San José State University
Math 250: Mathematical Data Visualization

Matrix norm and low-rank approximation

Dr. Guangliang Chen

Outline

- Review of vector norms
- Matrix norms and condition number
- Low-rank matrix approximation
- Applications

Matrix norm and low-rank approximation

Introduction

Recall that a vector space is a collection \mathcal{V} of objects, called "vectors", which are endowed with two kinds of operations,

- vector addition: $\mathbf{u}+\mathbf{v}$, for any $\mathbf{u}, \mathbf{v} \in \mathcal{V}$;
- scalar multiplication: $k \mathbf{v}$, for any $k \in \mathbb{R}, \mathbf{v} \in \mathcal{V}$
subject to requirements such as
- Associativity: $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
- Commutativity: $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
- Distributivity: $k(\mathbf{u}+\mathbf{v})=k \mathbf{u}+k \mathbf{v},(s+t) \mathbf{u}=s \mathbf{u}+t \mathbf{u}$

Matrix norm and low-rank approximation

Below are some examples of vector spaces:

- Euclidean spaces $\left(\mathbb{R}^{n}\right)$
- The collection of all matrices of a fixed size $\left(\mathbb{R}^{m \times n}\right)$
- The collection of all functions from \mathbb{R} to \mathbb{R}
- The collection of all polynomials
- The collection of all infinite sequences

Vector norm

A norm on a vector space \mathcal{V} is a function

$$
\|\cdot\|: \mathcal{V} \rightarrow \mathbb{R}
$$

that satisfies the following three conditions:

- $\|\mathbf{v}\| \geq 0$ for all $\mathbf{v} \in \mathcal{V}$, and $\|\mathbf{v}\|=0$ if and only if $\mathbf{v}=\mathbf{0}$;
- $\|k \mathbf{v}\|=|k|\|\mathbf{v}\|$ for any scalar $k \in \mathbb{R}$ and vector $\mathbf{v} \in \mathcal{V}$;
- $\|\mathbf{v}+\mathbf{w}\| \leq\|\mathbf{v}\|+\|\mathbf{w}\|$ for any two vectors $\mathbf{v}, \mathbf{w} \in \mathcal{V}$.

Note that $\|\mathbf{v}\|$ can be thought of as the length or magnitude of \mathbf{v}.

Matrix norm and low-rank approximation

ℓ_{p} norms on Euclidean spaces \mathbb{R}^{d}

For any fixed $p \geq 1$, the ℓ_{p} norm on \mathbb{R}^{d} is defined as

$$
\|\mathbf{x}\|_{p}=\left(\sum_{i=1}^{d}\left|x_{i}\right|^{p}\right)^{1 / p}, \quad \text { for all } \mathbf{x} \in \mathbb{R}^{d}
$$

It is a rich family of vector norms.
Remark. For any $0<p<1$, the above function is no longer a vector norm, as it violates the third condition (convexity).

Matrix norm and low-rank approximation

Three particular ℓ_{p} norms:

- 2-norm (Euclidean norm):

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum x_{i}^{2}}=\sqrt{\mathbf{x}^{T} \mathbf{x}}
$$

- 1-norm (Manhattan norm):

$$
\|\mathbf{x}\|_{1}=\sum\left|x_{i}\right|
$$

- ∞-norm (maximum norm):

$$
\|\mathbf{x}\|_{\infty}=\max \left|x_{i}\right|
$$

Matrix norm and low-rank approximation

Unit circles (under different ℓ_{p} norms)

Given any vector norm $\|\cdot\|$ on \mathbb{R}^{d}, the set of all vectors in \mathbb{R}^{d} that have a unit norm is called a unit circle (under the given norm):

$$
\left\{\mathbf{v} \in \mathbb{R}^{d}:\|\mathbf{v}\|=1\right\} .
$$

The figure on the right shows the unit circles in three different norms.

Matrix norm and low-rank approximation

Remark. Any norm $\|\cdot\|$ on \mathbb{R}^{d} can be used as a metric to measure the distance between two vectors:

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|, \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}
$$

For example, the Euclidean norm defines the Euclidean distance:

$$
\operatorname{dist}_{E}(\mathbf{x}, \mathbf{y})=\|\mathbf{x}-\mathbf{y}\|_{2}=\sqrt{\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2}}
$$

Matrix norm and low-rank approximation

Matrix norm

A matrix norm is a norm on $\mathbb{R}^{m \times n}$ as a vector space (consisting of all matrices of the fixed size).

