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Matrix norm and low-rank approximation

Introduction
Recall that a vector space is a collection V of objects, called “vectors”,
which are endowed with two kinds of operations,

• vector addition: u + v, for any u,v ∈ V;

• scalar multiplication: kv, for any k ∈ R,v ∈ V

subject to requirements such as

• Associativity : (u + v) + w = u + (v + w)

• Commutativity : u + v = v + u

• Distributivity : k(u + v) = ku + kv, (s+ t)u = su + tu
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Below are some examples of vector spaces:

• Euclidean spaces (Rn)

• The collection of all matrices of a fixed size (Rm×n)

• The collection of all functions from R to R

• The collection of all polynomials

• The collection of all infinite sequences
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Vector norm
A norm on a vector space V is a function

‖ · ‖ : V → R

that satisfies the following three conditions:

• ‖v‖ ≥ 0 for all v ∈ V, and ‖v‖ = 0 if and only if v = 0;

• ‖kv‖ = |k|‖v‖ for any scalar k ∈ R and vector v ∈ V;

• ‖v + w‖ ≤ ‖v‖+ ‖w‖ for any two vectors v,w ∈ V.

Note that ‖v‖ can be thought of as the length or magnitude of v.
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`p norms on Euclidean spaces Rd

For any fixed p ≥ 1, the `p norm on Rd is defined as

‖x‖p =
(

d∑
i=1
|xi|p

)1/p

, for all x ∈ Rd.

It is a rich family of vector norms.

Remark. For any 0 < p < 1, the above function is no longer a vector norm,
as it violates the third condition (convexity).
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Three particular `p norms:

• 2-norm (Euclidean norm):

‖x‖2 =
√∑

x2
i =
√

xTx

• 1-norm (Manhattan norm):

‖x‖1 =
∑
|xi|

• ∞-norm (maximum norm):

‖x‖∞ = max |xi|
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Unit circles (under different `p norms)

Given any vector norm ‖ · ‖ on Rd,
the set of all vectors in Rd that have
a unit norm is called a unit circle
(under the given norm):

{v ∈ Rd : ‖v‖ = 1}.

The figure on the right shows the
unit circles in three different norms. `∞, `2 and `1 unit circles
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Remark. Any norm ‖ · ‖ on Rd can be used as a metric to measure the
distance between two vectors:

dist(x,y) = ‖x− y‖, for all x,y ∈ Rd

For example, the Euclidean norm defines the Euclidean distance:

distE(x,y) = ‖x− y‖2 =

√√√√ d∑
i=1

(xi − yi)2
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Matrix norm
A matrix norm is a norm on Rm×n as a vector space (consisting of all
matrices of the fixed size).

More specifically, a matrix norm is a function

‖ · ‖ : Rm×n → R

that satisfies the following three conditions:

• ‖A‖ ≥ 0 for all A ∈ Rm×n and ‖A‖ = 0 if and only if A = O

• ‖kA‖ = |k| · ‖A‖ for any scalar k ∈ R and matrix A ∈ Rm×n

• ‖A + B‖ ≤ ‖A‖+ ‖B‖ for any two matrices A,B ∈ Rm×n
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Note that multiplication is also defined between matrices (with compatible
sizes).

We say that a matrix norm ‖ · ‖ is sub-multiplicative if for any two
matrices A ∈ Rm×n,B ∈ Rn×p,

‖AB‖ ≤ ‖A‖ · ‖B‖.

Note that some textbooks only regard sub-multiplicative matrix norms as
matrix norms.
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The Frobenius norm
Def 0.1. The Frobenius norm of a matrix A ∈ Rm×n is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij

It is equivalent to the Euclidean 2-norm on vectorized matrices (i.e., Rmn):

‖A‖F = ‖A(:)‖2

Thus, it must satisfy all the three conditions of a norm.
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Example 0.1. Let

A =

1 −1
0 1
1 0

 .
By direct calculation,

‖A‖F =
√

12 + (−1)2 + 02 + 12 + 12 + 02 = 2.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 13/60



Matrix norm and low-rank approximation

Remark. For any matrix A ∈ Rm×n,

‖A‖2F =
m∑
i=1
‖Ai‖22 =

n∑
j=1
‖aj‖22

b b b
bbb

b b b
b
b

bb

b
bb

b

b
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Theorem 0.1. The matrix Frobenius norm is sub-multiplicative, that is, for
any two matrices A ∈ Rm×n,B ∈ Rn×p,

‖AB‖F ≤ ‖A‖F · ‖B‖F .

Proof. Let C = AB ∈ Rm×p. By definition,

‖C‖2F =
m∑
i=1

p∑
j=1

c2
ij =

m∑
i=1

p∑
j=1

(Aibj)2.

Using the Cauchy-Schwarz inequality,

|x · y| ≤ ‖x‖ · ‖y‖, for all x,y ∈ Rp, ,
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we obtain that

‖C‖2F ≤
m∑
i=1

p∑
j=1
‖Ai‖2‖bj‖2

=
(

m∑
i=1
‖Ai‖2

) p∑
j=1
‖bj‖2


= ‖A‖2F ‖B‖2F .

Taking the square root of each side completes the proof.
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Proposition 0.2. For any matrix A ∈ Rm×n,

‖A‖2F = trace(AAT ) = trace(ATA)

Proof.

trace(AAT ) =
m∑
i=1

Ai ·ATi =
m∑
i=1
‖Ai‖22 = ‖A‖2F .

The other equality can be proved similarly, or instead using the matrix
trace property:

trace(AB) = trace(BA)

where A ∈ Rm×n and B ∈ Rn×m.
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Theorem 0.3. Let A ∈ Rm×n be any matrix. Suppose its (nonzero)
singular values are σ1 ≥ · · · ≥ σr > 0, where r = rank(A). Then

‖A‖F =

√√√√ r∑
i=1

σ2
i

Proof. Consider the matrix ATA. Its nonzero eigenvalues are λi = σ2
i .

According to the theorem on the preceding slide,

‖A‖2F = trace(ATA) =
r∑
i=1

λi =
r∑
i=1

σ2
i .
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The matrix operator norm
A second matrix norm is the operator norm, which is induced by a vector
norm on Euclidean spaces.
Theorem 0.4. For any vector norm ‖ · ‖ on Euclidean spaces, the following
is a matrix norm on Rm×n:

‖A‖ def= max
x 6=0

‖Ax‖
‖x‖ = max

u∈Rn:‖u‖=1
‖Au‖
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Proof. We need to verify the three conditions of a norm.

First, it is obvious that ‖A‖ ≥ 0 for any A ∈ Rm×n. Suppose ‖A‖ = 0.
Then for any x 6= 0, ‖Ax‖ = 0, or equivalently, Ax = 0. This implies
that A = O. (The other direction is trivial)

Second, for any k ∈ R,

‖kA‖ = max
u∈Rn:‖u‖=1

‖(kA)u‖ = |k| · max
u∈Rn:‖u‖=1

‖Au‖ = |k| · ‖A‖.
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Lastly, for any two matrices A,B ∈ Rm×n,

‖A + B‖ = max
u∈Rn:‖u‖=1

‖(A + B)u‖ = max
u∈Rn:‖u‖=1

‖Au + Bu‖

≤ max
u∈Rn:‖u‖=1

(‖Au‖+ ‖Bu‖)

≤ max
u∈Rn:‖u‖=1

‖Au‖+ max
u∈Rn:‖u‖=1

‖Bu‖

= ‖A‖+ ‖B‖.
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Theorem 0.5. For any norm on Euclidean spaces and its induced matrix
operator norm, we have

‖Ax‖ ≤ ‖A‖ · ‖x‖ for all A ∈ Rm×n,x ∈ Rn

Proof. For any particular vector x 6= 0 ∈ Rn, by definition,

‖Ax‖
‖x‖ ≤ ‖A‖ ←− max

y 6=0

‖Ay‖
‖y‖

This implies that
‖Ax‖ ≤ ‖A‖ · ‖x‖.
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Remark. More generally, the matrix operator norm can be shown to be
sub-multiplicative, i.e.,

‖AB‖ ≤ ‖A‖ · ‖B‖, for all A ∈ Rm×n,B ∈ Rn×p

To see this, consider any nonzero x ∈ Rp. By using the preceding theorem,
we have

‖ABx‖ ≤ ‖A‖ · ‖Bx‖ ≤ ‖A‖ · ‖B‖ · ‖x‖

It follows that
‖ABx‖
‖x‖ ≤ ‖A‖ · ‖B‖.

Taking the maximum of the left hand side over all nonzero x yields that

‖AB‖ ≤ ‖A‖ · ‖B‖
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When the Euclidean norm (i.e., 2-norm) is used, the induced matrix
operator norm is called the spectral norm.

Def 0.2. The spectral norm of a matrix A ∈ Rm×n is defined as

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
u∈Rn:‖u‖2=1

‖Au‖2
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Remark. The spectral norm of a row or column vector when regarded as a
matrix always coincides with the Euclidean norm of the vector.

• Let A = [x] ∈ Rn×1 be a single-column matrix. By definition, its
spectral norm is

‖A‖2 = ‖x · 1‖2 = ‖x‖2

• Let A = [xT ] ∈ R1×n be a single-row matrix. By definition, its
spectral norm is

‖A‖2 = max
u∈Rn:‖u‖2=1

‖xTu‖2 = ‖x‖2

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 25/60



Matrix norm and low-rank approximation

Theorem 0.6. Let A ∈ Rm×n be any matrix whose singular values (from
large to small) are σ1 ≥ σ2 ≥ · · · . Then

‖A‖2 = σ1.

Proof. Consider the matrix ATA which is a positive semidefinite matrix
with largest eigenvalue λ1 = σ2

1. We have

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

xTATAx
xTx = λ1 = σ2

1,

where we used the Rayleigh quotient theorem. The maximizer is the largest
right singular vector v1 of A (corresponding to σ1).
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Example 0.2. For the matrix

A =

1 −1
0 1
1 0

 ,
we have

‖A‖2 =
√

3.

Note that we must have
‖A‖2 ≤ ‖A‖F

for all matrices A. Why?
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We note that the Frobenius and spectral norms of a matrix correspond to
the 2- and ∞-norms of the vector of singular values (σ = (σ1, . . . , σr)):

‖A‖F = ‖σ‖2, ‖A‖2 = ‖σ‖∞

The 1-norm of the singular value vector is called the nuclear norm of A,
which is very useful in convex programming.

Def 0.3. The nuclear norm of a matrix A ∈ Rm×n is defined as

‖A‖∗ = ‖σ‖1 =
∑

σi.

Example 0.3. In the last example, ‖A‖∗ =
√

3 + 1.
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MATLAB function for matrix/vector norm
norm – Matrix or vector norm.

norm(X,2) returns the 2-norm of X.

norm(X) is the same as norm(X,2).

norm(X,’fro’) returns the Frobenius norm of X.

In addition, for vectors...

norm(V,P) returns the p-norm of V defined as SUM(ABS(V).ˆP)ˆ(1/P).

norm(V,Inf) returns the largest element of ABS(V).
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Condition number of a square matrix
Briefly speaking, the condition number of a square, invertible matrix is a
measure of its near-singularity.

For example, both of the following matrices are invertible:

A =
(

2 4
3 6.1

)
, B =

(
6 −1
−1 6.1

)

However, if we change the number 6.1 in A to 6, then A would become
singular. In contrast, we need to change the number 6.1 in B to 1

6 in order
to make B singular. This shows that A is much closer to being singular
than B.
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Def 0.4. Let ‖ · ‖ be any sub-multiplicative matrix norm. For any square,
invertible matrix A, the condition number of A (corresponding to this
norm) is defined as

κ(A) =
∥∥∥∥∥
( A
‖A‖

)−1
∥∥∥∥∥ = ‖A‖ · ‖A−1‖

Remark. Condition number has a lower bound of 1 (regardless of the
matrix norm it corresponds to):

κ(A) = ‖A‖ · ‖A−1‖ ≥ ‖AA−1‖ = ‖I‖ = max
x 6=0

‖Ix‖
‖x‖ = 1,

where in the inequality step we used the sub-multiplicative property.
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Theorem 0.7. Let A ∈ Rn×n be any square, invertible matrix with singular
values σ1 ≥ · · · ≥ σn > 0. Under the matrix spectral norm, the condition
number of A is

κ(A) = σ1
σn
.

Proof. Let the full SVD of the matrix A be A = UΣVT . Since A is
invertible, Σ is also invertible, and thus A−1 = VΣ−1UT . This shows
that the singular values of A−1 are 1

σn
≥ · · · ≥ 1

σ1
> 0. It follows that

κ(A) = ‖A‖2 · ‖A−1‖2 = σ1 ·
1
σn

= σ1
σn
.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/60



Matrix norm and low-rank approximation

Remark. The matrix condition number κ(A) corresponding to the spectral
norm has the following interpretations:

• We obtain again that κ(A) ≥ 1, which is because σ1 ≥ σn. In
particular, κ(A) = 1 if and only if all the singular values are equal:
σ1 = · · · = σn.

• For a (nonzero) square, singular matrix A, we must have σn = 0
(and σ1 > 0). Therefore, κ(A) =∞.

• In general, a finite, large condition number means that the matrix
is close to being singular. In this case, we say that the matrix A is
ill-conditioned (for inversion). A rule of thumb is that
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– A is severely ill-conditioned if κ(A) ≥ 1000 (inversion of the
matrix would be numerically unstable);

– A is moderately ill-conditioned if 100 ≤ κ(A) < 1000;

– A is not considered to be ill-conditioned if κ(A) < 100 (in
this case, inversion would be fine).

For example, for the two matrices on slide 29,

κ(A) = 331.05, κ(B) = 1.40

Thus, A is much closer to being singular to B (the former is moderately
ill-conditioned, while the latter is not).
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Matlab implementation

cond Condition number with respect to inversion.

cond(X) returns the 2-norm condition number (the ratio of the largest
singular value of X to the smallest). Large condition numbers indicate a
nearly singular matrix.

cond(X,P) returns the condition number of X in P-norm:

NORM(X,P) * NORM(INV(X),P).

where P = 1, 2, inf, or ’fro’.
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Low-rank approximation of matrices
Problem. For any matrix A ∈ Rm×n and integer k ≥ 1, find the rank-k
matrix B that is the closest to A (under a given norm such as Frobenius,
or spectral):

min
B∈Rm×n : rank(B)=k

‖A−B‖

Remark. This problem arises in a number of tasks, e.g.,

• Data compression (and noise reduction)

• Matrix completion (and recommender systems)

• Orthogonal least squares fitting
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Theorem 0.8 (Eckart–Young–Mirsky). Given A ∈ Rm×n and 1 ≤ k ≤ r =
rank(A), let Ak be the truncated SVD of A with the largest k terms:
Ak =

∑k
i=1 σiuivTi . Then Ak is the best rank-k approximation to A in

terms of both the Frobenius and spectral norms:

min
B : rank(B)=k

‖A−B‖F = ‖A−Ak‖F =
√∑
i>k

σ2
i

min
B : rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Remark. The theorem still holds true if the equality constraint rank(B) = k

is relaxed to the inequality constraint rank(B) ≤ k (which will also include
all the lower-rank matrices).
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Example 0.4. For the matrix

A =

1 −1
0 1
1 0

 ,
the best rank-1 approximation is

A1 = σ1u1vT1 =
√

3


2√
6

− 1√
6

1√
6

( 1√
2 − 1√

2

)
=

 1 −1
−1

2
1
2

1
2 −1

2

 .
In this problem, the approximation error under either norm (spectral or
Frobenius) is the same: ‖A−A1‖ = σ2 = 1.
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Application to image compression
Digital images are stored as matrices, so we can apply SVD to obtain their
low-rank approximations (and display them as images):

Am×n ≈ UkΣkVT
k =

k∑
i=1

σiuivTi .

By storing Uk,Σk,Vk instead of A, we can reduce the storage requirement
from mn to

mk︸︷︷︸
cost of Uk

+ k︸︷︷︸
cost of Σk

+ nk︸︷︷︸
cost of Vk

= (m+ n+ 1)k.

