San José State University
Math 250: Mathematical Data Visualization

Singular Value Decomposition (SVD)

Dr. Guangliang Chen

Singular Value Decomposition (SVD)

Outline of the lecture:

- Existence of SVD for general matrices
- Different versions of SVD
- Computing SVD by hand and software
- Geometric interpretation
- Applications of SVD

Singular Value Decomposition (SVD)

Recall

... that symmetric matrices are (orthogonally) diagonalizable.
That is, for any symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, there exist an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, both real and square, such that $\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{T}$.

Furthermore, λ_{i} 's are the eigenvalues of \mathbf{A} and \mathbf{q}_{i} 's the corresponding eigenvectors (which are orthogonal to each other and have unit norm).

Such a factorization is called the eigendecomposition of A, also called the spectral decomposition of \mathbf{A}.

Singular Value Decomposition (SVD)

Existence of the SVD for general matrices

Theorem: For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exist two orthogonal matrices $\mathbf{U} \in \mathbb{R}^{m \times m}, \mathbf{V} \in \mathbb{R}^{n \times n}$ and a nonnegative, diagonal matrix $\mathbf{\Sigma} \in \mathbb{R}^{m \times n}$ such that

$$
\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}
$$

Moreover, the number of positive diagonals of $\boldsymbol{\Sigma}$ equals the rank of \mathbf{A}.

Singular Value Decomposition (SVD)

Remark. This factorization is called the Singular Value Decomposition (SVD) of A:

- The diagonals of Σ are called the singular values of \mathbf{A}.
- The columns of \mathbf{U} are called the left singular vectors of \mathbf{A}.
- The columns of V are called the right singular vectors of \mathbf{A}.

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Example 0.1. It can be directly verified that

$$
\underbrace{\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)}_{\mathbf{A}}=\underbrace{\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right)}_{\mathbf{U}} \cdot \underbrace{\left(\begin{array}{cc}
\sqrt{3} & \\
& 1 \\
&
\end{array}\right)}_{\boldsymbol{\Sigma}} \cdot \underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{T}}_{\mathbf{V}^{T}} .
$$

In the above equation, \mathbf{U}, \mathbf{V} are orthogonal matrices and $\boldsymbol{\Sigma}$ is a diagonal matrix. Therefore, the above factorization represents a singular value decomposition of \mathbf{A}.

Moreover, $\operatorname{rank}(\mathbf{A})=2$, and there are precisely 2 positive entries in the diagonal of $\boldsymbol{\Sigma}$.

Singular Value Decomposition (SVD)

- Singular values:

$$
\sigma_{1}=\sqrt{3}, \quad \sigma_{2}=1
$$

- Left singular vectors:

$$
\mathbf{u}_{1}=\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right), \quad \mathbf{u}_{2}=\left(\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right), \quad \mathbf{u}_{3}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right)
$$

- Right singular vectors:

$$
\mathbf{v}_{1}=\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{\sqrt{2}}}, \quad \mathbf{v}_{2}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

Singular Value Decomposition (SVD)

Connection to symmetric matrices

From the SVD of \mathbf{A} we obtain that

$$
\begin{aligned}
& \mathbf{A} \mathbf{A}^{T}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \cdot \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T}=\mathbf{U}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}\right) \mathbf{U}^{T} \\
& \mathbf{A}^{T} \mathbf{A}=\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \cdot \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}
\end{aligned}
$$

This shows that

- \mathbf{U} is the eigenvectors matrix of $\mathbf{A A}^{T}$;
- \mathbf{V} is the eigenvectors matrix of $\mathbf{A}^{T} \mathbf{A}$;
- The nonzero eigenvalues of $\mathbf{A} \mathbf{A}^{T}, \mathbf{A}^{T} \mathbf{A}$ (which must be the same) are equal to the squared singular values of \mathbf{A}.