More specifically, a matrix norm is a function

$$
\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}
$$

that satisfies the following three conditions:

- $\|\mathbf{A}\| \geq 0$ for all $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\|\mathbf{A}\|=0$ if and only if $\mathbf{A}=\mathbf{O}$
- $\|k \mathbf{A}\|=|k| \cdot\|\mathbf{A}\|$ for any scalar $k \in \mathbb{R}$ and matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$
- $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$ for any two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$

Matrix norm and low-rank approximation

Note that multiplication is also defined between matrices (with compatible sizes).

We say that a matrix norm $\|\cdot\|$ is sub-multiplicative if for any two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$,

$$
\|\mathbf{A B}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\|
$$

Note that some textbooks only regard sub-multiplicative matrix norms as matrix norms.

The Frobenius norm

Def 0.1. The Frobenius norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}
$$

It is equivalent to the Euclidean 2-norm on vectorized matrices (i.e., $\mathbb{R}^{m n}$):

$$
\|\mathbf{A}\|_{F}=\|\mathbf{A}(:)\|_{2}
$$

Thus, it must satisfy all the three conditions of a norm.

Matrix norm and low-rank approximation

Example 0.1. Let

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

By direct calculation,

$$
\|\mathbf{A}\|_{F}=\sqrt{1^{2}+(-1)^{2}+0^{2}+1^{2}+1^{2}+0^{2}}=2
$$

Matrix norm and low-rank approximation

Remark. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
\|\mathbf{A}\|_{F}^{2}=\sum_{i=1}^{m}\left\|A_{i}\right\|_{2}^{2}=\sum_{j=1}^{n}\left\|\mathbf{a}_{j}\right\|_{2}^{2}
$$

Matrix norm and low-rank approximation

Theorem 0.1. The matrix Frobenius norm is sub-multiplicative, that is, for any two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$,

$$
\|\mathbf{A B}\|_{F} \leq\|\mathbf{A}\|_{F} \cdot\|\mathbf{B}\|_{F}
$$

Proof. Let $\mathbf{C}=\mathbf{A B} \in \mathbb{R}^{m \times p}$. By definition,

$$
\|\mathbf{C}\|_{F}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{p} c_{i j}^{2}=\sum_{i=1}^{m} \sum_{j=1}^{p}\left(A_{i} \mathbf{b}_{j}\right)^{2}
$$

Using the Cauchy-Schwarz inequality,

$$
|\mathbf{x} \cdot \mathbf{y}| \leq\|\mathbf{x}\| \cdot\|\mathbf{y}\|, \quad \text { for all } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{p},
$$

Matrix norm and low-rank approximation

we obtain that

$$
\begin{aligned}
\|\mathbf{C}\|_{F}^{2} & \leq \sum_{i=1}^{m} \sum_{j=1}^{p}\left\|A_{i}\right\|^{2}\left\|\mathbf{b}_{j}\right\|^{2} \\
& =\left(\sum_{i=1}^{m}\left\|A_{i}\right\|^{2}\right)\left(\sum_{j=1}^{p}\left\|\mathbf{b}_{j}\right\|^{2}\right) \\
& =\|\mathbf{A}\|_{F}^{2}\|\mathbf{B}\|_{F}^{2} .
\end{aligned}
$$

Taking the square root of each side completes the proof.

Matrix norm and low-rank approximation

Proposition 0.2. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
\|\mathbf{A}\|_{F}^{2}=\operatorname{trace}\left(\mathbf{A} \mathbf{A}^{T}\right)=\operatorname{trace}\left(\mathbf{A}^{T} \mathbf{A}\right)
$$

Proof.

$$
\operatorname{trace}\left(\mathbf{A A}^{T}\right)=\sum_{i=1}^{m} A_{i} \cdot A_{i}^{T}=\sum_{i=1}^{m}\left\|A_{i}\right\|_{2}^{2}=\|\mathbf{A}\|_{F}^{2}
$$

The other equality can be proved similarly, or instead using the matrix trace property:

$$
\operatorname{trace}(\mathbf{A B})=\operatorname{trace}(\mathbf{B A})
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times m}$.

Matrix norm and low-rank approximation

Theorem 0.3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix. Suppose its (nonzero) singular values are $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$, where $r=\operatorname{rank}(\mathbf{A})$. Then

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}
$$

Proof. Consider the matrix $\mathbf{A}^{T} \mathbf{A}$. Its nonzero eigenvalues are $\lambda_{i}=\sigma_{i}^{2}$. According to the theorem on the preceding slide,

$$
\|\mathbf{A}\|_{F}^{2}=\operatorname{trace}\left(\mathbf{A}^{T} \mathbf{A}\right)=\sum_{i=1}^{r} \lambda_{i}=\sum_{i=1}^{r} \sigma_{i}^{2}
$$

Matrix norm and low-rank approximation

The matrix operator norm

A second matrix norm is the operator norm, which is induced by a vector norm on Euclidean spaces.

