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Laplacian Eigenmaps

Main reference paper

“Laplacian Eigenmaps for dimensionality reduction and data representation”,
Mikhail Belkin and Partha Niyogi, Neural Computation 15, 1373–1396
(2003).

URL:
https://www2.imm.dtu.dk/projects/manifold/Papers/Laplacian.pdf
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Laplacian Eigenmaps

Introduction
Consider the manifold unfolding problem again: Given a set of points in
a high dimensional Euclidean space but along a manifold, x1, . . . ,xn ∈
M ⊂ Rd, find another set of vectors in a low-dimensional Euclidean space,
y1, . . . ,yn ∈ Rk (for some k � d), such that yi “represents” xi.
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Laplacian Eigenmaps

We have already seen ISOmap as an nonlinear dimensionality reduction
approach to finding a low-dimensional representation for manifold data in
high dimensional Euclidean spaces.

It consists of the following steps:

• Build a neighborhood graph from the given data

• Compute the shortest-path distances along the graph

• Apply MDS to find a low-dimensional representation

The goal of ISOmap is to directly preserve the global (nonlinear) geometry.
In contrast, Laplacian Eigenmaps will focus on preserving the local geometry
- nearby points in the original space remain nearby in the reduced space.
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Laplacian Eigenmaps

Similarity graphs

Like ISOmap, the first step of Laplacian Eigenmaps is to build a neighbor-
hood graph G from the given data x1, . . . ,xn ∈ Rd by connecting only
“nearby” points, where nearby is defined in one of the following ways:

• ε-ball approach: Two points xi,xj are nearby if ‖xi − xj‖ ≤ ε,

• kNN approach: Two points xi,xj are nearby if one is among the
k nearest neighbors of the other.
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Laplacian Eigenmaps
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However, they use different kinds of weights for the connected edges:

• ISOmap: The edges are weighted by the Euclidean distances:

dX(i, j) = ‖xi − xj‖ if xi,xj are connected

We call the correspondingly weighted graph a dissimilarity graph.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 7/55



Laplacian Eigenmaps

• Laplacian Eigenmaps: The Euclidean distances between nearby
points are transformed to similarity scores (to be used as weights)
in one of the following ways:

– 0/1 weights: wij = 1 if there is an edge between xi,xj

– Gaussian weights: wij = exp(−dX(i, j)2/t) if there is an
edge between xi,xj (t > 0 is a parameter to be selected by
the user)

If there is no edge between two points xi,xj , we set wij = 0.

Each of such weighting methods leads to a so-called similarity graph,
with weights stored in a weight matrix: W = (wij) ∈ Rn×n.
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Laplacian Eigenmaps

Example 0.1. The following displays a similarity graph on a set of 5 data
points (called vertices or nodes), with associated weight matrix W:
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W =


0 .8 .8 0 0
.8 0 .8 0 0
.8 .8 0 .1 0
0 0 .1 0 .9
0 0 0 .9 0
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Laplacian Eigenmaps

1D dimension reduction by Laplacian Eigenmaps

Assuming a weighted similarity graph (constructed on the given data set),
we first consider the problem of mapping the graph to a line in a way
such that close nodes will still be close on the line. ←− Locality-preserving
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Laplacian Eigenmaps

Let f = (f1, . . . , fn)T represent the 1D embedding of the nodes. We then
formulate the following problem:

min
f∈Rn

1
2
∑
i,j

wij(fi − fj)2

Interpretation:

• If wij is large (close to 1, meaning xi,xj are originally very close),
then fi, fj must still be close (otherwise there is a heavy penalty).

• If wij is small (close to 0, meaning xi,xj are originally very far),
then there is much flexibility in putting fi, fj on the line.
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Laplacian Eigenmaps

However, the problem

min
f∈Rn

1
2
∑
i,j

wij(fi − fj)2

is not well defined yet. Why?

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 12/55



Laplacian Eigenmaps

To make the objective function scaling invariant in f (and also to get rid
of the trivial solution 0), we consider adding the following constraint on f :

min
f∈Rn

1
2
∑
i,j

wij(fi − fj)2 subject to
∑
i

f2
i = 1.

Equivalently, it can be reformulated as an unconstrained problem:

min
f∈Rn:‖f‖=1

1
2
∑
i,j

wij(fi − fj)2, or min
f 6=0∈Rn

1
2
∑
i,j wij(fi − fj)2∑

i f
2
i

Remark. Later we will see a different constraint on f for dealing with the
zero solution. Also, there is another trivial solution to be identified and
removed.
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Laplacian Eigenmaps

Spectral graph theory (a little bit)
To solve the problem formulated on the preceding slide, we need to present
some graph terminology and theory.

