf{A} \mathbf{P}=\mathbf{P} \boldsymbol{\Lambda} \Longleftrightarrow \mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n
$$

The \mathbf{p}_{i} 's are linearly independent if and only if \mathbf{P} is is nonsingular.
Remark. A diagonalizable matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ must have n eigenvalues. Additionally, for each distinct eigenvalue, we must have $a_{i}=g_{i}$, because

$$
n=\sum g_{i} \leq \sum a_{i} \leq n
$$

Matrix Algebra

Example 0.3. The matrix $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not diagonalizable because it has only one distinct eigenvalue $\lambda_{1}=1$ with $a_{1}=2$ and $g_{1}=1$.

Matrix Algebra

Two special classes of square matrices are always diagonalizable:

- Idempotent matrices:

$$
I^{n}(\mathbb{R})=\left\{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}^{2}=\mathbf{A}\right\}
$$

For example,

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
3 & -6 \\
1 & -2
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right)
$$

- Symmetric matrices:

$$
S^{n}(\mathbb{R})=\left\{\mathbf{A} \in \mathbb{R}^{n \times n} \mid \mathbf{A}^{T}=\mathbf{A}\right\}
$$

Idempotent matrices

The following are some exemplar idempotent matrices:

$$
\mathbf{O}, \quad \mathbf{I}, \quad \frac{1}{n} \mathbf{J}_{n}, \quad \text { and } \quad \mathbf{C}_{n}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{J}_{n}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{T}
$$

Note that \mathbf{J}_{n} alone is not idempotent, because $\mathbf{J}_{n}^{2}=n \mathbf{J}_{n}$.
To see why \mathbf{C}_{n} is idempotent:

$$
\begin{aligned}
\mathbf{C}_{n}^{2} & =\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{J}_{n}\right)\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{J}_{n}\right) \\
& =\mathbf{I}_{n}-\frac{1}{n} \mathbf{J}_{n}-\frac{1}{n} \mathbf{J}_{n}+\frac{1}{n^{2}} \mathbf{J}_{n}^{2} \\
& =\mathbf{C}_{n} .
\end{aligned}
$$

Matrix Algebra

Important fact: \mathbf{C}_{n} is a centering matrix.
For any point $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\mathbf{C}_{n} \mathbf{x} & =\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1 1}^{T}\right) \mathbf{x} \\
& =\mathbf{x}-\frac{1}{n} \mathbf{1}\left(\mathbf{1}^{T} \mathbf{x}\right) \\
& =\mathbf{x}-\mathbf{1} \bar{x} \\
& =\left[x_{1}-\bar{x}, \ldots, x_{n}-\bar{x}\right]^{T}
\end{aligned}
$$

where

$$
\bar{x}=\frac{1}{n} \mathbf{1}^{T} \mathbf{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Matrix Algebra

An important result is the following. A proof based on minimal polynomials can be found in [Horn and Johnson, matrix analysis, 2nd ed].

Theorem 0.3. Every idempotent matrix $\mathbf{A} \in I^{n}(\mathbb{R})$ is diagonalizable, i.e., there exist an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\boldsymbol{\Lambda} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}$.

Additionally, idempotent matrices can only have eigenvalues 0 or 1 or both. To see this, suppose $\mathbf{A v}=\lambda \mathbf{v}$. Using $\mathbf{A}=\mathbf{A}^{2}$, we then get

$$
\lambda \mathbf{v}=\mathbf{A} \mathbf{v}=\left(\mathbf{A}^{2}\right) \mathbf{v}=\mathbf{A}(\mathbf{A v})=\mathbf{A}(\lambda \mathbf{v})=\lambda(\mathbf{A v})=\lambda(\lambda \mathbf{v})=\lambda^{2} \mathbf{v}
$$

Since $\mathbf{v} \neq \mathbf{0}$, we must have $\lambda=\lambda^{2}$ and thus $\lambda=0$ or 1 .

Matrix Algebra

For any $\mathbf{A} \in I^{n}(\mathbb{R})$, let a_{0} and a_{1} be the algebraic multiplicities of the eigenvalues 0 and 1 .