Theorem 0.4. For any vector norm $\|\cdot\|$ on Euclidean spaces, the following is a matrix norm on $\mathbb{R}^{m \times n}$:

$$
\|\mathbf{A}\| \stackrel{\text { def }}{=} \max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|}=\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|\mathbf{A} \mathbf{u}\|
$$

Matrix norm and low-rank approximation

Proof. We need to verify the three conditions of a norm.

First, it is obvious that $\|\mathbf{A}\| \geq 0$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$. Suppose $\|\mathbf{A}\|=0$. Then for any $\mathbf{x} \neq \mathbf{0},\|\mathbf{A x}\|=0$, or equivalently, $\mathbf{A x}=\mathbf{0}$. This implies that $\mathbf{A}=\mathbf{O}$. (The other direction is trivial)

Second, for any $k \in \mathbb{R}$,

$$
\|k \mathbf{A}\|=\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|(k \mathbf{A}) \mathbf{u}\|=|k| \cdot \max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|\mathbf{A} \mathbf{u}\|=|k| \cdot\|\mathbf{A}\| .
$$

Matrix norm and low-rank approximation

Lastly, for any two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$,

$$
\begin{aligned}
\|\mathbf{A}+\mathbf{B}\| & =\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|(\mathbf{A}+\mathbf{B}) \mathbf{u}\|=\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|\mathbf{A u}+\mathbf{B u}\| \\
& \leq \max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}(\|\mathbf{A u}\|+\|\mathbf{B u}\|) \\
& \leq \max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|\mathbf{A u}\|+\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|=1}\|\mathbf{B u}\| \\
& =\|\mathbf{A}\|+\|\mathbf{B}\| . \quad \square
\end{aligned}
$$

Matrix norm and low-rank approximation

Theorem 0.5. For any norm on Euclidean spaces and its induced matrix operator norm, we have

$$
\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{x}\| \quad \text { for all } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}
$$

Proof. For any particular vector $\mathbf{x} \neq \mathbf{0} \in \mathbb{R}^{n}$, by definition,

$$
\frac{\|\mathbf{A} \mathbf{x}\|}{\|\mathbf{x}\|} \leq\|\mathbf{A}\| \longleftarrow \max _{\mathbf{y} \neq \mathbf{0}} \frac{\|\mathbf{A y}\|}{\|\mathbf{y}\|}
$$

This implies that

$$
\|\mathbf{A} \mathbf{x}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{x}\|
$$

Matrix norm and low-rank approximation

Remark. More generally, the matrix operator norm can be shown to be sub-multiplicative, i.e.,

$$
\|\mathbf{A B}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\|, \quad \text { for all } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}
$$

To see this, consider any nonzero $\mathrm{x} \in \mathbb{R}^{p}$. By using the preceding theorem, we have

$$
\|\mathbf{A B x}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B} \mathbf{x}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\| \cdot\|\mathbf{x}\|
$$

It follows that

$$
\frac{\|\mathbf{A B x}\|}{\|\mathbf{x}\|} \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\| .
$$

Taking the maximum of the left hand side over all nonzero x yields that

$$
\|\mathbf{A B}\| \leq\|\mathbf{A}\| \cdot\|\mathbf{B}\|
$$

Matrix norm and low-rank approximation

When the Euclidean norm (i.e., 2-norm) is used, the induced matrix operator norm is called the spectral norm.

Def 0.2. The spectral norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\|\mathbf{A}\|_{2}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|_{2}=1}\|\mathbf{A} \mathbf{u}\|_{2}
$$

Matrix norm and low-rank approximation

Remark. The spectral norm of a row or column vector when regarded as a matrix always coincides with the Euclidean norm of the vector.

- Let $\mathbf{A}=[\mathbf{x}] \in \mathbb{R}^{n \times 1}$ be a single-column matrix. By definition, its spectral norm is

$$
\|\mathbf{A}\|_{2}=\|\mathbf{x} \cdot 1\|_{2}=\|\mathbf{x}\|_{2}
$$

- Let $\mathbf{A}=\left[\mathbf{x}^{T}\right] \in \mathbb{R}^{1 \times n}$ be a single-row matrix. By definition, its spectral norm is

$$
\|\mathbf{A}\|_{2}=\max _{\mathbf{u} \in \mathbb{R}^{n}:\|\mathbf{u}\|_{2}=1}\left\|\mathbf{x}^{T} \mathbf{u}\right\|_{2}=\|\mathbf{x}\|_{2}
$$

