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Logistic Regression

Classification is a special instance of regression
Classification is a regression problem with a discrete response (i.e., a
categorical variable taking a finite set of values):

y︸︷︷︸
label

= f (x1, . . . , xd︸ ︷︷ ︸
features

).

Thus, it also can be approached from a regression point of view.

To explain ideas, we start with a binary classification problem with only
one feature:

y︸︷︷︸
binary response

= f( x︸︷︷︸
1 predictor

).
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Logistic Regression

Motivating example
Consider a specific example where x represents a person’s height while y
denotes the person’s sex (0 = Female, 1 = Male).
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Simple linear regression is obviously not appropriate in this case.
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Logistic Regression

Motivating example
Consider a specific example where x represents a person’s height while y
denotes the person’s sex (0 = Female, 1 = Male).
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A better option is to use an S-shaped curve to fit the data.
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Logistic Regression

Which functions have such shapes?
An example is the logistic/sigmoid function:

g(z) = 1
1 + e−z

, −∞ < z <∞

Can you think of another function that has such a shape?
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Logistic Regression

Properties of the logistic function
• g(z) is defined for all real numbers z

• g(z) is monotonically increasing over its domain

• 0 < g(z) < 1 for all z ∈ R

• g(0) = 0.5

• limz→−∞ g(z) = 0 and limz→+∞ g(z) = 1

• g′(z) = g(z)(1 − g(z)) for any z. ←− This is a very important
property, implying that g′(z) ≈ 0 for z in either tail.
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Logistic Regression

Making the logistic function more flexible
We generalize the logistic function to a location-scale family:

g(θ0 + θ1x) = 1
1 + e−(θ0+θ1x)

where θ0 ∈ R is a location parameter and θ1 > 0 is a scale parameter.
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Logistic Regression

The logistic regression problem

Once we fix the template function
g(z), the logistic regression prob-
lem reduces to parameter estimation
based on a set of examples.

Problem. Given training data
(xi, yi), 1 ≤ i ≤ n, find θ0, θ1 such
that the curve

y = g(θ0 + θ1x) = 1
1 + e−(θ0+θ1x)

fits the data in some optimal way.
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Logistic Regression

How to define the optimality

There are two different ways:

• Optimization approach.

• Statistical approach.
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Logistic Regression

The optimization approach
We regard ŷ = g(θ0 + θ1x) as the fitted value at x and use a loss function
`, e.g., square loss `(y, ŷ) = (y − ŷ)2, to quantify the goodness of fit at x.

The empirical loss of the parametric
model on training data is defined as

`n(θ; {(xi, yi)})
def= 1

n

n∑
i=1

`(yi, ŷi)

where ŷi = g(θ0 + θ1xi).

The optimal values of θ is found by
minimizing `n.
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Logistic Regression

Commonly-used loss functions

• 0/1 loss: `(y, ŷ) = 1y 6=ŷ

• Square loss: `(y, ŷ) = (y−ŷ)2

• Hinge loss: `(y, ŷ) = |y − ŷ|

• Logistic loss: `(y, ŷ) =
−y log ŷ − (1− y) log(1− ŷ).
Note that it imposes a much
heavier penalty than the other
losses when ŷ is very wrong.
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Logistic Regression

With a fixed loss function `, the gradient of the empirical loss `n (as a
function of θ0, θ1) is

∂`n
∂θ

= ∂

∂θ

[
1
n

n∑
i=1

`(yi, ŷi)
]

=
(

1
n

n∑
i=1

∂`

∂θ0
(yi, ŷi),

1
n

n∑
i=1

∂`

∂θ1
(yi, ŷi)

)

The classical approach to minimizing `n is to find its critical points

1
n

n∑
i=1

∂`

∂θ0
(yi, ŷi) = 0, 1

n

n∑
i=1

∂`

∂θ1
(yi, ŷi) = 0

However, this often leads to very complex equations.
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Logistic Regression