This is one magnitude smaller when k � min(m,n).
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Fraction of total Frobenius norm is defined as

‖Ak‖2F
‖A‖2F

=
∑k
i=1 σ

2
i∑r

i=1 σ
2
i

, for all k = 1, . . . , r
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Original image vs SVD-compressed image
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Application to image denoising
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The need of a redundant basis

The SVD basis is orthogonal (such that there is a unique representation),
but it is too restrictive (not sufficiently representative).

There has been much research to use an overcomplete basis (called dictio-
nary) for sparsely representing the data, e.g.,

• Tutorial on dictionary learning1

• A presentation on K-SVD2

1https://www.math.ucla.edu/~deanna/AMSnotes.pdf
2https://elad.cs.technion.ac.il/wp-content/uploads/2018/02/

School-of-ICASSP-Sparse-Representations.pdf
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Application to recommender systems

User 1

User 2

User 3

Movie 1 Movie 2 Movie 3 Movie n

User m

bb b

b

b
b

4 3

5 4

3 4 5

4 31

See https://web.stanford.edu/~hastie/TALKS/SVD_hastie.pdf
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Application to orthogonal least squares fitting

Problem: Given data x1, . . . ,xn ∈ Rd

and an integer 0 < k < d, find the k-D
orthogonal “best-fit” plane by solving

min
S

n∑
i=1
‖xi − PS(xi)‖2

2

Remark. This problem is different from
ordinary linear regression:

• No predictor-response distinction

• Orthogonal (not vertical) fitting
errors

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b
PS(xi)

xi

S

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 46/60



Matrix norm and low-rank approximation

Theorem 0.9. An orthogonal best-fit
k-dimensional plane to the data X =
[x1, . . . ,xn]T ∈ Rn×d is given by

x(α) = x̄ + Vk ·α

where x̄ is the center of the data set

x̄ = 1
n

∑
xi

and

Vk = [v1 . . .vk] ∈ Rd×k

contains the top k right singular vectors
of the centered data matrix

X̃ = X− 1x̄T = CX.

b
b

b

b

b

b

b
b

b

b

b

b

b

bS

b

v1

v2

x̄

+ 0
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Proof. Suppose an arbitrary k-
dimensional plane S is used to fit
the data, with a fixed point m ∈ Rd,
and an orthonormal basis

B = [b1, . . . ,bk] ∈ Rd×k.

That is,

BTB = Ik,
BBT : orthogonal projection onto S

The projection of each data point xi
onto the candidate plane is

PS(xi) = m + BBT (xi −m).

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b
PS(xi)

xi

S

b

b1

b2

m

+ 0
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Accordingly, we may rewrite the original problem as

min
m∈Rd,B∈Rd×k

BT B=Ik

n∑
i=1
‖xi −m−BBT (xi −m)‖2

We show later that for any fixed choice B, an optimal m is

m∗ = 1
n

∑
xi

def= x̄.

Plugging in x̄ for m and letting x̃i = xi − x̄ gives that

min
B

∑
‖x̃i −BBT x̃i‖2.

In matrix notation, this becomes

min
B
‖X̃− X̃BBT ‖2F , where X̃ = [x̃1, . . . , x̃n]T ∈ Rn×d.
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Since
rank(X̃BBT ) ≤ rank(B) = k,

any minimizer B should be such that

X̃BBT = X̃k,

where X̃k = UkΣkVT
k is the best rank-k approximation of X̃.

This equation also infinitely many solutions but a simple solution is

B = Vk.

Verify:
X̃VkVT

k = UkΣkVT
k = X̃k.
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Proof of m∗ = x̄:

First, rewrite the above objective function as

g(m) =
n∑
i=1
‖xi −m−BBT (xi −m)‖2 =

n∑
i=1
‖(I−BBT )(xi −m)‖2

and apply the formula

∂

∂x‖Ax‖2 = 2ATAx

to find its gradient:

∇g(m) = −
∑

2(I−BBT )T (I−BBT )(xi −m)
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Matrix norm and low-rank approximation

Note that I − BBT is also an orthogonal projection matrix (onto the
complement). Thus,

(I−BBT )T (I−BBT ) = (I−BBT )2 = I−BBT .