Singular Value Decomposition (SVD)

Example 0.2. For the matrix \mathbf{A} in the preceding example, we have

$$
\begin{aligned}
& \mathbf{A A}^{T}=\underbrace{\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right)}_{\mathbf{U}} \cdot \underbrace{\left(\begin{array}{ccc}
3 & & \\
& 1 & \\
& & 0
\end{array}\right)}_{\boldsymbol{\Sigma}_{\boldsymbol{\Sigma}} \boldsymbol{\Sigma}^{T}} \cdot \underbrace{\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right)^{T}}_{\mathbf{U}} \\
& \mathbf{A}^{T} \mathbf{A}=\underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)}_{\mathbf{U}^{T}} \cdot \underbrace{\left(\begin{array}{cc}
3 & 1 \\
& 1
\end{array}\right)}_{\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}} \cdot \underbrace{\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{T}}_{\mathbf{V}^{T}}
\end{aligned}
$$

Singular Value Decomposition (SVD)

How to prove the SVD theorem

Given any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the SVD can be thought of as solving a matrix equation for three unknown matrices (under constraints):

$$
\mathbf{A}=\underbrace{\mathbf{U}}_{\text {orthogonal }} \cdot \underbrace{\boldsymbol{\Sigma}}_{\text {diagonal }} \cdot \underbrace{\mathbf{V}^{T}}_{\text {orthogonal }} .
$$

Suppose such solutions exist. From

$$
\mathbf{A}^{T} \mathbf{A}=\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}
$$

we can find \mathbf{V} and $\boldsymbol{\Sigma}$, which contain the eigenvectors and square roots of eigenvalues of $\mathbf{A}^{T} \mathbf{A}$, respectively.

Singular Value Decomposition (SVD)

After we have found both \mathbf{V} and $\boldsymbol{\Sigma}$, rewrite the matrix equation as

$$
\mathbf{A}_{m \times n} \mathbf{V}_{n \times n}=\mathbf{U}_{m \times m} \boldsymbol{\Sigma}_{m \times n}
$$

or in columns,

$$
\mathbf{A}\left[\mathbf{v}_{1} \ldots \mathbf{v}_{r} \mathbf{v}_{r+1} \ldots \mathbf{v}_{n}\right]=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{r} \mathbf{u}_{r+1} \ldots \mathbf{u}_{m}\right]\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & \\
& & \sigma_{r} \\
& & & \\
& & &
\end{array}\right]
$$

By comparing columns, we obtain

$$
\mathbf{A v}_{i}= \begin{cases}\sigma_{i} \mathbf{u}_{i}, & 1 \leq i \leq r(\# \text { nonzero singular values }) \\ \mathbf{0}, & r<i \leq n\end{cases}
$$

Singular Value Decomposition (SVD)

This tells us how to find the first r columns of matrix $\mathbf{U} \in \mathbb{R}^{m \times m}$:

$$
\mathbf{u}_{i}=\frac{1}{\sigma_{i}} \mathbf{A} \mathbf{v}_{i} \quad \text { for all } 1 \leq i \leq r
$$

The remaining columns of \mathbf{U} will be found by completing an orthonormal basis for \mathbb{R}^{m}, starting with $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right\}$:

$$
\begin{aligned}
& \mathbf{u}_{i}^{T} \mathbf{x}=0, \quad i=1, \ldots, r \\
& \|\mathbf{x}\|=1
\end{aligned}
$$

For a rigorous proof of the SVD theorem, see notes.

Singular Value Decomposition (SVD)

Example 0.3. Find the SVD of $\mathbf{A}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right)$.

Singular Value Decomposition (SVD)

Different versions of SVD

- Full SVD: $\mathbf{A}_{m \times n}=\mathbf{U}_{m \times m} \boldsymbol{\Sigma}_{m \times n} \mathbf{V}_{n \times n}^{T}$
- Compact SVD: Suppose $\operatorname{rank}(\mathbf{A})=r$. Define

$$
\begin{aligned}
& \mathbf{U}_{r}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right] \in \mathbb{R}^{m \times r} \\
& \mathbf{V}_{r}=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right] \in \mathbb{R}^{n \times r} \\
& \mathbf{\Sigma}_{r}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r \times r}
\end{aligned}
$$

Then

$$
\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{T}
$$

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

- Rank-1 decomposition:

$$
\mathbf{A}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T}
\end{array}\right]=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

This has the interpretation that \mathbf{A} is a weighted sum of rank-one matrices, as for a square, symmetric matrix.

Note that $-\mathbf{u}_{i},-\mathbf{v}_{i}$ are also corresponding singular vectors to σ_{i} :

$$
\mathbf{A}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}=\sum_{i=1}^{r} \sigma_{i}\left(-\mathbf{u}_{i}\right)\left(-\mathbf{v}_{i}\right)^{T}
$$

This shows that the SVD of a matrix is not unique.

