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Matrix norm and low-rank approximation

Introduction

Recall that a vector space is a collection V of objects, called “vectors”,
which are endowed with two kinds of operations,

e vector addition: u+ v, for any u,v e V;

e scalar multiplication: kv, forany k e R,veV
subject to requirements such as

e Associativity: (u+v)+w=u+ (Vv+w)

e Commutativity: u+v =v+u

e Distributivity: k(u+v) = ku+ kv, (s +t)u=su+tu
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Matrix norm and low-rank approximation

Below are some examples of vector spaces:

Euclidean spaces (R")

The collection of all matrices of a fixed size (R™*")

The collection of all functions from R to R

The collection of all polynomials

The collection of all infinite sequences
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Matrix norm and low-rank approximation

Vector norm
A norm on a vector space V is a function
|-l :V—=R
that satisfies the following three conditions:
e |[v|]>0forall veV, and ||v|] =0 if and only if v =0;
e ||kv| = |k|||v] for any scalar k € R and vector v € V;

o |[v+wl| <|v]+|w]| for any two vectors v,w € V.

Note that ||v|| can be thought of as the length or magnitude of v.
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Matrix norm and low-rank approximation

¢, norms on Euclidean spaces R*
For any fixed p > 1, the £, norm on R? is defined as

d 1/p
x|y = (Z |$i|p> ., for all x € R%.
i=1

It is a rich family of vector norms.

Remark. For any 0 < p < 1, the above function is no longer a vector norm,
as it violates the third condition (convexity).
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Three particular £, norms:

e 2-norm (Euclidean norm): x

Ix[l2 = /> a2 = VxTx

e 1-norm (Manhattan norm):

%l =" |l

e oco-norm (maximum norm):

[x[loo = max ||
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Unit circles (under different 7, norms)

Given any vector norm || - || on R¢, 1
the set of all vectors in R? that have

a unit norm is called a unit circle
(under the given norm):

—1 1
{veR?:|v| =1}
—1
The figure on the right shows the
unit circles in three different norms. Lo, Lo and £; unit circles
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Matrix norm and low-rank approximation

Remark. Any norm || - || on R? can be used as a metric to measure the

distance between two vectors:

dist(x,y) = |x —y|, forall x,y € R?

b d X -y

For example, the Euclidean norm defines the Euclidean distance:

distp(x,y) = [|x = yllo =
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Matrix norm

A matrix norm is a norm on R™*™ as a vector space (consisting of all
matrices of the fixed size).

More specifically, a matrix norm is a function
I R 5 R
that satisfies the following three conditions:
e ||A| >0 for all A € R™*" and ||A]| =0 if and only if A =0
o |[kA| = |k| - ||A] for any scalar k € R and matrix A € R™*"

e ||[A+ B <|A|+ ||B]| for any two matrices A, B € R"™*"
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Note that multiplication is also defined between matrices (with compatible

sizes).

We say that a matrix norm || - || is sub-multiplicative if for any two
matrices A € R™*" B € R™"*P,

IAB][ < [|A]l-[[B]|

Note that some textbooks only regard sub-multiplicative matrix norms as

matrix norms.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/60



Matrix norm and low-rank approximation

The Frobenius norm

Def 0.1. The Frobenius norm of a matrix A € R™*" is defined as

IAllF =

It is equivalent to the Euclidean 2-norm on vectorized matrices (i.e., R™"):
[AllF = [AG)]2

Thus, it must satisfy all the three conditions of a norm.
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Example 0.1. Let
-1

By direct calculation,

IAlp = /124 (~1)2 4+ 02 + 12+ 12 402 = 2.
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Remark. For any matrix A € R™*™,

m n
IAF =D 114ill3 = llayll3
i=1 j=1
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Matrix norm and low-rank approximation

Theorem 0.1. The matrix Frobenius norm is sub-multiplicative, that is, for
any two matrices A € R™*" B € R"*P,

IAB[[F < [[AllF - [Bl|£-

Proof. Let C = AB € R™*P. By definition,

m P
ClF=Y3 ek =3

i=1j=1 i=1j

(Aibj)?.