For example, with the square loss `(y, ŷ) = (y − ŷ)2, we have

∂`

∂θ0
= 2(ŷ − y) ∂ŷ

∂θ0
= 2(ŷ − y) · ŷ(1− ŷ)

∂`

∂θ1
= 2(ŷ − y) ∂ŷ

∂θ1
= 2(ŷ − y) · ŷ(1− ŷ) · x

The gradient of the empirical loss function `n is thus

∂`n
∂θ

=
(

1
n

n∑
i=1

2ŷi(1− ŷi)(ŷi − yi),
1
n

n∑
i=1

2xiŷi(1− ŷi)(ŷi − yi)
)
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Logistic Regression

Gradient descent

A modern, more efficient approach to finding the minimum of a function
f(x) is through gradient descent: Start from some initial location x(0)

and update x iteratively as follows:

x(t+1) = x(t) − η · f ′(x(t)), t = 0, 1, 2, . . .

where η > 0 is a parameter, called learning rate.
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Logistic Regression

This approach also applies to multi-
variate functions f(x):

x(t+1) = x(t) − η · ∇f(x(t)),

where the initial point x(0) is speci-
fied by the user.

This is one of the most important
techniques in machine learning.

See next slide for an example.

y = f(x)

x0

bc

bc

b bb
x1

−η∇f(x0)
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Logistic Regression

Example: Use gradient descent to find the minimum of f(x) = x2
1 + 4x2

2
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Logistic Regression

The gradient update rule is

x
(t+1)
1 ←− x(t)

1 − η · 2x
(t)
1 , x

(t+1)
2 ←− x(t)

2 − η · 8x
(t)
2

Below shows the first 10 iterations of gradient descent with the same
initialization x0 = (−1, 1) but different learning rates:
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Logistic Regression
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Logistic Regression

Remark. Gradient descent only converges to a local minimum!
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Logistic Regression

In the setting of logistic regression, the function to be optimized is `n(θ).
The gradient descent update rule is the following

θ(t+1) = θ(t) − η · ∂`n
∂θ

∣∣∣∣
θ(t)

, t = 0, 1, 2, . . .

where θ(0) is specified by the user.

The individual components of θ are updated as follows:

θ
(t+1)
0 := θ

(t)
0 − η ·

1
n

n∑
i=1

∂`

∂θ0
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t+1)
1 := θ

(t)
1 − η ·

1
n

n∑
i=1

∂`

∂θ1
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1
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Logistic Regression

With the square loss, the update rule is

θ
(t+1)
0 := θ

(t)
0 − η ·

1
n

n∑
i=1

2ŷi(1− ŷi)(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t+1)
1 := θ

(t)
1 − η ·

1
n

n∑
i=1

2xiŷi(1− ŷi)(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

Despite the simplicity of the square loss, the update rule seems quite
complicated.

Furthermore, the square loss based gradient descent does not work well in
practice due to a so-called learning slowdown issue, which we explain next.
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Logistic Regression

The learning slowdown issue due to square loss

Suppose the initial values θ(0)
0 , θ

(0)
1 are very wrong, such that the model is

either curve:

In both cases, we have ŷi(1− ŷi) ≈ 0 for almost all training points. Thus,
∂`n
∂θ ≈ 0. This implies that both parameters would change little and
gradient descent may need to spend a long time escaping either of the
two wrong positions.
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Logistic Regression

Fixing learning slowdown using the logistic loss
It turns out that with the use of the logistic loss (instead of square loss)

`(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ)

can avoid the learning slowdown issue.