Matrix norm and low-rank approximation

Theorem 0.6. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix whose singular values (from large to small) are $\sigma_{1} \geq \sigma_{2} \geq \cdots$. Then

$$
\|\mathbf{A}\|_{2}=\sigma_{1}
$$

Proof. Consider the matrix $\mathbf{A}^{T} \mathbf{A}$ which is a positive semidefinite matrix with largest eigenvalue $\lambda_{1}=\sigma_{1}^{2}$. We have

$$
\|\mathbf{A}\|_{2}^{2}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{A} \mathbf{x}\|_{2}^{2}}{\|\mathbf{x}\|_{2}^{2}}=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}}{\mathbf{x}^{T} \mathbf{x}}=\lambda_{1}=\sigma_{1}^{2}
$$

where we used the Rayleigh quotient theorem. The maximizer is the largest right singular vector \mathbf{v}_{1} of \mathbf{A} (corresponding to σ_{1}).

Matrix norm and low-rank approximation

Example 0.2. For the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

we have

$$
\|\mathbf{A}\|_{2}=\sqrt{3}
$$

Note that we must have

$$
\|\mathbf{A}\|_{2} \leq\|\mathbf{A}\|_{F}
$$

for all matrices A. Why?

Matrix norm and low-rank approximation

We note that the Frobenius and spectral norms of a matrix correspond to the 2 - and ∞-norms of the vector of singular values $\left(\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{r}\right)\right.$):

$$
\|\mathbf{A}\|_{F}=\|\boldsymbol{\sigma}\|_{2}, \quad\|\mathbf{A}\|_{2}=\|\boldsymbol{\sigma}\|_{\infty}
$$

The 1-norm of the singular value vector is called the nuclear norm of \mathbf{A}, which is very useful in convex programming.

Def 0.3. The nuclear norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

$$
\|\mathbf{A}\|_{*}=\|\boldsymbol{\sigma}\|_{1}=\sum \sigma_{i} .
$$

Example 0.3. In the last example, $\|\mathbf{A}\|_{*}=\sqrt{3}+1$.

MATLAB function for matrix/vector norm

norm - Matrix or vector norm.
norm $(X, 2)$ returns the 2-norm of X.
norm (X) is the same as norm $(X, 2)$.
norm(X, 'fro') returns the Frobenius norm of X .
In addition, for vectors...
norm (V, P) returns the p -norm of V defined as $\operatorname{SUM}\left(\mathrm{ABS}(\mathrm{V}) .^{\wedge} \mathrm{P}\right)^{\wedge}(1 / \mathrm{P})$. norm $(\mathrm{V}, \mathrm{Inf})$ returns the largest element of $\mathrm{ABS}(\mathrm{V})$.

Condition number of a square matrix

Briefly speaking, the condition number of a square, invertible matrix is a measure of its near-singularity.

For example, both of the following matrices are invertible:

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & 4 \\
3 & 6.1
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
6 & -1 \\
-1 & 6.1
\end{array}\right)
$$

However, if we change the number 6.1 in \mathbf{A} to 6 , then \mathbf{A} would become singular. In contrast, we need to change the number 6.1 in \mathbf{B} to $\frac{1}{6}$ in order to make \mathbf{B} singular. This shows that \mathbf{A} is much closer to being singular than \mathbf{B}.

Matrix norm and low-rank approximation

Def 0.4. Let $\|\cdot\|$ be any sub-multiplicative matrix norm. For any square, invertible matrix \mathbf{A}, the condition number of \mathbf{A} (corresponding to this norm) is defined as

$$
\kappa(\mathbf{A})=\left\|\left(\frac{\mathbf{A}}{\|\mathbf{A}\|}\right)^{-1}\right\|=\|\mathbf{A}\| \cdot\left\|\mathbf{A}^{-1}\right\|
$$

Remark. Condition number has a lower bound of $\mathbf{1}$ (regardless of the matrix norm it corresponds to):

$$
\kappa(\mathbf{A})=\|\mathbf{A}\| \cdot\left\|\mathbf{A}^{-1}\right\| \geq\left\|\mathbf{A A}^{-1}\right\|=\|\mathbf{I}\|=\max _{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathbf{I} \mathbf{x}\|}{\|\mathbf{x}\|}=1
$$

where in the inequality step we used the sub-multiplicative property.