Singular Value Decomposition (SVD)

- Truncated SVD: For any integer $1 \leq K \leq r$, let $\sigma_{1}, \ldots, \sigma_{K}$ represent the largest K singular values of \mathbf{A} with corresponding left and right singular vectors $\left(\mathbf{u}_{i}, \mathbf{v}_{i}\right), 1 \leq i \leq K$. We define the K-term truncated SVD of A as

$$
\mathbf{A} \approx \underbrace{\sum_{i=1}^{K} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}}_{\mathbf{A}_{K}}
$$

Note that \mathbf{A}_{K} has a rank of K and it can be regarded as a low-rank approximation to \mathbf{A} (if K is small).

Singular Value Decomposition (SVD)

Geometric interpretation of SVD

Given any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rank r, let its compact SVD be

$$
\mathbf{A}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{T}
$$

We rewrite it in the following way:

$$
\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{m}
\end{array}\right]=\mathbf{A}=\underbrace{\left(\mathbf{U}_{r} \boldsymbol{\Sigma}_{r}\right)}_{\text {coefficients }} \cdot \underbrace{\mathbf{V}_{r}^{T}}_{\text {basis }}=\left[\begin{array}{cccc}
* & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\mathbf{v}_{2}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T}
\end{array}\right] .
$$

Singular Value Decomposition (SVD)

This shows that the rows of \mathbf{V}_{r}^{T} (columns of \mathbf{V}_{r}) provide an orthonormal basis for the row space of \mathbf{A}.
$\mathbf{A} \in \mathbf{R}^{m \times n}$

Singular Value Decomposition (SVD)

Similarly, the columns of \mathbf{U}_{r} provide an orthonormal basis for the column space of A:

$$
\mathbf{A}=\underbrace{\mathbf{U}_{r}}_{\text {basis }} \cdot \underbrace{\left(\boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{T}\right)}_{\text {coefficients }}=\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{r}
\end{array}\right] \cdot\left(\boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{T}\right) .
$$

$\mathbf{A} \in \mathbf{R}^{m \times n}$

Singular Value Decomposition (SVD)

Example 0.4. Let

$$
\mathbf{A}=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

By direct calculation, we obtain the compact SVD of \mathbf{A} as follows:

$$
\mathbf{U}_{2}=\left(\begin{array}{cc}
\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}
\end{array}\right), \quad \boldsymbol{\Sigma}_{2}=\left(\begin{array}{cc}
3 & \\
& 1
\end{array}\right), \quad \mathbf{V}_{2}^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

Therefore, $\left\{\mathbf{v}_{1}^{T}, \mathbf{v}_{2}^{T}\right\}$ forms an orthonormal basis for the row space of \mathbf{A}, and the spanning coefficients for the row vectors of \mathbf{A} are along the rows

Singular Value Decomposition (SVD)

of the following matrix

$$
\mathbf{U}_{2} \boldsymbol{\Sigma}_{2}=\left(\begin{array}{cc}
\sqrt{6} & 0 \\
\frac{3}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{3}{\sqrt{6}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
$$

Similarly, $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ forms an orthonormal basis for $\operatorname{Col}(\mathbf{A})$ and the spanning coefficients for the columns of \mathbf{A} are along the columns of

$$
\boldsymbol{\Sigma}_{2} \mathbf{V}_{2}^{T}=\left(\begin{array}{ll}
3 & \\
& 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)=\left(\begin{array}{ccc}
\frac{3}{\sqrt{6}} & \frac{3}{\sqrt{6}} & \sqrt{6} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0
\end{array}\right)
$$

Singular Value Decomposition (SVD)

MATLAB commands for computing matrix SVD

1. Full SVD

svd - Singular Value Decomposition.
$[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\mathbf{s v d}(\mathbf{X})$ produces a diagonal matrix S , of the same dimension as X and with nonnegative diagonal elements in decreasing order, and orthogonal matrices U and V so that $\mathrm{X}=\mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{T}$.
$\mathbf{s}=\mathbf{s v d}(\mathbf{X})$ returns a vector containing the singular values.