To see this, compute first

∂`

∂θ0
= −y

ŷ
· ŷ(1− ŷ) + 1− y

1− ŷ · ŷ(1− ŷ) = ŷ − y

∂`

∂θ1
= −y

ŷ
· ŷ(1− ŷ)x+ 1− y

1− ŷ · ŷ(1− ŷ)x = (ŷ − y)x
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Logistic Regression

Thus, the gradient of the empirical loss is

∂`n
∂θ

=
(

1
n

n∑
i=1

(ŷi − yi),
1
n

n∑
i=1

xi(ŷi − yi)
)

and correspondingly, the gradient descent update rule is

θ
(t+1)
0 := θ

(t)
0 − η ·

1
n

n∑
i=1

(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t+1)
1 := θ

(t)
1 − η ·

1
n

n∑
i=1

xi(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

The term ŷi(1− ŷi) is no longer in the partial derivations! Gradient descent
will learn fast when many ŷi are opposite to yi.
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Logistic Regression

Remark. The logistic loss has the following advantages:

• Forces ŷ to be really close to y (by imposing a huge penalty otherwise)

• Leads to simple partial derivatives.

• Avoids learning slowdown (i.e., gradient descent will converge fast).

• Has a statistical interpretation, with connection to the MLE approach
and Bayes classification (to be covered next)
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Logistic Regression

Stochastic gradient descent (SGD)

Gradient descent requires access to the full training set, and uses all the
training data simultaneously to update model parameters in each iteration.

This may be slow for large data sets, or impractical in the setting of online
learning (where data comes sequentially).

A variant of gradient descent, called stochastic gradient descent, uses

• single training points, or

• small subsets of examples (called mini-batches),

to sequentially update model parameters in each iteration.
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Logistic Regression

• Single-point update rule. In some random order (i = 1, 2, . . .), pass
the training points, one by one, to gradient descent in step t (called
an epoch):

θ
(t)
0 ←− θ

(t)
0 − η ·

∂`

∂θ0
(yi, ŷi)

∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t)
1 ←− θ

(t)
1 − η ·

∂`

∂θ1
(yi, ŷi)

∣∣∣∣
θ

(t)
0 ,θ

(t)
1

Once this epoch is completed, let t = t + 1 and move on to next
epoch to take another pass through the training data.
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Logistic Regression

• Mini-batch update rule. Divide the training data into (disjoint)
mini-batches (of a fixed size such as 30), and pass them sequentially
to gradient descent: For each mini-batch B, update

θ
(t)
0 ←− θ

(t)
0 − η ·

1
|B|

∑
i∈B

∂`

∂θ0
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t)
1 ←− θ

(t)
1 − η ·

1
|B|

∑
i∈B

∂`

∂θ1
(yi, ŷi)

∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

Once all the mini-batches have been used, an epoch is completed.
We then let t = t+ 1 and move on to next epoch to take another
pass through the mini-batches.
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Logistic Regression

In the case of the logistic loss, the single-point SGD update rule is

θ
(t)
0 ←− θ

(t)
0 − η · (ŷi − yi)|θ(t)

0 ,θ
(t)
1

θ
(t)
1 ←− θ

(t)
1 − η · xi(ŷi − yi)|θ(t)

0 ,θ
(t)
1

In contrast, the mini-batch SGD update rule is

θ
(t)
0 ←− θ

(t)
0 − η ·

1
|B|

∑
i∈B

(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1

θ
(t)
1 ←− θ

(t)
1 − η ·

1
|B|

∑
i∈B

xi(ŷi − yi)
∣∣∣∣∣
θ

(t)
0 ,θ

(t)
1
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Logistic Regression

Demonstration: linear regression via SGD
Consider the simple linear regression problem with a single predictor:

min
β̂=(β̂0, β̂1)

S(β̂) = 1
n

n∑
i=1

(yi − β̂0 − β̂1xi)2

where (xi, yi), 1 ≤ i ≤ n are training data.

The gradient of the loss function (mean squared error, or in short, MSE) is

∂S

∂β̂0
= 1
n

n∑
i=1

2(β̂0 + β̂1xi − yi),

∂S

∂β̂1
= 1
n

n∑
i=1

2(β̂0 + β̂1xi − yi)xi

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 31/74



Logistic Regression

The full gradient descent update rule is

β̂0 ←− β̂0 − η ·
1
n

n∑
i=1

2(β̂0 + β̂1xi − yi),

β̂1 ←− β̂1 − η ·
1
n

n∑
i=1

2xi(β̂0 + β̂1xi − yi)

The SGD update rule (using mini-batches of size m) is

β̂0 ←− β̂0 − η ·
1
m

∑
i∈B

2(β̂0 + β̂1xi − yi),

β̂1 ←− β̂1 − η ·
1
m

∑
i∈B

2xi(β̂0 + β̂1xi − yi)
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Logistic Regression

We draw a random sample of size
1000 from the line y = 1

2 + 2x with
additive Gaussian noise of mean 0
and standard deviation 0.5.

We perform both gradient descent
and SGD (m=20) initialized with
the red line. The learning rate is set
to 0.5 for both methods.

See next slide for the convergence of
the loss function with each method.
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Logistic Regression

Remark.

• SGD is faster than full gradient descent, but maybe less stable

• SGD achieves a good balance between speed and stability
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Logistic Regression

The statistical way
Key idea: Interpret p(x,θ) = g(θ0 + θ1x) = 1

1+e−(θ0+θ1x) as probability!
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Logistic Regression

More specifically, consider the joint distribution of predictor X and (binary)
response Y . Assume that

P (Y = 1 | X = x,θ) = p(x;θ),
P (Y = 0 | X = x,θ) = 1− p(x;θ)

This implies that

(Y | X = x,θ) ∼ Bernoulli(p = p(x;θ))

with associated pmf

P (Y = y | X = x,θ) = f(y; p) = py(1− p)1−y, for y = 0, 1
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Logistic Regression

Given independently sampled training examples (xi, yi), 1 ≤ i ≤ n from
the joint distribution, the likelihood of the sample is

L(θ) =
n∏
i=1

f(yi; p(xi;θ)) =
n∏
i=1

p(xi;θ)yi(1− p(xi;θ))1−yi

and the log likelihood is

logL(θ) =
n∑
i=1

yi log p(xi;θ) + (1− yi) log(1− p(xi;θ))

The maximizer of logL(θ), i.e., the Maximum Likelihood Estimator (MLE)
of θ, gives the optimal parameter values for the model.

This is also a very important tool for machine learning (whenever parameter
estimation for a distribution is involved).
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Logistic Regression

Connection to the optimization approach
Mathematically, the MLE formulation

max
θ

logL(θ) =
n∑
i=1

yi log p(xi;θ) + (1− yi) log(1− p(xi;θ))

is equivalent to the following minimization problem

min
θ
− logL(θ) =

n∑
i=1

(−yi log p(xi;θ)− (1− yi) log(1− p(xi;θ)))

This is exactly optimization with the logistic loss

`(y, ŷ) = −y log ŷ − (1− y) log(1− ŷ)

So gradient descent can be used again to numerically solve the problem.
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Logistic Regression

How to classify new observations
After we fit the logistic model to the training set,

p(x;θ) = 1
1 + e−(θ0+θ1x)

we may use the following decision rule for a new observation x0:

Assign label y0 = 1 if and only if p(x0;θ) > 1
2 .

Remark. Logistic regression is also a Bayes classifier because it is based on
the maximum posterior probability:

P (Y = 1 | X = x,θ)︸ ︷︷ ︸
p(x;θ)

> P (Y = 0 | X = x,θ)︸ ︷︷ ︸
1−p(x;θ)
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Logistic Regression

MATLAB functions for logistic regression

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

glm = fitglm(x, y, ’linear’, ’distr’, ’binomial’);

p = predict(glm, x);

% p = [0.0168, 0.0708, 0.1114, 0.4795, 0.6026, 0.2537, 0.6026, 0.9176,
0.9483, 0.9973, 0.9994]
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Logistic Regression