Matrix norm and low-rank approximation

Theorem 0.7. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be any square, invertible matrix with singular values $\sigma_{1} \geq \cdots \geq \sigma_{n}>0$. Under the matrix spectral norm, the condition number of \mathbf{A} is

$$
\kappa(\mathbf{A})=\frac{\sigma_{1}}{\sigma_{n}}
$$

Proof. Let the full SVD of the matrix \mathbf{A} be $\mathbf{A}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$. Since \mathbf{A} is invertible, $\boldsymbol{\Sigma}$ is also invertible, and thus $\mathbf{A}^{-1}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{T}$. This shows that the singular values of \mathbf{A}^{-1} are $\frac{1}{\sigma_{n}} \geq \cdots \geq \frac{1}{\sigma_{1}}>0$. It follows that

$$
\kappa(\mathbf{A})=\|\mathbf{A}\|_{2} \cdot\left\|\mathbf{A}^{-1}\right\|_{2}=\sigma_{1} \cdot \frac{1}{\sigma_{n}}=\frac{\sigma_{1}}{\sigma_{n}} .
$$

Matrix norm and low-rank approximation

Remark. The matrix condition number $\kappa(\mathbf{A})$ corresponding to the spectral norm has the following interpretations:

- We obtain again that $\kappa(\mathbf{A}) \geq 1$, which is because $\sigma_{1} \geq \sigma_{n}$. In particular, $\kappa(\mathbf{A})=1$ if and only if all the singular values are equal: $\sigma_{1}=\cdots=\sigma_{n}$.
- For a (nonzero) square, singular matrix \mathbf{A}, we must have $\sigma_{n}=0$ (and $\sigma_{1}>0$). Therefore, $\kappa(\mathbf{A})=\infty$.
- In general, a finite, large condition number means that the matrix is close to being singular. In this case, we say that the matrix \mathbf{A} is ill-conditioned (for inversion). A rule of thumb is that
- \mathbf{A} is severely ill-conditioned if $\kappa(\mathbf{A}) \geq 1000$ (inversion of the matrix would be numerically unstable);
- \mathbf{A} is moderately ill-conditioned if $100 \leq \kappa(\mathbf{A})<1000$;
- \mathbf{A} is not considered to be ill-conditioned if $\kappa(\mathbf{A})<100$ (in this case, inversion would be fine).

For example, for the two matrices on slide 29 ,

$$
\kappa(\mathbf{A})=331.05, \quad \kappa(\mathbf{B})=1.40
$$

Thus, \mathbf{A} is much closer to being singular to \mathbf{B} (the former is moderately ill-conditioned, while the latter is not).

Matlab implementation

cond Condition number with respect to inversion.

cond (X) returns the 2 -norm condition number (the ratio of the largest singular value of X to the smallest). Large condition numbers indicate a nearly singular matrix.
cond (X, P) returns the condition number of X in P-norm:
$\operatorname{NORM}(X, P) * \operatorname{NORM}(\operatorname{INV}(X), P)$.
where $P=1,2$, inf, or 'fro'.

Matrix norm and low-rank approximation

Low-rank approximation of matrices

Problem. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and integer $k \geq 1$, find the rank- k matrix \mathbf{B} that is the closest to \mathbf{A} (under a given norm such as Frobenius, or spectral):

$$
\min _{\mathbf{B} \in \mathbb{R}^{m \times n}: \operatorname{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|
$$

Remark. This problem arises in a number of tasks, e.g.,

- Data compression (and noise reduction)
- Matrix completion (and recommender systems)
- Orthogonal least squares fitting

Matrix norm and low-rank approximation

Theorem 0.8 (Eckart-Young-Mirsky). Given $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $1 \leq k \leq r=$ $\operatorname{rank}(\mathbf{A})$, let \mathbf{A}_{k} be the truncated SVD of \mathbf{A} with the largest k terms: $\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$. Then \mathbf{A}_{k} is the best rank- k approximation to \mathbf{A} in terms of both the Frobenius and spectral norms:

$$
\begin{aligned}
& \min _{\mathbf{B}: \operatorname{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|_{F}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{F}=\sqrt{\sum_{i>k} \sigma_{i}^{2}} \\
& \min _{\mathbf{B}: \operatorname{rank}(\mathbf{B})=k}\|\mathbf{A}-\mathbf{B}\|_{2}=\left\|\mathbf{A}-\mathbf{A}_{k}\right\|_{2}=\sigma_{k+1}
\end{aligned}
$$

Remark. The theorem still holds true if the equality constraint $\operatorname{rank}(\mathbf{B})=k$ is relaxed to the inequality constraint $\operatorname{rank}(\mathbf{B}) \leq k$ (which will also include all the lower-rank matrices).