P
=1

Using the Cauchy-Schwarz inequality,

x-y[ <[]l llyll, forall x,y € R”,,
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we obtain that

m P
ICIE <> > 4l by,1?

i=1j=1

- @ HAiH2> (g uber)

= [|A[% B3

Taking the square root of each side completes the proof. ]
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Proposition 0.2. For any matrix A € R"*"™,

|A|% = trace(AAT) = trace(AT A)
Proof.

trace(AAT) = ZA A = leAllg—llAllp

The other equality can be proved similarly, or instead using the matrix
trace property:
trace(AB) = trace(BA)

where A € R™*" and B € R"*™, O
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Theorem 0.3. Let A € R"™*™ be any matrix. Suppose its (nonzero)
singular values are o1 > -+ > 0, > 0, where r = rank(A). Then

|AllF =

Proof. Consider the matrix AT A. Its nonzero eigenvalues are \; = o2.
According to the theorem on the preceding slide,

|A|% = trace(ATA) = Z)\ = Za
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The matrix operator norm

A second matrix norm is the operator norm, which is induced by a vector
norm on Euclidean spaces.

Theorem 0.4. For any vector norm || - || on Euclidean spaces, the following
is a matrix norm on R™*":
et ||AX]|
IA]l'= max = = | Al
x#0 [|x]| ueR”:|[u||=1
A
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Proof. We need to verify the three conditions of a norm.

First, it is obvious that ||A| > 0 for any A € R™*". Suppose ||A| = 0.
Then for any x # 0, ||[Ax|| = 0, or equivalently, Ax = 0. This implies
that A = O. (The other direction is trivial)

Second, for any k € R,

[kA[ = = max [[(kA)ul| =[k[- max [[Aul = [k [A].
ueR™:[|uf=1 ueR™:[[u]|=1
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Lastly, for any two matrices A, B € R™*"™,

|A+B|= max |[(A+B)ul= max |Au+ Bu]
ueRn:[[u)|=1 ueR™:|[uf=1
< max ([Aul[ + [[Bul))
ucR”:||lul|=1
< max |[Aul|+ max |Bu]
ueR™:[[u)|=1 ueR™:[[u)|=1
= [[Al+]B]. O
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Theorem 0.5. For any norm on Euclidean spaces and its induced matrix

operator norm, we have

|Ax|| < [|A] - [|x]| for all A € R™" x e R"

Proof. For any particular vector x # 0 € R"™, by definition,

[Ax]] 1A [
x|~ y#0 |yl
This implies that
[AX]| < [|A]l-[Ix].- O
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Remark. More generally, the matrix operator norm can be shown to be

sub-multiplicative, i.e.,

IAB| < ||A| - |B|, forall A € R™*" B ¢ R"*P

To see this, consider any nonzero x € RP. By using the preceding theorem,
we have
[ABx| < [[A]l-[[Bx] < [[A][-[[B] - [Ix]
It follows that
|ABx|
1]
Taking the maximum of the left hand side over all nonzero x yields that

< [|A]- 1B

IAB| < [|A]- B
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When the Euclidean norm (i.e., 2-norm) is used, the induced matrix
operator norm is called the spectral norm.

Def 0.2. The spectral norm of a matrix A € R™*" is defined as

A
||A||2 — max ” X||2 _

= ma | Aul|2
x£0 [|x[2  ueRn:|uf2=1
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Remark. The spectral norm of a row or column vector when regarded as a
matrix always coincides with the Euclidean norm of the vector.

e Let A = [x] € R"*! be a single-column matrix. By definition, its
spectral norm is
[Al2 = [Ix- 12 = [Ix]2

o Let A = [XT] € R be a single-row matrix. By definition, its
spectral norm is

IAlz = max [x"ull2 = [|x[|2
ucR”:||lulj2=1
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Matrix norm and low-rank approximation

Theorem 0.6. Let A € R™*™ be any matrix whose singular values (from
large to small) are o1 > 09 > ---. Then

[Allz = o1.

Proof. Consider the matrix AT A which is a positive semidefinite matrix
with largest eigenvalue \; = 0. We have
| Ax||3 xTAT Ax

Ix[2 ~ %t x LT

1A]3 = max

where we used the Rayleigh quotient theorem. The maximizer is the largest
right singular vector vy of A (corresponding to o1). O
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Example 0.2. For the matrix

we have

1A]2 = V3.

