
San José State University

Math 250: Mathematical Data Visualization

Matrix Computing in MATLAB

Dr. Guangliang Chen



Outline of the lecture:

• Ordinary vector and matrix operations in MATLAB

• Coding techniques for dealing with large matrices

• In-class demonstrations

• Additional learning

Hw2 (see Canvas)



Matrix Computing in MATLAB

What is MATLAB (MATrix LABoratory)?

MATLAB is commercial software de-
veloped by Mathworks.

It is a popular language in applied
math and engineering:

• Matrix computing

• Numerical optimization

• Signal and image processing

• Data plotting/visualization

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 3/21



Matrix Computing in MATLAB

Why MATLAB?
• Simple, flexible and easy to use

• Efficient and robust for linear algebra operations

• High quality data plotting

• Very thorough documentation with lots of examples

• The statistics and machine learning toolbox has all that we need

• SJSU now has a campus wide license (free for students)1

1https://www.mathworks.com/academia/tah-portal/
san-jose-state-university-31511582.html

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 4/21



Matrix Computing in MATLAB

My strategies for teaching MATLAB as a computing tool

• Focus on what is essential for this course (i.e., matrix operations,
and data plotting)

• Example-based

• Emphasize on good practices in MATLAB programming

– simplicity

– efficiency

– readability

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 5/21



Matrix Computing in MATLAB

Creating vectors in Matlab
• Row vector: a = [1 2 3 4 5 6]; or a = [1, 2, 3, 4, 5, 6]; or a = 1 : 6;

• Column vector: a = [1; 2; 3; 4; 5; 6]; or a = (1 : 6)′;

• Zero/one/random vectors:
a = zeros(1, 6); b = ones(6, 1); r = rand(1, 10);

• Linear: a = linspace(0, 1, 11); or a = 0 : 0.1 : 1;

• Periodic: a = repmat(1 : 3, 1, 5); b = repelem(1 : 3, 5);
c = repmat((1 : 3)′, 5, 1);

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 6/21



Matrix Computing in MATLAB

Basic vector functions in Matlab

• length(a), numel(a)

• sum(a), mean(a), median(a), min(a), max(a), prod(a)

• cumsum(a), cumprod(a)

• norm(a), norm(a, 1), norm(a, Inf)

• sort(a), sort(a, ’descend’), find(a > 0)

• a.ˆ2; 1./a; sqrt(a), where a is a positive vector

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 7/21



Matrix Computing in MATLAB

Creating matrices in Matlab

• Direct definition: A = [1 2 3; 4 5 6; 7 8 9];

• By rearranging a vector: A = reshape(1 : 9, 3, 3);

• By replicating a vector: A = repmat(1 : 3, 5, 1);
B = repmat((1 : 3)′, 1, 5)

• Special matrices: O = zeros(5, 6); J = ones(6, 6); I = eye(6);
R = rand(10, 10); D = diag(1 : 5);

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/21



Matrix Computing in MATLAB

Basic matrix functions in Matlab
• size(A) and numel(A). The latter is same as prod(size(A))

• sum(A, 1), sum(A, 2), min(A, [], 1), max(A, [], 2)

• trace(A), same as sum(diag(A))

• eig(A), eig(A, B), det(A), rank(A), inv(A) (slow and unreliable for
large matrices)

• eigs(A, K) (largest K eigenvalues of A)

• eigs(A, B, K) (largest K generalized eigenvalues of (A, B))

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 9/21



Matrix Computing in MATLAB

Manipulating a single matrix A ∈ Rm×n

• A.ˆ2 (entrywise square), Aˆ2 (square), A′ (transpose)

• Row sums: sum(A, 2), but do not use A ∗ ones(n, 1)

• Column sums: sum(A, 1) or sum(A) but not ones(1, m) ∗A

• Overall sum: sum(A, ’all’), sum(sum(A)), sum(A(:)), but not
ones(1, m) ∗A ∗ ones(n, 1)

• `1 row normalization: A./repmat(sum(A, 2), 1, n), or A./sum(A, 2)

• `2 row normalization: A./sqrt(sum(A.ˆ2, 2))

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/21



Matrix Computing in MATLAB

Computational complexity

In coding, there is often more than one way to implement an operation or
algorithm. It matters tremendously HOW you implement it.

For the purpose of efficient coding, we need to know how to analyze the
complexity of an operation/algorithm.

There are two kinds of complexity that need to be analyzed:

• Space/memory complexity

• Time/speed complexity

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/21



Matrix Computing in MATLAB

For general matrices, we suppose each element takes the same amount of
space. Thus, the memory required by a matrix A ∈ Rm×n is O(mn).

For a sparse matrix, the memory requirement would be just the number of
nonzeros in it.

For most time, we will need to determine the time complexity carefully,
which is defined as the total number of arithmetic operations (+,−,×, /)
required by the operation.2

We will try to identify the order of the time/space complexity, rather than
finding the exact amount (which may be too hard/slow to do).

2In fact, each of the +, −, × operations takes 1 unit of time but division takes about
8. We ignore the difference for simplicity.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 12/21



Matrix Computing in MATLAB

Time complexity of common linear algebra operations

Let x, y ∈ Rn and A ∈ Rm×n, B ∈ Rn×p, S ∈ Rn×n. Then

• Summing up the entries of x: O(n) (n− 1 additions);

• Dot product xT y: O(n) (2n−1 operations in total: n multiplications
and n− 1 additions). This implies that calculating the norm of x,
‖x‖2 = xT x, also has O(n) complexity.

• Ax: O(mn) (m dot product operations)

• AB: O(mnp). In particular, S2 takes O(n3) time.

• det(S), eig(S), and inv(S): O(n3)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 13/21



Matrix Computing in MATLAB

Order of multiplication can matter a lot

When multiplying several matrices and a vector, always perform matrix-
vector multiplication (and avoid matrix multiplication).

For example, for any A ∈ Rm×n, B ∈ Rn×p, and x ∈ Rp, we have

(AB)x = A(Bx)

Although mathematically equivalent, the right-hand side consists of two
matrix-vector multiplications and is much faster!

• (AB)x: O(mnp + mp) complexity

• A(Bx): O(mn + np) complexity

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 14/21



Matrix Computing in MATLAB

Simulation study

We generate matrices A, B ∈ Rn×n

and vector x ∈ Rn by sampling
entries uniformly at random from
(0, 1), for each n = 2000, 4000,
. . ., 12000, to compare the CPU
times needed by the two operations,
(AB)x and A(Bx).

The plot shows that A(Bx) is much
faster than (AB)x for all n.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 15/21



Matrix Computing in MATLAB

Diagonal matrices are essentially vectors

Let A = diag(a) ∈ Rn×n and B ∈ Rn×p. Then

A︸︷︷︸
diagonal

B =


a1

. . .
an




B1
...

Bn

 =


a1B1
...

anBn



We may implement the matrix product via the Hadamard product:

A︸︷︷︸
n×n

B︸︷︷︸
n×p

= [a . . . a]︸ ︷︷ ︸
p copies

◦B.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/21



Matrix Computing in MATLAB

The former takes O(n2p) operations, while the latter takes only O(np)
operations, which is one magnitude faster.

= ◦B B

For example,−1
0

1


1 2 3 10

4 5 6 10
7 8 9 10

 =

−1 −1 −1 −1
0 0 0 0
1 1 1 1

◦
1 2 3 10

4 5 6 10
7 8 9 10


Dr. Guangliang Chen | Mathematics & Statistics, San José State University 17/21



Matrix Computing in MATLAB

Sparse matrices

Sparse matrices are very efficient in computing, and all the previously
introduced matrix functions apply to them readily.

A = zeros(5, 5);
A(1, 1) = 2; A(1, 2) = −1; A(2, 1) = 1;
S = sparse(A); % A = full(S)

density = nnz(S)/numel(S);

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 18/21



Matrix Computing in MATLAB

In-class demonstrations

See sample scripts from instructor

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/21



Matrix Computing in MATLAB

Some (early) coding advice
• Initialize your variables, e.g., A = zeros(100, 10)

• Set constant variables to increase readability: maxIterations = 30

• Avoid for loops unless necessary (use matrix operations instead)

• Add brief documentation to remind your reader and also yourself

• Use 3D arrays in clever ways

• Smart indexing is important

• Careful (and creative) design is the key

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 20/21



Matrix Computing in MATLAB

Summary and beyond

Summary: MATLAB is a powerful, convenient computing tool for this
course.

Further learning: See course webapge3

Next time: Data plotting and visualization in 3D

3https://www.sjsu.edu/faculty/guangliang.chen/Math250.html

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/21