Matrix norm and low-rank approximation

Example 0.4. For the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

the best rank-1 approximation is

$$
\mathbf{A}_{1}=\sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T}=\sqrt{3}\left(\begin{array}{c}
\frac{2}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ll}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right) .
$$

In this problem, the approximation error under either norm (spectral or Frobenius) is the same: $\left\|\mathbf{A}-\mathbf{A}_{1}\right\|=\sigma_{2}=1$.

Application to image compression

Digital images are stored as matrices, so we can apply SVD to obtain their low-rank approximations (and display them as images):

$$
\mathbf{A}_{m \times n} \approx \mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}
$$

By storing $\mathbf{U}_{k}, \boldsymbol{\Sigma}_{k}, \mathbf{V}_{k}$ instead of \mathbf{A}, we can reduce the storage requirement from $m n$ to

$$
\underbrace{m k}_{\text {cost of } \mathbf{U}_{k}}+\underbrace{k}_{\text {cost of } \boldsymbol{\Sigma}_{k}}+\underbrace{n k}_{\text {cost of } \mathbf{V}_{k}}=(m+n+1) k
$$

This is one magnitude smaller when $k \ll \min (m, n)$.

Matrix norm and low-rank approximation

Matrix norm and low-rank approximation

Fraction of total Frobenius norm is defined as

$$
\frac{\left\|\mathbf{A}_{k}\right\|_{F}^{2}}{\|\mathbf{A}\|_{F}^{2}}=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}}{\sum_{i=1}^{r} \sigma_{i}^{2}}, \quad \text { for all } k=1, \ldots, r
$$

Matrix norm and low-rank approximation

Original image vs SVD-compressed image

Matrix norm and low-rank approximation

Application to image denoising

noisy image (salt and pepper noise)

SVD-denoised image

Dr. Guangliang Chen | Mathematics \& Statistics, San José State University

Matrix norm and low-rank approximation

The need of a redundant basis

The SVD basis is orthogonal (such that there is a unique representation), but it is too restrictive (not sufficiently representative).

There has been much research to use an overcomplete basis (called dictionary) for sparsely representing the data, e.g.,

- Tutorial on dictionary learning ${ }^{1}$
- A presentation on K-SVD ${ }^{2}$

[^0]
Matrix norm and low-rank approximation

Application to recommender systems

See https://web.stanford.edu/~hastie/TALKS/SVD_hastie.pdf

Application to orthogonal least squares fitting

Problem: Given data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{d}$ and an integer $0<k<d$, find the k-D orthogonal "best-fit" plane by solving

$$
\min _{S} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathcal{P}_{S}\left(\mathbf{x}_{i}\right)\right\|_{2}^{2}
$$

Remark. This problem is different from ordinary linear regression:

- No predictor-response distinction
- Orthogonal (not vertical) fitting errors

Matrix norm and low-rank approximation

Theorem 0.9. An orthogonal best-fit k-dimensional plane to the data $\mathbf{X}=$ $\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right]^{T} \in \mathbb{R}^{n \times d}$ is given by

$$
\mathbf{x}(\boldsymbol{\alpha})=\overline{\mathbf{x}}+\mathbf{V}_{k} \cdot \boldsymbol{\alpha}
$$

where $\overline{\mathbf{x}}$ is the center of the data set

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum \mathbf{x}_{i}
$$

and

$$
\mathbf{V}_{k}=\left[\mathbf{v}_{1} \ldots \mathbf{v}_{k}\right] \in \mathbb{R}^{d \times k}
$$

contains the top k right singular vectors of the centered data matrix

$$
\widetilde{\mathbf{X}}=\mathbf{X}-\mathbf{1} \overline{\mathbf{x}}^{T}=\mathbf{C X}
$$

Matrix norm and low-rank approximation

Proof. Suppose an arbitrary k dimensional plane \mathcal{S} is used to fit the data, with a fixed point $\mathbf{m} \in \mathbb{R}^{d}$, and an orthonormal basis

$$
\mathbf{B}=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right] \in \mathbb{R}^{d \times k}
$$

That is,
$\mathbf{B}^{T} \mathbf{B}=\mathbf{I}_{k}$,
$\mathbf{B B}^{T}$: orthogonal projection onto S
The projection of each data point \mathbf{x}_{i} onto the candidate plane is

$$
\mathcal{P}_{S}\left(\mathbf{x}_{i}\right)=\mathbf{m}+\mathbf{B B}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right) .
$$

Matrix norm and low-rank approximation

Accordingly, we may rewrite the original problem as

$$
\min _{\substack{\mathbf{m} \in \mathbb{R}^{d}, \mathbf{B} \in \mathbb{R}^{d \times k} \\ \mathbf{B}^{T} \mathbf{B}=\mathbf{I}_{k}}} \sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{m}-\mathbf{B B}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)\right\|^{2}
$$