Because \mathbf{A} is diagonalizable, we must have $a_{0}+a_{1}=n$, and

$$
\operatorname{trace}(\mathbf{A})=a_{1}=\operatorname{rank}(\mathbf{A})
$$

Consider the following cases:

- $a_{0}=n, a_{1}=0: \mathbf{A}=\mathbf{O}$;
- $a_{0}=0, a_{1}=n: \mathbf{A}=\mathbf{I}$ (the only nonsingular matrix in $I_{n}(\mathbb{R})$);
- $1 \leq a_{0}, a_{1} \leq n-1$: All other idempotent matrices

Matrix Algebra

Example 0.4. Since $\frac{1}{n} \mathbf{J}_{n} \in \mathbb{R}^{n \times n}$ is idempotent and

$$
\operatorname{rank}\left(\frac{1}{n} \mathbf{J}_{n}\right)=1=\operatorname{trace}\left(\frac{1}{n} \mathbf{J}_{n}\right)
$$

it has an eigenvalue of 1 with algebraic multiplicity $a_{1}=1$, and the other eigenvalue is 0 with $a_{0}=n-1$.

This implies that \mathbf{J}_{n} has eigenvalues n and 0 with algebraic multiplicities $1, n-1$ respectively:

$$
\frac{1}{n} \mathbf{J}_{n} \cdot \mathbf{v}=\lambda \cdot \mathbf{v} \quad \Longleftrightarrow \quad \mathbf{J}_{n} \cdot \mathbf{v}=n \lambda \cdot \mathbf{v}
$$

Matrix Algebra

Example 0.5. Consider the centering matrix $\mathbf{C}_{n}=\mathbf{I}_{n}-\frac{1}{n} \mathbf{J}_{n}$. Since

$$
\operatorname{trace}\left(\mathbf{C}_{n}\right)=\operatorname{trace}\left(\mathbf{I}_{n}\right)-\frac{1}{n} \operatorname{trace}\left(\mathbf{J}_{n}\right)=n-\frac{1}{n} \cdot n=n-1
$$

we conclude that

- $a_{0}=1$ and $a_{1}=n-1$.
- $\operatorname{rank}\left(\mathbf{C}_{n}\right)=n-1$ and $\operatorname{det}\left(\mathbf{C}_{n}\right)=0$.

Matrix Algebra

Furthermore, the unique eigenvalue 0 has a corresponding eigenvector 1 , because

$$
\mathbf{C}_{n} \mathbf{1}=\left(\mathbf{I}_{n}-\frac{1}{n} \mathbf{1} \mathbf{1}^{T}\right) \mathbf{1}=\mathbf{I}_{n} \mathbf{1}-\frac{1}{n} \mathbf{1} \underbrace{\mathbf{1}^{T} \mathbf{1}}_{n}=\mathbf{1}-\mathbf{1}=\mathbf{0}=0 \cdot \mathbf{1},
$$

Another interpretation is that all the rows of \mathbf{C}_{n} sum to zero (and because of the symmetry of \mathbf{C}_{n}, all its columns sum to zero as well):

$$
\mathbf{C}_{1}=(0), \quad \mathbf{C}_{2}=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right), \quad \mathbf{C}_{3}=\left(\begin{array}{ccc}
\frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & -\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

Matrix Algebra

Symmetric matrices

Symmetric matrices have many nice properties. For example, all their eigenvalues are real and they can be diagonalized via orthogonal matrices.

Theorem 0.4 (The Spectral Theorem). Let $\mathbf{A} \in S^{n}(\mathbb{R})$. Then there exist an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right] \in \mathbb{R}^{n \times n}$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, such that

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T} \quad(\text { we say that } \mathbf{A} \text { is orthogonally diagonalizable) }
$$

Remark. The above factorization also represents a spectral decomposition of \mathbf{A} : The λ_{i} 's represent eigenvalues of \mathbf{A} while the \mathbf{q}_{i} 's are the associated eigenvectors (with unit norm and orthogonal to each other).