It follows that

∇g(m) = −
∑

2(I−BBT )(xi −m) = −2(I−BBT )
(∑

xi − nm
)

Any minimizer m must satisfy

2(I−BBT )
(∑

xi − nm
)

= 0

This equation has infinitely many solutions, but the simplest one is∑
xi − nm = 0 −→ m = 1

n

∑
xi.
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Matrix norm and low-rank approximation

Example 0.5. Find the orthogonal best-fit line for a data set of three
points (−3, 1), (−2, 3), (−1, 2).

Solution. First, the centroid of the data is x̄ = (−2, 2). Thus, the centered
data matrix is

X̃ =

−1 −1
0 1
1 0

 svd−→ v1 =

 1√
2

1√
2

 .
Therefore, the orthogonal best-fit line is

x(t) = (−2, 2) +
( 1√

2
,

1√
2

)
t,
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Matrix norm and low-rank approximation

The projections of the original data onto the best-fit line are

1x̄T + X̃v1vT1 =

−2 2
−2 2
−2 2

+

−1 −1
0 1
1 0


 1√

2
1√
2

 [ 1√
2

1√
2

]
=

−3 1
−3

2
5
2

−3
2

5
2



b

b

b

| | |

+

+

+

−3 −2 −1

1

2

3

b

(−3, 1)

(−2, 3)

(−1, 2)

(−1.5, 2.5)

+(−2, 2)

0
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Demonstration on another data set
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Matrix norm and low-rank approximation

Orthogonal best-fit linear subspace

b b
b

b b
b

b
b
b

bb
b

b
b

b

b b
b

b b
b

b
b
b

bb
b

b
b

b

orthogonal best-fit plane orthogonal best-fit linear subspace

Remark. The orthogonal best-fit linear subspace in general differs from the
orthogonal best-fit plane, with the latter fitting more closely the given data.
Additionally, the orthogonal best-fit plane must go through the centroid
of the data while the orthogonal best-fit linear subspace does not need to.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 56/60



Matrix norm and low-rank approximation

Theorem 0.10. Given a data set
X = [x1 . . .xn]T ∈ Rn×d and an
integer 0 < k < d, a k-dimensional
linear subspace that minimizes the
orthogonal fitting error is given by

x(α) = Vk ·α, α ∈ Rk,

where Vk ∈ Rd×k contains the top
right k singular vectors of X.

Remark. X is not centered when ap-
plying SVD to it.

b

b

b

b
b

b

b

b

b

b
PS(xi)

xi
S

b1

b2

+ 0

b

b

b

b
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Matrix norm and low-rank approximation

Proof. Let S be a linear subspace, with orthonormal basis B ∈ Rd×k, used
to fit the given data set. The orthogonal projection of an arbitrary data
point xi onto S is

PS(xi) = BBTxi, i = 1, . . . , n

The total orthogonal fitting error is thus
n∑
i=1
‖xi − PS(xi)‖2 =

n∑
i=1
‖xi −BBTxi‖2 = ‖X−XBBT ‖2F .

To minimize the fitting error, we set

XBBT = Xk = UkΣkVk

and find that B = Vk solves the equation.
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Example 0.6. Find the orthogonal best-fit linear line for the data set in
the preceding example.

Solution. By direct calculation

X =

−3 1
−2 3
−1 2

 svd−→ v1 =

− 1√
2

1√
2

 .
Therefore, the orthogonal best-fit linear line is

x(t) =
(
− 1√

2
,

1√
2

)
t,

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 59/60



Matrix norm and low-rank approximation

and the projections of the original data onto the line are

Xv1vT1 =

−3 1
−2 3
−1 2


− 1√

2
1√
2

(− 1√
2

1√
2

)
=

−2 2
−5

2
5
2

−3
2

3
2

 .

b

b

b

| | |

+

+

+

−3 −2 −1

1

2

3

(−3, 1)

(−2, 3)

(−1, 2)

(−1.5, 1.5)

(−2, 2)

0

b

b

b
(−2.5, 2.5)
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