Note that we must have
[All2 < [|AllF

for all matrices A. Why?
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Matrix norm and low-rank approximation

We note that the Frobenius and spectral norms of a matrix correspond to
the 2- and oco-norms of the vector of singular values (o0 = (01,...,0,)):

[AllF=llolz A2 = [ofleo

The 1-norm of the singular value vector is called the nuclear norm of A,
which is very useful in convex programming.

Def 0.3. The nuclear norm of a matrix A € R™*" is defined as

1A[L = llol =)o

Example 0.3. In the last example, ||A[, = v/3 + 1.
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MATLAB function for matrix/vector norm
norm — Matrix or vector norm.
norm(X,2) returns the 2-norm of X.
norm(X) is the same as norm(X,2).
norm(X,'fro’) returns the Frobenius norm of X.
In addition, for vectors...
norm(V,P) returns the p-norm of V defined as SUM(ABS(V)."P)"(1/P).

norm(V,Inf) returns the largest element of ABS(V).
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Condition number of a square matrix

Briefly speaking, the condition number of a square, invertible matrix is a
measure of its near-singularity.

For example, both of the following matrices are invertible:

A 2 4 . B-— 6 -1
3 6.1 -1 6.1

However, if we change the number 6.1 in A to 6, then A would become
singular. In contrast, we need to change the number 6.1 in B to % in order
to make B singular. This shows that A is much closer to being singular
than B.
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Def 0.4. Let || - || be any sub-multiplicative matrix norm. For any square,
invertible matrix A, the condition number of A (corresponding to this
norm) is defined as

-1
= [|A[l- AT

>:|| AT

Remark. Condition number has a lower bound of 1 (regardless of the
matrix norm it corresponds to):

x|

K(A) =[A]-|A7Y > JAAT| = [T =
o x|

where in the inequality step we used the sub-multiplicative property.
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Theorem 0.7. Let A € R™ " be any square, invertible matrix with singular
values o1 > --- > g, > 0. Under the matrix spectral norm, the condition
number of A is

01

K(A) = —.

On

Proof. Let the full SVD of the matrix A be A = UXVT. Since A is
invertible, X is also invertible, and thus A~! = VEX~1UT. This shows
that the singular values of A~! are % > > % > 0. It follows that
-1 1 g1
R(A) = [|All2- AT 2 =01 — = —=.

n On

O]
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Matrix norm and low-rank approximation

Remark. The matrix condition number k(A corresponding to the spectral
norm has the following interpretations:

e We obtain again that x(A) > 1, which is because o1 > o,. In

particular, K(A) = 1 if and only if all the singular values are equal:
o1 ="+ =0p.

e For a (nonzero) square, singular matrix A, we must have 0, = 0
(and o1 > 0). Therefore, K(A) = oo.

e In general, a finite, large condition number means that the matrix
is close to being singular. In this case, we say that the matrix A is
ill-conditioned (for inversion). A rule of thumb is that
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Matrix norm and low-rank approximation

— A is severely ill-conditioned if xK(A) > 1000 (inversion of the
matrix would be numerically unstable);

— A is moderately ill-conditioned if 100 < x(A) < 1000;

— A is not considered to be ill-conditioned if kK(A) < 100 (in
this case, inversion would be fine).

For example, for the two matrices on slide 29,
k(A) =331.05, k(B)=1.40

Thus, A is much closer to being singular to B (the former is moderately
ill-conditioned, while the latter is not).
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Matlab implementation

cond Condition number with respect to inversion.

cond(X) returns the 2-norm condition number (the ratio of the largest
singular value of X to the smallest). Large condition numbers indicate a

nearly singular matrix.
cond(X,P) returns the condition number of X in P-norm:
NORM(X,P) * NORM(INV(X),P).

where P = 1, 2, inf, or 'fro’.
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Low-rank approximation of matrices