Singular Value Decomposition (SVD)

2. Truncated SVD

svds - Find a few singular values and vectors.
$\mathbf{S}=\mathbf{s v d s}(\mathbf{A}, \mathrm{K})$ computes the K largest singular values of A.
$[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\mathbf{s v d s}(\mathbf{A}, \mathbf{K})$ computes the singular vectors as well. If A is M -byN and K singular values are computed, then U is M -by- K with orthonormal columns, S is K -by- K diagonal, and V is N -by- K with orthonormal columns.

In many applications, a truncated SVD is enough, and it is much easier to compute than the full SVD.

Singular Value Decomposition (SVD)

3. SVD Sketch

$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svdsketch}(\mathrm{A})$ returns the singular value decomposition (SVD) of a low-rank matrix sketch of A. The matrix sketch only reflects the most important features of A (up to a tolerance), which enables faster calculation of the SVD of large matrices compared to using SVDS.
$[\mathrm{U}, \mathrm{S}, \mathrm{V}]=\operatorname{svdsketch}(\mathrm{A}$, tol $)$ specifies a tolerance for the sketch of A such that norm($\mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{\prime}$ - A, 'fro') $/$ norm (A, 'fro') $<=$ tol.

Singular Value Decomposition (SVD)

Power method for numerical computing of SVD

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix whose SVD is to be computed: $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$. Consider $\mathbf{C}=\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$. We have

$$
\begin{aligned}
\mathbf{C} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}=\sum \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \\
\mathbf{C}^{2} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)^{2} \mathbf{V}^{T}=\sum \sigma_{i}^{4} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \\
\vdots & \\
\mathbf{C}^{k} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)^{k} \mathbf{V}^{T}=\sum \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
\end{aligned}
$$

If $\sigma_{1}>\sigma_{2}$, then the first term dominates, so

$$
\mathbf{C}^{k} \rightarrow \sigma_{1}^{2 k} \mathbf{v}_{1} \mathbf{v}_{1}^{T}, \quad \text { as } k \rightarrow \infty
$$

Singular Value Decomposition (SVD)

Note that $\mathbf{v}_{1} \mathbf{v}_{1}^{T}$ is a rank-1 matrix, with columns being multiples of \mathbf{v}_{1}.

This means that a close estimate of \mathbf{v}_{1} can be computed by simply taking the first column of \mathbf{C}^{k} (for some large k) and normalizing it to a unit vector.

This method works but can be very costly due to the matrix power part, which has a complexity of $\mathcal{O}\left(n^{3}\right)$.

Singular Value Decomposition (SVD)

A better approach. Instead of computing \mathbf{C}^{k}, we select a random vector $\mathbf{x} \in \mathbb{R}^{n}$ and compute $\mathbf{C}^{k} \mathbf{x}$ through a sequence of matrix-vector multiplications (which are very efficient especially when one dimension of \mathbf{A} is small, or \mathbf{A} is sparse):

$$
\mathbf{C}^{k} \mathbf{x}=\mathbf{A}^{T} \mathbf{A} \cdots \mathbf{A}^{T} \mathbf{A} \mathbf{x}
$$

Write $\mathbf{x}=\sum c_{i} \mathbf{v}_{i}\left(\right.$ since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form an orthonormal basis for $\left.\mathbb{R}^{n}\right)$. Then

$$
\mathbf{C}^{k} \mathbf{x} \approx\left(\sigma_{1}^{2 k} \mathbf{v}_{1} \mathbf{v}_{1}^{T}\right)\left(\sum c_{i} \mathbf{v}_{i}\right)=\sigma_{1}^{2 k} c_{1} \mathbf{v}_{1}
$$

Normalizing the vector $\mathbf{C}^{k} \mathbf{x}$ for some large k then yields \mathbf{v}_{1}, the first right singular vector of \mathbf{A}.

Singular Value Decomposition (SVD)

Applications of SVD

The matrix SVD has lots of applications such as

- Orthogonal best-fit plane
- Dimension reduction
- Image compression ${ }^{1}$
- Recommender systems (matrix completion) ${ }^{2}$

We will cover the first two applications later in the course.

[^0]
[^0]: ${ }^{1}$ https://www.mathworks.com/help/matlab/math/image-compression-with-low-rank-svd. html
 ${ }^{2}$ https://engineering.purdue.edu/ChanGroup/ECE695Notes/Lecture_SVT.pdf