Let G = (V,E,W) be a weighted graph with vertices V = {1, . . . , n}
and weights wij ≥ 0 (there is an edge eij ∈ E connecting nodes i and j
if and only if wij > 0).

Two vertices are adjacent if they are connected by an edge (i.e., wij > 0).

An edge is incident on a vertex if the vertex is an endpoint of the edge.

When the binary weighting method is used (i.e., all positive weights are
equal to 1), the weight matrix is also referred to as the adjacency matrix.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 14/55



Laplacian Eigenmaps

The degree of a vertex i ∈ V is defined as

di =
n∑
j=1

wij .

It measures the connectivity of the vertex in the graph.

The degrees of all vertices can be used to form a degree matrix

D = diag(d1, . . . , dn) ∈ Rn×n.

An equivalent way of defining the degree matrix is D = diag(W1).
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Laplacian Eigenmaps

Example 0.2. For the following graph, D = diag(1.6, 1.6, 1.7, 1, 0.9).
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W =


0 .8 .8 0 0
.8 0 .8 0 0
.8 .8 0 .1 0
0 0 .1 0 .9
0 0 0 .9 0
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Laplacian Eigenmaps

A subgraph of a given graph G = (V,E,W) is another graph, formed
from a subset of the vertices of the graph, A ⊂ V by keeping only all of
the edges connecting pairs of vertices in A.

A path in the graph is a sequence of vertices and edges in between such
that no vertex or edge can repeat.

A subgraph A ⊂ V of a graph is connected if any two vertices in A can
be joined by a path such that all intermediate points also lie in A.

A subgraph A ⊂ V is called a connected component if it is connected and
if there are no edges between A and its complement Ā = V −A.

A graph is said to be connected if it has only one connected component.
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Laplacian Eigenmaps

Example 0.3. The following graph has only 1 connected component, and
thus is a connected graph.
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0.8 0.8

0.8 0.1
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The left three nodes (and the three edges connecting them to each other)
form a subgraph, and is connected (but is not a connected component).
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Laplacian Eigenmaps

The graph Laplacian is a very important (yet challenging) concept in
spectral graph theory.

Def 0.1. Given a graph G = (V,E,W) with size |V | = n, the graph
Laplacian is defined as the following matrix

L = D−W ∈ Rn×n, where D = diag(W1).

Example 0.4. For the previous graph, the graph Laplacian matrix is

L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9
−0.9 0.9
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Laplacian Eigenmaps

The graph Laplacian has many interesting properties.

Theorem 0.1. Let L ∈ Rn×n be a graph Laplacian matrix. Then

• L is symmetric.

• All the rows (and columns) sum to 0, i.e., L1 = 0. This implies
that L has a eigenvalue 0 with eigenvector 1 ∈ Rn.

• For every vector f ∈ Rn we have

f ′Lf = 1
2

n∑
i,j=1

wij(fi − fj)2.

This implies that L is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 20/55



Laplacian Eigenmaps

• The algebraic (and also geometric) multiplicity of the eigenvalue 0
equals the number of connected components of the graph.

Proof. The first two are obvious. We prove the third result below:∑
i,j

wij(fi − fj)2 =
∑
i,j

wijf
2
i +

∑
i,j

wijf
2
j − 2

∑
i,j

wijfifj

=
∑
i

dif
2
i +

∑
j

djf
2
j − 2

∑
i,j

wijfifj

= 2fTDf − 2fTWf
= 2fT (D−W)f = 2fTLf .

(and skip the proof for the last one).
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Laplacian Eigenmaps

Example 0.5. For the graph below (which is connected), the eigenvalues
of the graph Laplacian are 0 < 0.0788 < 1.8465 < 2.4000 < 2.4747.
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L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9
−0.9 0.9
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Laplacian Eigenmaps

Example 0.6. Consider the modified graph (which has two connected
components)

W =


0 .8 .8 0 0
.8 .0 .8 0 0
.8 .8 0 0 0
0 0 0 0 .9
0 0 0 .9 0


It can be shown that

det(λI− L) = λ(λ− 2.4)2 · λ(λ− 1.8).

Thus, the graph Laplacian has a repeated eigenvalue 0, with multiplicity 2
(which is equal to the number of connected components).
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Laplacian Eigenmaps

Returning to the 1D Laplacian Eigenmaps problem
... for embedding the nodes of a graph G = (V,E,W) into a line:

min
f 6=0∈Rn

1
2
∑
i,j wij(fi − fj)2∑

i f
2
i

.

Applying the theorem on graph Laplacians, we can rewrite the above
problem as follows:

min
f 6=0∈Rn

fTLf
fT f .