Python scripts for logistic regression

import numpy as np
from sklearn import linear_model

x = np.transpose(np.array([[162, 165, 166, 170, 171, 168, 171, 175, 176,
182, 185]]))

y = np.transpose(np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]))

logreg = linear_model.LogisticRegression(C=1e5).fit(x, y.ravel())

prob = logreg.predict_proba(x) # fitted probabilities

pred = logreg.predict(x) # prediction of labels
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Logistic Regression

The general binary classification problem
When there are multiple predictors x1, . . . , xd, we let

p(x;θ) = 1
1 + e−(θ0+θ1x1+···+θdxd) = 1

1 + e−θ·x

where θ = (θ0, θ1, . . . , θd) and x = (x0 = 1, x1, . . . , xd).

We can use the same numerical methods to find the best θ.

The classification rule also remains the same:

y = 1p(x;θ)>0.5

We call this classifier the binary Logistic Regression (LR) classifier.
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Logistic Regression

What kind of classifier is LR?

The decision boundary consists of all points x ∈ Rd such that

p(x;θ) = 1
1 + e−θ·x

= 1
2

or equivalently,

θ · x = θ0 + θ1x1 + · · ·+ θdxd = 0

which is a hyperplane.

This shows that LR is a linear classifier.
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Logistic Regression

Demonstration
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Logistic Regression

LR is a generalized linear model (GLM)

The LR model
p(x;θ) = 1

1 + e−θ·x

can be rewritten as

link function (logit) −→ log p

1− p = θ · x

where the response Y is a Bernoulli random variable with mean

E(Y | ~X = x;θ) = p(x;θ)
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Logistic Regression

Other models for binary response data

Instead of using the logit link function which leads to the sigmoid function

log p

1− p = θ · x −→ p(x;θ) = 1
1 + e−θ·x

one could use

• Cauchit (inverse Cauchy): arctan(π(p− 0.5))

• Probit: Φ−1(p), where Φ is the cdf of standard normal.

• Complimentary log-log: log(− log(1− p))

• Negative log-log: − log(− log(p))
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Logistic Regression
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Logistic Regression

Multiclass extensions
There are two ways to extend logistic regression for multiclass classification:

• Union of binary models

– One versus one: construct a LR model for every pair of classes

– One versus rest: construct a LR model for each class against
the rest of the training set

In either case, the prediction of the label of a test point is voted by
all the models.

• Softmax regression (fixed versus rest)
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Logistic Regression

Union of binary models

b
b
b b

b
b

b
b
b b

b
b

One-versus-one extension One-versus-rest extension
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Logistic Regression

How to determine the label of a test point x0:

• For the one-versus-one extension, the final prediction for a test point
is the majority vote by all the pairwise models;

• For the one-versus-rest extension,

– Each reference class has new label 1 (the rest have label 0)

– For each binary model with class j as the reference class,
compute p(x0,θ

(j))

– The final prediction is

ŷ0 = arg max
j

p(x,θ(j))
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Logistic Regression

Softmax regression

...fixes one class (say class 1) and
fits c − 1 binary logistic regression
models between each of the remain-
ing classes 2 ≤ j ≤ c and class 1:

log P (Y = j | ~X = x)
P (Y = 1 | ~X = x)

= θ(j) · x

b
b
b b

b
b

θ(2) · x = 0 θ(3) · x = 0

To better understand the method, write

P (Y = j | ~X = x) = P (Y = 1 | ~X = x) eθ(j)·x, j = 2, . . . , c
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We must have
c∑
j=1

P (Y = j | ~X = x) = 1

It follows that

P (Y = 1 | ~X = x) = 1
1 +

∑
2≤j≤c e

θ(j)·x

and

P (Y = j | ~X = x) = eθ
(j)·x

1 +
∑

2≤`≤c e
θ(`)·x

, j = 2, . . . , c
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Letting θ(1) = 0, we may unify the two sets of formulas

P (Y = j | ~X = x) = eθ
(j)·x∑

1≤`≤c e
θ(`)·x

, j = 1, . . . , c

The new formula is actually shift-invariant with respect to the parameters

P (Y = j | ~X = x) = eθ
(j)·x∑

1≤`≤c e
θ(`)·x

= e(θ(j)+t)·x∑
1≤`≤c e

(θ(`)+t)·x
, ` = 1, . . . , c
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We may thus relax the fixed quantity θ(1) = 0 to be a parameter in order
to have a symmetric model:

P (Y = j | ~X = x; Θ) = eθ
(j)·x∑

1≤`≤c e
θ(`)·x

, j = 1, . . . , c

with (redundant) parameters Θ = {θ(1), . . . ,θ(c)}.

Prediction for a new point x0 is based on the largest posterior probability:

ŷ0 = argmax1≤j≤cP (Y = j | ~X = x0)

= argmaxj eθ
(j)·x0

= argmaxj θ(j) · x0
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Remark. The form of the posterior probabilities is the so-called softmax
function:

softmax(α1, . . . , αc, j) = eαj∑
1≤`≤c e

α`

It is a smooth function trying to approximate the indicator function

1αj=max(α1,...,αc) =

1, if αj = max(α1, . . . , αc)
0, otherwise

.

The conditional distribution of Y when given ~X = x and Θ, is multinomial
with probabilities P (Y = j | ~X = x; Θ), 1 ≤ j ≤ c.

Therefore, softmax regression is also called multinomial logistic regres-
sion.
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Parameter estimation

Given training data {(xi, yi)}1≤i≤n, softmax regression estimates the
parameters by maximizing the likelihood of the training set:

L(Θ) =
n∏
i=1

P (Y = yi | ~X = xi; Θ) =
n∏
i=1

eθ
(yi)·xi∑

1≤j≤c e
θ(j)·xi

Like before, the MLE can be found by using either Newton’s method or
gradient descent.
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MATLAB functions for multinomial LR

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

B = mnrfit(x,categorical(y));

p = mnrval(B, x);
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Python function for multinomial LR

logreg = linear_model.LogisticRegression(C=1e5, multi_class=
‘multinomial’, solver=’newton-cg’).fit(x, y.ravel())

# multi_class = ‘ovr’ (one versus rest) by default

# solver=‘lbfgs’ would also work (default =’liblinear’)
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Feature extraction/selection for logistic regression

Logistic regression tends to overfit the data in the setting of high dimen-
sional data (i.e., many predictors). There are two ways to fix it:

• Use a dimensionality reduction method (such as PCA, LDA) to
project data into low dimensions
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• Add a regularization term to the objective function of the binary
logistic regression classifier

min
θ=(θ0,θ1)

−
n∑
i=1

yi log p(xi;θ) + (1− yi) log(1− p(xi;θ)) + C‖θ‖pp

where p is normally set to 2 (`2 regularization) or 1 (`1 regularization).

The constant C > 0 is called a regularization parameter; larger
values of C would lead to sparser (simpler) models.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 60/74



Logistic Regression

Regularized logistic regression in Matlab

% for two classes only

[B, stats] = lassoglm(Xtr, ytr, ‘binomial’,’Link’, ‘logit’, ‘Lambda’, C);

B0 = stats.Intercept;
coef = [B0; B];

yhat = glmval(coef, Xtst, ‘logit’);
ytsthat = (yhat>=0.5);
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Regularized LR in Python

# with default values
logreg = linear_model.LogisticRegression(penalty=’l2’, C=1.0,
solver=’liblinear’, multi_class=’ovr’)

# penalty: may be set to ‘l1’
# C: inverse of regularization strength (smaller values specify stronger
regularization). Cross-validation is often needed to tune this parameter.
# multi_class: may be changed to ‘multinomial’ (no ‘ovo’ option)
# solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}. Algorithm to use in
the optimization problem.
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• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is
faster for large ones.

• For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handle
multinomial loss; ‘sag’ and ‘liblinear’ are limited to one-versus-
rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.
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Logistic regression on the MNIST

See poster at

https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/poster-Logistic.pdf
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Ordinal logistic regression

Previously the response has been assumed to be (or treated as being)
nominal.

In this part, we consider the case where there is a natural order among
the response categories (i.e., ordinal responses): `1 < `2 < · · · < `c

The ordering might be

• inherent in the category choices, such as an individual being not
satisfied, satisfied, or very satisfied with an online customer service.
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• or introduced by categorization of a latent (continuous) variable,
such as in the case of an individual being in the low risk, medium
risk, or high risk group for developing a certain disease, based on a
quantitative medical measure such as blood pressure.

For simplicity, we denote the labels by 1 < 2 < · · · < c but note that this
only indicates the ordering, the numbers are not equally spaced as they
appear to be.
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Ordinal models describe the relationship between cumulative probabilities
of the categories P (Y ≤ j | ~X = x) and predictor variables x.

They are usually based on the assumption that the effects of predictor
variables are the same for all categories on the logarithmic scale,
but have different intercepts among different categories:

log P (Y ≤ j | ~X = x)
P (Y > j | ~X = x)

= αj − β · x, j = 1, . . . , c− 1

where x = (x1, . . . , xd)′ and β = (β1, . . . , βd)′.

This model is called parallel regression or the proportional odds model.
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Further understanding of the model:

• β selects/combines features in the same way for all categories.

• Due to the setup, α1 < α2 < . . . < αc−1 and they define the
distances between the different categories along the direction of β
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We can rewrite the model as

P (Y ≤ j | ~X = x) = 1
1 + e−αj+β·x

, j = 1, . . . , c− 1

Example: c = 3, α1 = −2, α2 = 1, β = 1

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 69/74



Logistic Regression

This implies that

P (Y = 1 | ~X = x) = P (Y ≤ 1 | ~X = x)

P (Y = j | ~X = x) = P (Y ≤ j | ~X = x)− P (Y ≤ j − 1 | ~X = x)

= 1
1 + e−αj+β·x −

1
1 + e−αj−1+β·x , 2 ≤ j ≤ c− 1

P (Y = c | ~X = x) = 1− P (Y ≤ c− 1 | ~X = x) = 1− 1
1 + e−αc−1+β·x
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Remark. Parameter estimation is done via the MLE approach as before:

L(α,β | xi, yi) =
n∏
i=1

P (Y = yi | xi,α,β)

=
c∏
j=1

∏
i: yi=j

P (Y = j | xi,α,β)

=
c∏
j=1

∏
i: yi=j

( 1
1 + e−αj+β·xi

− 1
1 + e−αj−1+β·xi

)
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Remark. The previous ordinal regression model uses the logit link function
for each binary model

log P (Y ≤ j | ~X = x)
P (Y > j | ~X = x)

= αj − β · x, j = 1, . . . , c− 1

We could use other link functions instead, such as the probit:

Φ−1(P (Y ≤ j | ~X = x)) = αj − β · x, j = 1, . . . , c− 1

This will lead to a so-called ordered probit model.
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Matlab implementation

B = mnrfit(Xtr,ytr,‘model’,’ordinal’,‘interactions’, ‘off’, ‘link’, ‘logit’)
% default model is nominal

cumP = mnrval(B,Xtst,‘type’,‘cumulative’,‘model’,‘ordinal’,‘interactions’,‘off’);
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Assignment 3 (cont’d)

3 Apply the three multiclass extensions of the binary logistic regression
classifier (one-vs-one, one-vs-rest, and multinomial) to the Fashion-
MNIST data set (after PCA 95%). How do they compare with the
multiclass LDA classifier in terms of test accuracy and running time?

4 Apply the `1-regularized multinomial logistic regression to the Fash-
ionMNIST data set (no pca is needed). How does it compare with
those methods in Question 3?
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