Problem. For any matrix A € R™*" and integer k > 1, find the rank-k
matrix B that is the closest to A (under a given norm such as Frobenius,
or spectral):

min I|A — B
BeR™X" : rank(B)=k
Remark. This problem arises in a number of tasks, e.g.,
e Data compression (and noise reduction)

e Matrix completion (and recommender systems)

e Orthogonal least squares fitting
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Theorem 0.8 (Eckart—Young—Mirsky). Given A € R™*" and 1 < k <r =
rank(A), let Ay be the truncated SVD of A with the largest k terms:
A, = Zle aiuiviT. Then Ay is the best rank-k approximation to A in

terms of both the Frobenius and spectral norms:

i A-Blp=||A-A = 2
Bzraﬂl&):kll IFr = kllF ,/g%

B:rarﬁql(r]l?,):k H H2 H k”2 Ok+1

Remark. The theorem still holds true if the equality constraint rank(B) = k
is relaxed to the inequality constraint rank(B) < k (which will also include

all the lower-rank matrices).
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Example 0.4. For the matrix

1 -1
A=10 1|,
1 0
the best rank-1 approximation is

T \/l? 1 1 L
Av=omuvi =3 | —Je | (5 —75) = |5 3
1 1
V6 2 T2

In this problem, the approximation error under either norm (spectral or
Frobenius) is the same: ||[A — Ay]| =02 = 1.
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Matrix norm and low-rank approximation

Application to image compression

Digital images are stored as matrices, so we can apply SVD to obtain their
low-rank approximations (and display them as images):

k
~ T _ } : T
Aan ~ UkaVk = oiu;v, .
=1

By storing Uy, 3, Vi instead of A, we can reduce the storage requirement
from mn to

Q%ﬁ + \IE-’ + @E, = (m+n+1)k.

cost of U cost of X cost of Vi,

This is one magnitude smaller when k < min(m, n).
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«10* Singular values

0 5 10 15 20 25 30
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Fraction of total Frobenius norm of A
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0.95 et
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Fraction of total Frobenius norm is defined as

JALlE Yo
[AlZ ~ S o7

[Nl dl )

forallk=1,...,r

=
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Original image vs SVD-compressed image
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Application to image denoising

original image

noisy image (with noise)
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The need of a redundant basis
The SVD basis is orthogonal (such that there is a unique representation),
but it is too restrictive (not sufficiently representative).

There has been much research to use an overcomplete basis (called dictio-
nary) for sparsely representing the data, e.g.,

e Tutorial on dictionary learning!

e A presentation on K-SVD?

'https://www.math.ucla.edu/~deanna/AMSnotes . pdf
https://elad.cs.technion.ac.il/wp-content/uploads/2018/02/
School-of-ICASSP-Sparse-Representations.pdf
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Application to recommender systems

Movie 1 Movie 2 Movie 3 oo o Movie n

User 1 4 3
User 2 5)
User 3 3 4 5

[ ]

[ ]

[ ]
User m 4 1 3

See https://web.stanford.edu/~hastie/TALKS/SVD_hastie.pdf
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Application to orthogonal least squares fitting

Problem: Given data x;,...,x, € R¢
and an integer 0 < k < d, find the k-D
orthogonal "best-fit” plane by solving

n
msinz Ixi = Ps(xi)l3
=1

Remark. This problem is different from
ordinary linear regression:

e No predictor-response distinction

e Orthogonal (not vertical) fitting
errors
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Theorem 0.9. An orthogonal best-fit
k-dimensional plane to the data X =
[X1,...,%,]T € R"*% is given by

x(a) =x+ Vi -«
where X is the center of the data set
_ 1
=y
and
Vi = [Vl .. .Vk] S RIxk

contains the top k right singular vectors
of the centered data matrix

X =X-1xT = CX.
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Proof.  Suppose an arbitrary k-
dimensional plane § is used to fit
the data, with a fixed point m € R4,
and an orthonormal basis

B = [by,...,by] € R,
That is,
B'B =1,
BB : orthogonal projection onto S

The projection of each data point x;
onto the candidate plane is

Ps(x;) = m+ BB (x; — m).
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Accordingly, we may rewrite the original problem as

]Rd BE]Rdxk Z HXZ m - BBT(Xi o m)”2
BTB I

We show later that for any fixed choice B, an optimal m is

1 def _
= - in = X.
Plugging in x for m and letting X; = x; — X gives that
miny  ||%; — BBT%|°.
in Y % i
In matrix notation, this becomes

min |IX - XBBT|%2,  where X =[&q,...,%,]" € R"*%
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Since
rank(XBB”) < rank(B) = k,

any minimizer B should be such that
XBB! = X,,
where )~(k = UkEng is the best rank-k approximation of X.
This equation also infinitely many solutions but a simple solution is
B=V,.