Again, we have encountered a Rayleigh quotient problem!
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Laplacian Eigenmaps

Clearly, a minimizer of the Rayleigh quotient is an eigenvector of the graph
Laplacian L = D−W corresponding to the smallest eigenvalue λ1 = 0:

f∗ = v1 = 1.

However, this is another trivial solution which puts all nodes of the graph
at the same point of a line.

To eliminate this trivial solution, we add an additional constraint on f :∑
fi = fT1 = 0,

which forces f to be perpendicular to the vector 1. This can also be
interpreted as removing the translational invariance in f .
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Laplacian Eigenmaps

Incorporating the new constraint fT1 = 0 leads to the following problem:

min
f 6=0∈Rn

fT 1=0

fTLf
fT f .

The minimizer of this new problem is given by the second smallest eigen-
vector of L:

f∗∗ = v2,

and the minimum value of the Rayleigh quotient is λ2.

If the graph is connected, the algebraic (and geometric) multiplicity of the
eigenvalue 0 is one. Consequently, we must have λ2 > 0. This shows that
v2 will lead to a nontrivial embedding of the graph.
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Laplacian Eigenmaps

Example 0.7. For the graph below (which is connected), the second small-
est eigenvector (λ2 = 0.0788) is v2 = (.3771, .3771, .3400,−.5221,−.5722).

b

b b b b

0.8 0.8

0.8 0.1

0.9
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Laplacian Eigenmaps

So far so good (for the sake of presenting ideas), but the original Laplacian
Eigenmaps algorithm proposed by Belkin and Niyogi (2003) corresponds
to solving the following problem:

min
f 6=0∈Rn

fT D1=0

fTLf
fTDf ,

where

• The denominator fTDf is for removing the scaling factor in f , and

• The condition fTD1 = 0 is for removing the translational invariance:

0 = fTD1 =
∑

difi

and also for removing a trivial solution, which we show next.
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Laplacian Eigenmaps

Remark. Without the constraint fTD1 = 0, the solution of the generalized
Rayleigh quotient problem is given by the smallest eigenvector v1 of D−1L:

D−1Lv1 = λ1v1 ⇐⇒ Lv1 = λ1Dv1.

And we must have v1 = 1 (and λ1 = 0) because

fTLf
fTDf ≥ 0, 1TL1

1TD1 = 0 (L1 = 0)

and

(D−1L)1 = D−1(L1) = D−10 = 0 = 0 · 1

Thus, the corresponding problem only has a trivial solution.
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Laplacian Eigenmaps

To better understand the situation, we need to study the normalized graph
Laplacians.

Def 0.2. For any graph G = (V,E,W) with graph Laplacian L = D−W,
define two normalized graph Laplacians

Lrw = D−1L
Lsym = D−1/2LD−1/2

Remark. L,Lrw,Lsym are all square matrices of the same size (n×n with
n = |V |). Which of them are symmetric (and PSD)?
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Laplacian Eigenmaps

Theorem 0.2. Properties of the normalized graph Laplacians:

• Lsym is symmetric and PSD while Lrw is not, but they are similar:

D−1L︸ ︷︷ ︸
Lrw

= D−1/2︸ ︷︷ ︸
P−1

D−1/2LD−1/2︸ ︷︷ ︸
Lsym

D1/2︸ ︷︷ ︸
P

.

This implies that both matrices have the same eigenvalues

0 = λ1 ≤ λ2 ≤ · · · ≤ λn

Additionally, it can be shown that the multiplicity of the zero eigen-
value is also equal to the number of connected components in the
graph.
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Laplacian Eigenmaps

• A vector v is an eigenvector of Lrw if and only if the vector D1/2v
is an eigenvector of Lsym:

D−1L︸ ︷︷ ︸
Lrw

v = λv ⇐⇒ D−1/2LD−1/2︸ ︷︷ ︸
Lsym

D1/2v = λD1/2v.

In particular, for the eigenvalue 0, the associated eigenvectors for
Lrw and Lsym are 1 and D1/21, respectively.
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Laplacian Eigenmaps

Now consider the original and full Laplacian Eigenmaps problem again:

min
f 6=0∈Rn

fT D1=0

fTLf
fTDf .

We show that the minimizer is given by the second smallest eigenvector of
Lrw = D−1L (when the graph is connected):

Lrwv2 = λ2v2 ⇐⇒ Lv2 = λ2Dv2.

Through a change of variables f̃ = D1/2y such that

fTD1 = yTD1/2D1/21 = f̃TD1/21
fTDf = fTD1/2D1/2f = f̃T f̃
fTLf = fTD1/2D−1/2LD−1/2D1/2f = f̃TLsymf̃
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Laplacian Eigenmaps

we obtain the following equivalent problem:

min
f̃ 6=0∈Rn

f̃T (D1/21)=0

f̃TLsymf̃
f̃T f̃

.