Matrix Algebra

Remark. One can rewrite the matrix decomposition

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}
$$

into a sum of rank-1 matrices:

$$
\mathbf{A}=\left[\begin{array}{lll}
\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}
\end{array}\right]\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\vdots \\
\mathbf{q}_{n}
\end{array}\right]=\sum_{i=1}^{n} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{T}
$$

For convenience, the diagonal elements of $\boldsymbol{\Lambda}$ are often sorted in decreasing order (and the columns of \mathbf{Q} should be arranged in matching order):

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Matrix Algebra

Example 0.6. Find the spectral decomposition of the following matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right)
$$

Answer.

$$
\begin{aligned}
\mathbf{A} & =\underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)}_{\mathbf{Q}} \cdot \underbrace{\left(\begin{array}{cc}
4 & \\
& -1
\end{array}\right)}_{\boldsymbol{\Lambda}} \cdot \underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)^{T}}_{\mathbf{Q}^{T}} \\
& =4\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\left(\begin{array}{ll}
\frac{1}{\sqrt{5}} & \left.\frac{2}{\sqrt{5}}\right)+(-1)\binom{-\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}\left(\begin{array}{ll}
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right)
\end{array}, .\right.
\end{aligned}
$$

Matrix Algebra

Quadratic forms

Symmetric matrices can be used to define the so-called quadratic forms.
Def 0.2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. A quadratic form based on \mathbf{A} is a function $Q: \mathbb{R}^{n} \mapsto \mathbb{R}$ with

$$
Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}, \quad \text { for all } \quad \mathbf{x} \in \mathbb{R}^{n} .
$$

Remark. A quadratic form is a second-order polynomial in the components of \mathbf{x} without linear or constant terms:

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}=\sum_{i=1}^{n} a_{i i} x_{i}^{2}+2 \sum_{i<j} a_{i j} x_{i} x_{j}
$$

Matrix Algebra

For example, if $\mathbf{A}=\left(\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right)$ and $\mathbf{x}=\binom{x_{1}}{x_{2}}$, then

$$
Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}=x_{1}^{2}+2 x_{2}^{2}+6 x_{1} x_{2}
$$

Question: Which symmetric matrix corresponds to

$$
Q(\mathbf{x})=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+6 x_{1} x_{2}-4 x_{1} x_{3}+10 x_{2} x_{3}
$$

Matrix Algebra

Positive (semi)definite matrices

A symmetric matrix $\mathbf{A} \in S^{n}(\mathbb{R})$ is said to be positive semidefinite (PSD) if $Q(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

If the equality holds true only for $\mathbf{x}=\mathbf{0}$ (i.e., $\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$), then \mathbf{A} is further said to be positive definite (PD).

We denote by $S_{0+}^{n}(\mathbb{R})$ and $S_{+}^{n}(\mathbb{R})$ the sets of positive semidefinite and of positive definite matrices of size $n \times n$, respectively.

Note that we must have

$$
S_{+}^{n}(\mathbb{R}) \subset S_{0+}^{n}(\mathbb{R}) \subset S^{n}(\mathbb{R}) \subset \mathbb{R}^{n \times n}
$$

Matrix Algebra

Theorem 0.5. A symmetric matrix is positive definite (positive semidefinite) if and only if all of its eigenvalues are strictly positive (nonnegative).

Remark. There is a quick way of determining the positive (semi)definiteness of a 2×2 nonzero matrix \mathbf{A} :

- $\mathbf{A} \in S_{+}^{2}(\mathbb{R})$ if and only if $\operatorname{det}(\mathbf{A})>0$ and $\operatorname{trace}(\mathbf{A})>0$;
- $\mathbf{A} \in S_{0+}^{2}(\mathbb{R})$ if and only if $\operatorname{det}(\mathbf{A})=0$ and $\operatorname{trace}(\mathbf{A})>0$.

This is due to $\operatorname{det}(\mathbf{A})=\lambda_{1} \lambda_{2}$ and $\operatorname{trace}(\mathbf{A})=\lambda_{1}+\lambda_{2}$.

Matrix Algebra

Example 0.7. Determine the positive definiteness of each of the following matrices:

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad\left(\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)
$$

Matrix Algebra

Spectral decomposition of PSD matrices in reduced form

The preceding theorem implies that for a PSD matrix $\mathbf{A} \in S_{0+}^{n}(\mathbb{R})$,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0=\lambda_{r+1}=\cdots=\lambda_{n}, \quad r=\operatorname{rank}(\mathbf{A})
$$

Correspondingly, we may obtain

$$
\mathbf{A}=\sum_{i=1}^{r} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{T}=\left[\begin{array}{lll}
\mathbf{q}_{1} & \ldots & \mathbf{q}_{r}
\end{array}\right]\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{r}
\end{array}\right)\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\vdots \\
\mathbf{q}_{r}
\end{array}\right]=\mathbf{Q}_{r} \boldsymbol{\Lambda}_{r} \mathbf{Q}_{r}^{T}
$$

where $\mathbf{Q}_{r}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{r}\right] \in \mathbb{R}^{n \times r}$ is a tall matrix with orthonormal columns, and $\boldsymbol{\Lambda}_{r}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right) \in \mathbb{R}^{r \times r}$.

Matrix Algebra

Matrix Algebra

Example 0.8. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \in S_{0+}^{2}(\mathbb{R})$, which has a rank of $r=1$.
The spectral decomposition is

$$
\begin{aligned}
\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & =\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}
\end{array}\right)\left(\begin{array}{ll}
5 & \\
& 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}}
\end{array}\right) \\
& =\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}(5)\left(\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right) \longleftarrow \text { reduced from }
\end{aligned}
$$

Matrix Algebra

Matrix square roots

An interesting aspect of positive semidefinite matrices is that they have square roots (which are also matrices), just like nonnegative numbers have square roots (which are still numbers).

Def 0.3. Let $\mathbf{A} \in S_{0+}^{n}(\mathbb{R})$. The square root of \mathbf{A} is defined as the matrix $\mathbf{R} \in S_{0+}^{n}(\mathbb{R})$ such that $\mathbf{R}^{2}=\mathbf{A}$. We denote it by $\mathbf{R}=\mathbf{A}^{1 / 2}$.

Note that if $\mathbf{A} \in S_{+}^{n}(\mathbb{R})$, then $\mathbf{R}=\mathbf{A}^{1 / 2} \in S_{+}^{n}(\mathbb{R})$ because

$$
0 \neq \operatorname{det}(\mathbf{A})=\operatorname{det}\left(\mathbf{R}^{2}\right)=\operatorname{det}(\mathbf{R})^{2} \quad \longrightarrow \quad \operatorname{det}(\mathbf{R}) \neq 0
$$

In such a case, we can further define the reciprocal square root of \mathbf{A} as $\mathbf{A}^{-1 / 2}=\left(\mathbf{A}^{1 / 2}\right)^{-1} \in S_{+}^{n}(\mathbb{R})$.

Matrix Algebra

Special case: If $\mathbf{A} \in S_{0+}^{n}(\mathbb{R})$ happens to be diagonal, i.e.,

$$
\mathbf{A}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right), \quad \text { where } \quad a_{1}, \ldots, a_{n} \geq 0
$$

then there is an easy way to find its square root. Define

$$
\mathbf{R}=\operatorname{diag}\left(a_{1}^{1 / 2}, \ldots, a_{n}^{1 / 2}\right) \in S_{0+}^{n}(\mathbb{R})
$$

Clearly, $\mathbf{R}^{2}=\mathbf{A}$. This shows that \mathbf{R} is indeed a square root of $\boldsymbol{\Lambda}$.
Note that without the positive semidefiniteness requirement in the definition of matrix square roots, it won't be unique as we can arbitrarily modify the signs of the diagonals $a_{i}^{1 / 2}$ without violating the equality condition.

Matrix Algebra

Theorem 0.6. Let $\mathbf{A} \in S_{0+}^{n}(\mathbb{R})$ with spectral decomposition $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}$, where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{n} \geq 0$. Then \mathbf{A} has a unique matrix square root

$$
\mathbf{R}=\mathbf{Q} \mathbf{\Lambda}^{1 / 2} \mathbf{Q}^{T}
$$

Proof. First, such defined matrix \mathbf{R} is PSD. By direct calculation,

$$
\mathbf{R}^{2}=\left(\mathbf{Q} \boldsymbol{\Lambda}^{1 / 2} \mathbf{Q}^{T}\right)\left(\mathbf{Q} \boldsymbol{\Lambda}^{1 / 2} \mathbf{Q}^{T}\right)=\mathbf{Q} \underbrace{\boldsymbol{\Lambda}^{1 / 2} \boldsymbol{\Lambda}^{1 / 2}}_{\boldsymbol{\Lambda}} \mathbf{Q}^{T}=\mathbf{A} .
$$

We omit the proof of the uniqueness part in class.
Remark. For any $\mathbf{A} \in S_{+}^{n}(\mathbb{R})$ with eigendecomposition $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}$,

$$
\mathbf{A}^{-1 / 2}=\mathbf{Q} \boldsymbol{\Lambda}^{-1 / 2} \mathbf{Q}^{T}, \quad \boldsymbol{\Lambda}^{-1 / 2}=\operatorname{diag}\left(\lambda_{1}^{-1 / 2}, \ldots, \lambda_{n}^{-1 / 2}\right)
$$

Matrix Algebra

Example 0.9. Consider

$$
\underbrace{\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)}_{\mathbf{A}}=\underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}} \underbrace{\left(\begin{array}{ll}
9 & \\
& 1
\end{array}\right)}_{\boldsymbol{\Lambda}} \underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}^{T}}
$$

The square root of \mathbf{A} is

$$
\mathbf{A}^{1 / 2}=\underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}} \underbrace{\left(\begin{array}{cc}
3 & 1
\end{array}\right)}_{\boldsymbol{\Lambda}^{1 / 2}} \underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}^{T}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Matrix Algebra

and the reciprocal square root of \mathbf{A} is

$$
\mathbf{A}^{-1 / 2}=\underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}} \underbrace{\left(\begin{array}{cc}
\frac{1}{3} & \\
& 1
\end{array}\right)}_{\boldsymbol{\Lambda}^{-1 / 2}} \underbrace{\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)}_{\mathbf{Q}^{T}}=\left(\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right)
$$

Matrix Algebra

Remark. Using the reduced form of the eigendecomposition of $\mathbf{A} \in S_{0+}^{n}(\mathbb{R})$, we obtain the following reduced form for the square root of \mathbf{A} :

$$
\mathbf{A}=\mathbf{Q}_{r} \boldsymbol{\Lambda}_{r} \mathbf{Q}_{r}^{T} \quad \longrightarrow \quad \mathbf{A}^{1 / 2}=\mathbf{Q}_{r} \boldsymbol{\Lambda}_{r}^{1 / 2} \mathbf{Q}_{r}^{T}
$$

This formula is more efficient for computing the matrix square roots, as it only requires computing the eigenvectors corresponding to the positive eigenvalues.

Matrix Algebra

Example 0.10. Let $\mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \in S_{0+}^{2}(\mathbb{R})$, which has two nonnegative eigenvalues $\lambda_{1}=5, \lambda_{2}=0$. To find the matrix square root of \mathbf{A}, we only need to find its orthogonal diagonalization in reduced form:

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)=\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\left(\begin{array}{ll}
5
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)
$$

It follows that

$$
\mathbf{A}^{1 / 2}=\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\left(\begin{array}{ll}
\sqrt{5}
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}}
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} & \frac{4}{\sqrt{5}}
\end{array}\right)
$$

The generalized eigenvalue problem

Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ be two square matrices of the same size. We say that $\lambda \in \mathbb{R}$ is a generalized eigenvalue of (\mathbf{A}, \mathbf{B}) if there exists a nonzero vector $\mathbf{v} \in \mathbb{R}^{n}$ such that

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{B} \mathbf{v}
$$

The vector \mathbf{v} is called a generalized eigenvector of (\mathbf{A}, \mathbf{B}) corresponding to λ.

Remark. In the above definition, if we let $\mathbf{B}=\mathbf{I}$, then the generalized eigenvalues of (\mathbf{A}, \mathbf{B}) would reduce to the ordinary eigenvalues of \mathbf{A} :

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

Matrix Algebra

Now, let us rewrite the definition as

$$
(\mathbf{A}-\lambda \mathbf{B}) \mathbf{v}=0
$$

Note that there exists a nonzero solution \mathbf{v} if and only if $\mathbf{A}-\lambda \mathbf{B}$ is singular. Thus, λ is a generalized eigenvalue of (\mathbf{A}, \mathbf{B}) if and only if

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})=0
$$

Let $p_{\mathbf{A}, \mathbf{B}}(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})$, the characteristic polynomial of (\mathbf{A}, \mathbf{B}).
Interestingly, $p_{\mathrm{A}, \mathrm{B}}(\lambda)$ is also a polynomial in λ, but it can have an arbitrary order between 0 and n, as we show next.