Verify: N N
XV, VI =02, Vi = X,.
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Proof of m* = x:

First, rewrite the above objective function as
n
=Y lxi —m—-BB'(x; —m)|* = ZII (I-BB)(x; —m)|
i=1
and apply the formula
9 2 T
6_XHAXH =2A" Ax

to find its gradient:

Vg(m) = -> 2(I-BB")"(I- BB")(x; — m)
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Note that I — BB7 is also an orthogonal projection matrix (onto the
complement). Thus,

1-BB")T(1-BB?)=(1-BB?)?=1-BB”.
It follows that
Vg(m) = - 3" 2(1- BBT)(x; - m) = —2(1 - BB”) (3 x; — nm)
Any minimizer m must satisfy
2(1- BBT) (3 xi — nm) =0

This equation has infinitely many solutions, but the simplest one is

in—nmzo — m=%2xl~.
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Example 0.5. Find the orthogonal best-fit line for a data set of three
points (_37 1)7 (_27 3)7 (_17 2)

Solution. First, the centroid of the data is X = (—2,2). Thus, the centered
data matrix is

-1 -1
X: 0 1 id) V] = [
1 0

S-S

Therefore, the orthogonal best-fit line is
1 1
=24 (L 1Y,
)= ) V2 V2
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The projections of the original data onto the best-fit line are

—2 2] [-1 —1]7. -3 1
ST Ve T __ 2 1 1 _ 3 5
x4+ Xvivi=|-2 2| +|0 1 [i][% 75]_ -3 3
-2 2 1 o]l 3 5
2 2

l 3

| 2

1

0
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Demonstration on another data set

05| ® data 05| ® data

045 + center 045 + center

) —¥—orthogonal best-fit line ° : ——orthogonal best-fit line
0.4 . 0.4 [—LS regression line
0.35 0.35

0.3 0.3

0.25 0.25

0.2 0.2

0.15 0.15

0.1 0.1

0.05 0.05

0.6
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Orthogonal best-fit linear subspace

orthogonal best-fit plane orthogonal best-fit linear subspace

Remark. The orthogonal best-fit linear subspace in general differs from the
orthogonal best-fit plane, with the latter fitting more closely the given data.
Additionally, the orthogonal best-fit plane must go through the centroid
of the data while the orthogonal best-fit linear subspace does not need to.
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Theorem 0.10. Given a data set
X = [x1...x,]7 € R"™*? and an
integer 0 < k < d, a k-dimensional
linear subspace that minimizes the
orthogonal fitting error is given by

x(a) =V -a, ac R”,
where V, € R%* contains the top

right k singular vectors of X.

Remark. X is not centered when ap-
plying SVD to it.
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Matrix norm and low-rank approximation

Proof. Let S be a linear subspace, with orthonormal basis B € R4**  used
to fit the given data set. The orthogonal projection of an arbitrary data
point x; onto S is

Ps(x;) = BBTx;, i=1,...,n

The total orthogonal fitting error is thus
n
Z [x; — Ps(xi) ||2 Z % — BBTX@'H2 =X - XBBT”%-

To minimize the fitting error, we set
XBB” =X, = Uy XV,

and find that B = V. solves the equation. O
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Example 0.6. Find the orthogonal best-fit linear line for the data set in
the preceding example.

Solution. By direct calculation

-3 1 1
X=|-2 3| ™ vi=| 2
-1 2 V2

Therefore, the orthogonal best-fit linear line is
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and the projections of the original data onto the line are

301\ /o —2 2

T _ 2 1 1) _ 5 5
xvivi = | =2 3| | ) (% 5) =3 3
o)\ 4

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 60/60