We show later that for any fixed choice \mathbf{B}, an optimal \mathbf{m} is

$$
\mathbf{m}^{*}=\frac{1}{n} \sum \mathbf{x}_{i} \stackrel{\text { def }}{=} \overline{\mathbf{x}} .
$$

Plugging in $\overline{\mathbf{x}}$ for \mathbf{m} and letting $\tilde{\mathbf{x}}_{i}=\mathbf{x}_{i}-\overline{\mathbf{x}}$ gives that

$$
\min _{\mathbf{B}} \sum\left\|\tilde{\mathbf{x}}_{i}-\mathbf{B B}^{T} \tilde{\mathbf{x}}_{i}\right\|^{2}
$$

In matrix notation, this becomes

$$
\min _{\mathbf{B}}\left\|\widetilde{\mathbf{X}}-\widetilde{\mathbf{X}} \mathbf{B B}^{T}\right\|_{F}^{2}, \quad \text { where } \quad \widetilde{\mathbf{X}}=\left[\tilde{\mathbf{x}}_{1}, \ldots, \tilde{\mathbf{x}}_{n}\right]^{T} \in \mathbb{R}^{n \times d}
$$

Matrix norm and low-rank approximation

Since

$$
\operatorname{rank}\left(\widetilde{\mathbf{X}} \mathbf{B B}^{T}\right) \leq \operatorname{rank}(\mathbf{B})=k
$$

any minimizer \mathbf{B} should be such that

$$
\widetilde{\mathbf{X}} \mathbf{B B}^{T}=\widetilde{\mathbf{X}}_{k},
$$

where $\widetilde{\mathbf{X}}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}$ is the best rank- k approximation of $\widetilde{\mathbf{X}}$.
This equation also infinitely many solutions but a simple solution is

$$
\mathbf{B}=\mathbf{V}_{k}
$$

Verify:

$$
\widetilde{\mathbf{X}} \mathbf{V}_{k} \mathbf{V}_{k}^{T}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}^{T}=\widetilde{\mathbf{X}}_{k}
$$

Matrix norm and low-rank approximation

Proof of $\mathrm{m}^{*}=\overline{\mathbf{x}}$:

First, rewrite the above objective function as

$$
g(\mathbf{m})=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{m}-\mathbf{B B}^{T}\left(\mathbf{x}_{i}-\mathbf{m}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|\left(\mathbf{I}-\mathbf{B B}^{T}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)\right\|^{2}
$$

and apply the formula

$$
\frac{\partial}{\partial \mathbf{x}}\|\mathbf{A} \mathbf{x}\|^{2}=2 \mathbf{A}^{T} \mathbf{A} \mathbf{x}
$$

to find its gradient:

$$
\nabla g(\mathbf{m})=-\sum 2\left(\mathbf{I}-\mathbf{B B}^{T}\right)^{T}\left(\mathbf{I}-\mathbf{B B}^{T}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)
$$

Matrix norm and low-rank approximation

Note that $\mathbf{I}-\mathbf{B B}^{T}$ is also an orthogonal projection matrix (onto the complement). Thus,

$$
\left(\mathbf{I}-\mathbf{B B}^{T}\right)^{T}\left(\mathbf{I}-\mathbf{B B}^{T}\right)=\left(\mathbf{I}-\mathbf{B B}^{T}\right)^{2}=\mathbf{I}-\mathbf{B} \mathbf{B}^{T}
$$

It follows that

$$
\nabla g(\mathbf{m})=-\sum 2\left(\mathbf{I}-\mathbf{B B}^{T}\right)\left(\mathbf{x}_{i}-\mathbf{m}\right)=-2\left(\mathbf{I}-\mathbf{B B}^{T}\right)\left(\sum \mathbf{x}_{i}-n \mathbf{m}\right)
$$

Any minimizer m must satisfy

$$
2\left(\mathbf{I}-\mathbf{B B}^{T}\right)\left(\sum \mathbf{x}_{i}-n \mathbf{m}\right)=0
$$

This equation has infinitely many solutions, but the simplest one is

$$
\sum \mathbf{x}_{i}-n \mathbf{m}=\mathbf{0} \quad \longrightarrow \quad \mathbf{m}=\frac{1}{n} \sum \mathbf{x}_{i}
$$

Matrix norm and low-rank approximation

Example 0.5. Find the orthogonal best-fit line for a data set of three points $(-3,1),(-2,3),(-1,2)$.

Solution. First, the centroid of the data is $\overline{\mathbf{x}}=(-2,2)$. Thus, the centered data matrix is

$$
\widetilde{\mathbf{X}}=\left[\begin{array}{cc}
-1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right] \quad \xrightarrow{\operatorname{svd}} \quad \mathbf{v}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right] .
$$

Therefore, the orthogonal best-fit line is

$$
\mathbf{x}(t)=(-2,2)+\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) t
$$

Matrix norm and low-rank approximation

The projections of the original data onto the best-fit line are

$$
\mathbf{1} \overline{\mathbf{x}}^{T}+\widetilde{\mathbf{X}} \mathbf{v}_{1} \mathbf{v}_{1}^{T}=\left[\begin{array}{ll}
-2 & 2 \\
-2 & 2 \\
-2 & 2
\end{array}\right]+\left[\begin{array}{cc}
-1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
-3 & 1 \\
-\frac{3}{2} & \frac{5}{2} \\
-\frac{3}{2} & \frac{5}{2}
\end{array}\right]
$$

Matrix norm and low-rank approximation

Demonstration on another data set

Matrix norm and low-rank approximation

Orthogonal best-fit linear subspace

orthogonal best-fit plane

orthogonal best-fit linear subspace

Remark. The orthogonal best-fit linear subspace in general differs from the orthogonal best-fit plane, with the latter fitting more closely the given data. Additionally, the orthogonal best-fit plane must go through the centroid of the data while the orthogonal best-fit linear subspace does not need to.

Matrix norm and low-rank approximation

Theorem 0.10. Given a data set $\mathbf{X}=\left[\mathbf{x}_{1} \ldots \mathbf{x}_{n}\right]^{T} \in \mathbb{R}^{n \times d}$ and an integer $0<k<d$, a k-dimensional linear subspace that minimizes the orthogonal fitting error is given by

$$
\mathbf{x}(\boldsymbol{\alpha})=\mathbf{V}_{k} \cdot \boldsymbol{\alpha}, \quad \boldsymbol{\alpha} \in \mathbb{R}^{k}
$$

where $\mathbf{V}_{k} \in \mathbb{R}^{d \times k}$ contains the top right k singular vectors of \mathbf{X}.

Remark. X is not centered when applying SVD to it.

Matrix norm and low-rank approximation

Proof. Let S be a linear subspace, with orthonormal basis $\mathbf{B} \in \mathbb{R}^{d \times k}$, used to fit the given data set. The orthogonal projection of an arbitrary data point \mathbf{x}_{i} onto S is

$$
\mathcal{P}_{S}\left(\mathbf{x}_{i}\right)=\mathbf{B B}^{T} \mathbf{x}_{i}, \quad i=1, \ldots, n
$$

The total orthogonal fitting error is thus

$$
\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathcal{P}_{S}\left(\mathbf{x}_{i}\right)\right\|^{2}=\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\mathbf{B B}^{T} \mathbf{x}_{i}\right\|^{2}=\left\|\mathbf{X}-\mathbf{X B B}^{T}\right\|_{F}^{2}
$$

To minimize the fitting error, we set

$$
\mathbf{X B B}^{T}=\mathbf{X}_{k}=\mathbf{U}_{k} \boldsymbol{\Sigma}_{k} \mathbf{V}_{k}
$$

and find that $\mathbf{B}=\mathbf{V}_{k}$ solves the equation.

Matrix norm and low-rank approximation

Example 0.6. Find the orthogonal best-fit linear line for the data set in the preceding example.

Solution. By direct calculation

$$
\mathbf{X}=\left(\begin{array}{ll}
-3 & 1 \\
-2 & 3 \\
-1 & 2
\end{array}\right) \quad \xrightarrow{\text { svd }} \quad \mathbf{v}_{1}=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

Therefore, the orthogonal best-fit linear line is

$$
\mathbf{x}(t)=\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) t
$$

Matrix norm and low-rank approximation

and the projections of the original data onto the line are

$$
\mathbf{X} \mathbf{v}_{1} \mathbf{v}_{1}^{T}=\left(\begin{array}{ll}
-3 & 1 \\
-2 & 3 \\
-1 & 2
\end{array}\right)\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\left(\begin{array}{ll}
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)=\left(\begin{array}{cc}
-2 & 2 \\
-\frac{5}{2} & \frac{5}{2} \\
-\frac{3}{2} & \frac{3}{2}
\end{array}\right)
$$

[^0]: ${ }^{1}$ https://www.math.ucla.edu/~deanna/AMSnotes.pdf
 ${ }^{2}$ https://elad.cs.technion.ac.il/wp-content/uploads/2018/02/ School-of-ICASSP-Sparse-Representations.pdf