The optimal f̃ is given by the second smallest eigenvector of Lsym (since
D1/21 is the eigenvector corresponding to the smallest eigenvalue λ1 = 0):

Lsymf̃ = λ2f̃

In the original variable f , this becomes

D−1/2LD−1/2 D1/2f = λ2 D1/2f −→ D−1Lf = λ2 f

Thus, the optimal f is given by the second smallest eigenvector of Lrw.
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Laplacian Eigenmaps

Example 0.8. For the graph below (which is connected),

b

b b b b

0.8 0.8

0.8 0.1

0.9

the normalized graph Laplacian Lrw is

D−1L =


1 −0.5 −0.5
−0.5 1 −0.5
−0.4706 −0.4706 1 −0.0588 0

−0.1 1 −0.9
−1 1
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Laplacian Eigenmaps

Its second smallest eigenvector (corresponding to λ2 = 0.0693) is

v2 = (−0.2594,−0.2594,−0.2235, 0.6152, 0.6610).

Remark. Compare with the unnormalized graph Laplacian L:

λ2 = 0.0788, v2 = (.3771, .3771, .3400,−.5221,−.5722).

Which graph Laplacian we should use in general embedding graph data?
The two work (nearly) the same when all nodes of the graph have (nearly)
the same degrees (i.e., D ≈ γI for some γ > 0). In general, the normalized
Laplacian should be preferred; we will see their difference more clearly in
the context of clustering.
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Laplacian Eigenmaps

Embedding graph data to 2D or higher
Naturally, to produce a k-dimensional embedding of the nodes of a con-
nected graph G = (V,E,W), one can just take more eigenvectors of the
normalized Laplacian Lrw = D−1L:

Lrwvi = λivi ⇐⇒ Lvi = λiDvi, i = 2, . . . , k + 1

to form the embedding matrix

Y = [v2, . . . ,vk+1] ∈ Rn×k

(Rows of Y are new coordinates of the original data points xi ∈ Rd)
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Laplacian Eigenmaps

Alternatively, we could directly formulate the following minimization prob-
lem over a k-dimensional embedding matrix Y = [y1, . . . ,yn]T ∈ Rn×k:

min
YT DY=I
YT D1=0

1
2
∑
i,j

wij‖yi − yj‖2

which can be rewritten as

min
YT DY=I
YT D1=0

trace(YTLY)

It turns out that the solution is given by the same eigenvectors of Lrw:

Y = [v2 . . .vk+1] ∈ Rn×k
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Laplacian Eigenmaps

The Laplacian Eigenmaps algorithm

Input: x1, . . . ,xn ∈ Rd, embedding dimension k ≥ 1, neighborhood
graph method (ε-ball or kNN), weighting method (binary or Gaussian)

Output: A k-dimensional representation of the input data (Y ∈ Rn×k).

Steps:

1. Construct a neighborhood graph G from the given data

2. Set the edge weights using the specified method to form the weight
matrix W.
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Laplacian Eigenmaps

3. Compute the normalized graph Laplacian

Lrw = D−1L = D−1(D−W) = I−D−1W,

where D = diag(W1).

4. Find the eigenvectors of Lrw corresponding to the second to (k+1)st
smallest eigenvalues

Lrwvi = λivi, i = 2, . . . , k + 1

5. Return: Y = [v2 . . .vk+1] ∈ Rn×k.
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Laplacian Eigenmaps

Implementation

Refer to the Matlab Toolbox for Dimensionality Reduction developed
by Laurens van der Maaten, which can be downloaded from the url:
http://lvdmaaten.github.io/drtoolbox/

It contains Matlab implementations of 34 techniques for dimensionality
reduction and metric learning, including Laplacian Eigenmaps (LE).
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Laplacian Eigenmaps

Connections to spectral clustering
Laplacian Eigenmaps is originally proposed as a nonlinear dimension re-
duction method by preserving local geometry of the given data.

In fact, the new coordinates found by the algorithm, Y = [y1, . . . ,yn]T ∈
Rn×k, can be directly used for clustering purposes:

xi ∈ Rd 7−→ yi ∈ Rk, i = 1, . . . , n
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Laplacian Eigenmaps

The combination of Laplacian Eigemaps with k-means (for the clustering
step) is exactly the Normalized Cut algorithm proposed by Shi and Malik
(2000), which was derived from a clustering perspective.

b

b b b b

0.8 0.8

0.8 0.1

0.9

Remark. Clustering the original data is equivalent to finding a partition
of the associated graph: V = A1 ∪ · · · ