San José State University Math 250: Mathematical Data Visualization

## Data sets and their visualization in 3D

Dr. Guangliang Chen

#### Outline:

- Various kinds of matrix-type data
- Selected benchmark data sets
- Loading data into MATLAB
- Plotting and visualizing data
- In-class demonstrations

# Data types

Data exists (or is collected) in various forms, such as

- Numerical / categorical vectors
- Images (gray-scale, color)
- Text documents
- Graphs (networks)
- Videos
- Hyperspectral images

# Storing data as matrices

The following data objects can all be conveniently represented as matrices:

- Vectors in Euclidean spaces
- Digital images and their collections
- Text corpus (collections of text documents)
- Graph/network data

#### Data points in Euclidean spaces as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 5/32

#### Digital images as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 6/32

Collections of text documents as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 7/32

## Networks (graphs) as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/32

# Storing data as tensors (3D arrays)

- Collection of images of the same size
- Videos
- Hyperspectral images

#### Data sets and their visualization in 3D



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/32



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/32

#### Data sets and their visualization in 3D



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 12/32

# Data sets to be used in this course

- Image collections: MNIST handwritten digits\*, Fashion MNIST\*, USPS handwritten digits\*
- Text corpus\*: 20 newsgroups\*
- UCI Machine Learning Repository<sup>1</sup>: smaller data sets such as *iris*, and *wine quality*

\*Available in Canvas.

Let me know if you have a good data set for visualization in mind!

<sup>1</sup>http://archive.ics.uci.edu/ml/

## **MNIST Handwritten Digits**

http://yann.lecun.com/exdb/mnist/

70,000 digital images of size 28x28 of handwritten digits 0. . . 9 collected from about 250 people

A benchmark data set used for machine learning classification



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 14/32

### Fashion-MNIST

https://github.com/zalandoresearch/fashion-mnist

Same size and format with MNIST, but the contents are clothes instead

The data set is harder than MNIST.



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 15/32

## USPS Zip Code Data

http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html

9,298 size  $16\times 16$  grayscale images of handwritten digits scanned from envelops

Smaller than MNIST but more noisy



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/32

## 20 Newsgroups Data

#### http://qwone.com/~jason/20Newsgroups/

18,824 text documents, divided into 20 news groups with different topics



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 17/32

## UCI Machine Learning Repository - iris

https://archive.ics.uci.edu/ml/datasets/iris

- 150 instances
- 4 numerical attributes
  - sepal length in cm
  - sepal width in cm
  - petal length in cm
  - petal width in cm
- 1 categorical: Iris type



#### UCI Machine Learning Repository - wine quality

https://archive.ics.uci.edu/ml/datasets/wine+quality

- 4,898 instances (two datasets are combined, related to red and white vinho verde wine samples from north of Portugal)
- 11 numerical attributes
- 1 response variable: quality (score between 0 and 10)



# Data plotting

**Example**: A scatterplot of Math 250 (spring 2021) test scores

% midterm 1 (out of 90) x = [85 83 84 84 79 76.5 82 79 64 69 50 54 58 67];

```
% midterm 2 (out of 105)
y = [100 \ 96 \ 99 \ 83 \ 91 \ 85 \ 77 \ 68 \ 77 \ 71 \ 85 \ 75 \ 59 \ 54];
```

```
figure; plot(x,y, '.')
```

## A low quality plot



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/32

#### Things to keep in mind when plotting data

- Symbol (marker) type and size
- Font sizes (title and axis labels)
- Color contrast
- Line styles
- Legend
- Aesthetics

## How to plot the data (elegantly)

```
figure;
plot(x, y, 'rs', 'MarkerSize', 14, ...
'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'g')
hold on
plot([50 90],[50*105/90 105], 'k-', 'linewidth', 2)
xlabel('midterm 1', 'fontsize', 16)
ylabel('midterm 2', 'fontsize', 16)
xlim([50 90]); ylim([50 105])
set(gca, 'fontsize', 16)
grid on
title('Math 250 (Spring 2021) test scores', 'fontsize', 18)
```

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 23/32



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 24/32

```
grades=categorical(grades);
figure;
gscatter(x, y, grades, 'mbr', 'p.o', 18)
legend(categories(grades), 'fontsize', 18)
box on
xlabel('midterm 1', 'fontsize', 16)
ylabel('midterm 2', 'fontsize', 16)
xlim([50 90]); ylim([50 105])
set(gca, 'fontsize', 16)
grid on
title('Math 250 (Spring 2021) test scores', 'fontsize', 18)
```



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 26/32

#### What to look for in a plot

- range of each dimension
- general pattern and trend
- center, peaks, symmetry, etc
- clusters (if any)
- outliers (peculiar points)

# Data visualization

Goals: For each data set, we will focus on both of the following tasks:

- data plotting (with publication quality)
- data exploration (for getting insights)

Strategy: We will examine the variables in the following ways:

- Single variable:
  - Numerical: 1-D scatterplot, histogram, boxplot, bar graph (if frequency data)
  - Categorical: bar graph, pie chart

- <u>Two variables</u>:
  - Both numerical: 2-D scatterplot
  - Both categorical: stacked bar plot
  - Mixed: side-by-side boxplot
- Three variables:
  - All numerical: 3-D scatterplot, scatterplot matrix
  - Two numerical and 1 categorical: 2-D scatterplot with groups
  - One numerical and two categorical: heatmap, 3D bar plot

# In-class demonstrations

See scripts from instructor in class.

# The case of high dimensional data

High dimensional data sets are hard to visualize due to physical limitations.

The best we can do is to find a proper angle to peek into the data in order to understand its structure that is relevant to the given task.

Later in this course, we will cover the following methods:

- Linear projection methods: PCA, LDA
- Nonlinear embedding methods: MDS, ISOMap, LLE, Laplacian Eigenmaps

#### Data sets and their visualization in 3D



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/32