Matrix Algebra

Example 0.11. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

To find the generalized eigenvalues of (\mathbf{A}, \mathbf{B}), compute

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})=\left|\begin{array}{ll}
1-\lambda & 2-\lambda \\
2-\lambda & 4-\lambda
\end{array}\right|=(1-\lambda)(4-\lambda)-(2-\lambda)^{2}=-\lambda
$$

Thus, (\mathbf{A}, \mathbf{B}) has a generalized eigenvalue of $\lambda=0$, with corresponding generalized eigenvectors

$$
\mathbf{0}=(\mathbf{A}-0 \cdot \mathbf{B}) \mathbf{v}=\mathbf{A} \mathbf{v} \quad \longrightarrow \quad \mathbf{v}=k\binom{-2}{1}, k \in \mathbb{R}
$$

Matrix Algebra

Example 0.12. Let

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right)
$$

To find the generalized eigenvalues of (\mathbf{A}, \mathbf{B}), compute
$\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})=\left|\begin{array}{cc}1-\lambda & 2-2 \lambda \\ 2-3 \lambda & 4-6 \lambda\end{array}\right|=(1-\lambda)(4-6 \lambda)-(2-2 \lambda)(2-3 \lambda)=0$.
Thus, any scalar λ is a generalized eigenvalue of (\mathbf{A}, \mathbf{B}). This pair of matrices has infinitely many generalized eigenvalues!

Matrix Algebra

For an arbitrary generalized eigenvalue $\lambda \in \mathbb{R}$, we find its corresponding generalized eigenvector as follows:
$\mathbf{0}=(\mathbf{A}-\lambda \cdot \mathbf{B}) \mathbf{v}=\left(\begin{array}{cc}1-\lambda & 2-2 \lambda \\ 2-3 \lambda & 4-6 \lambda\end{array}\right) \mathbf{v} \quad \longrightarrow \quad \mathbf{v}=k\binom{-2}{1}, k \in \mathbb{R}$.
This indicates that all the generalized eigenvalues share the same generalized eigenvector!

Matrix Algebra

Generalized symmetric-definite eigenvalue problems

Let $\mathbf{A} \in S^{n}(\mathbb{R})$ and $\mathbf{B} \in S_{+}^{n}(\mathbb{R})$. The generalized eigenvalue problem

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{B} \mathbf{v}
$$

is called a generalized symmetric-definite eigenvalue problem. Such problems have very nice properties and have a lot of applications.

Theorem 0.7. The above generalized symmetric-definite eigenvalue problem has n generalized eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ with linearly independent generalized eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in \mathbb{R}^{n}$ which can be normalized such that

$$
\mathbf{v}_{i}^{T} \mathbf{B} \mathbf{v}_{j}=\delta_{i j}, \quad \text { for all } 1 \leq i, j \leq n
$$

Matrix Algebra

Remark. We derive a few more results from the theorem. Let $\boldsymbol{\Lambda}=$ $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $\mathbf{V}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right] \in \mathbb{R}^{n \times n}$. Then

$$
\mathbf{v}_{i}^{T} \mathbf{B} \mathbf{v}_{j}=\delta_{i j} \quad \Longrightarrow \quad \mathbf{V}^{T} \mathbf{B V}=\mathbf{I}
$$

Next, using $\mathbf{A v}_{i}=\lambda_{i} \mathbf{B v}_{i}, 1 \leq i \leq n$, we have
$\mathbf{A}\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right]=\left[\mathbf{B v}_{1}, \ldots, \mathbf{B v}_{n}\right]\left(\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right) \quad \longrightarrow \quad \mathbf{A V}=\mathbf{B V} \boldsymbol{\Lambda}$.
Lastly, V also diagonalizes A:

$$
\mathbf{V}^{T} \mathbf{A V}=\mathbf{V}^{T}(\mathbf{A V})=\mathbf{V}^{T}(\mathbf{B V} \boldsymbol{\Lambda})=\left(\mathbf{V}^{T} \mathbf{B V}\right) \boldsymbol{\Lambda}=\mathbf{I} \boldsymbol{\Lambda}=\boldsymbol{\Lambda}
$$

Matrix Algebra

Proof of the theorem. Since $\mathbf{B} \in S_{+}^{n}(\mathbb{R})$, we can rewrite

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{B} \mathbf{v} \quad \Longrightarrow \quad \mathbf{B}^{-1 / 2} \mathbf{A B}^{-1 / 2} \cdot \mathbf{B}^{1 / 2} \mathbf{v}=\lambda \cdot \mathbf{B}^{1 / 2} \mathbf{v}
$$

Letting

$$
\widetilde{\mathbf{A}}=\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}, \quad \text { and } \quad \widetilde{\mathbf{v}}=\mathbf{B}^{1 / 2} \mathbf{v}
$$

we further obtain that

$$
\widetilde{\mathbf{A}} \widetilde{\mathbf{v}}=\lambda \widetilde{\mathbf{v}}
$$

Since $\widetilde{\mathbf{A}} \in S^{n}(\mathbb{R})$, there are n eigenpairs $\left(\lambda_{i}, \widetilde{\mathbf{v}}_{i}\right), 1 \leq i \leq n$, with

$$
\delta_{i j}=\widetilde{\mathbf{v}}_{i}^{T} \widetilde{\mathbf{v}}_{j}=\left(\mathbf{B}^{1 / 2} \mathbf{v}_{i}\right)^{T} \mathbf{B}^{1 / 2} \mathbf{v}_{j}=\mathbf{v}_{i}^{T} \mathbf{B} \mathbf{v}_{j}
$$

Consequently, (\mathbf{A}, \mathbf{B}) has n generalized eigenvalues λ_{i} with associated generalized eigenvectors $\mathbf{v}_{i}=\mathbf{B}^{-1 / 2} \widetilde{\mathbf{v}}_{i}$.

Matrix Algebra

Some observations:

- The generalized eigenvalues of $(\mathbf{A}, \underset{\sim}{\mathbf{B}})$, for $\mathbf{A} \in S^{n}(\mathbb{R}), \mathbf{B} \in S_{+}^{n}(\mathbb{R})$, are identical to the eigenvalues of $\widetilde{\mathbf{A}}=\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2} \in S^{n}(\mathbb{R})$.
- The generalized eigenvectors of (\mathbf{A}, \mathbf{B}) are $\mathbf{v}_{i}=\mathbf{B}^{-1 / 2} \widetilde{\mathbf{v}}_{i}$, where $\widetilde{\mathbf{v}}_{i}$ are the unit-norm eigenvectors of $\widetilde{\mathbf{A}}$.

Furthermore, the generalized eigenvalues/eigenvectors of (\mathbf{A}, \mathbf{B}) coincide with the eigenvalues/eigenvectors of $\mathbf{B}^{-1} \mathbf{A}$:

$$
\mathbf{A v}=\lambda \mathbf{B} \mathbf{v} \quad \Longleftrightarrow \quad \mathbf{B}^{-1} \mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$

In fact, $\widetilde{\mathbf{A}}=\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}$ and $\mathbf{B}^{-1} \mathbf{A}$ are two similar matrices:

$$
\mathbf{B}^{-1 / 2} \mathbf{A} \mathbf{B}^{-1 / 2}=\mathbf{B}^{1 / 2} \cdot \mathbf{B}^{-1} \mathbf{A} \cdot \mathbf{B}^{-1 / 2}
$$

Matrix Algebra

Example 0.13. Let $\mathbf{A}=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right) \in S^{2}(\mathbb{R})$ and $\mathbf{B}=\left(\begin{array}{ll}2 & 3 \\ 3 & 5\end{array}\right) \in S_{+}^{2}(\mathbb{R})$.
Find the generalized eigenvalues and eigenvectors of (\mathbf{A}, \mathbf{B}).

Next time: Matrix Computing in MATLAB

Be sure to complete the following activities before next class:

- Install MATLAB on your computer with the Statistics and Machine Learning Toolbox ${ }^{2}$
- MATLAB fundamentals ${ }^{3}$
- Introduction to Linear Algebra with MATLAB ${ }^{4}$

[^0]
[^0]: ${ }^{2}$ https://www.mathworks.com/products/statistics.html
 ${ }^{3}$ https://matlabacademy.mathworks.com/details/matlab-fundamentals/mlbe
 ${ }^{4}$ https://matlabacademy.mathworks.com/details/ introduction-to-linear-algebra-with-matlab/linalg

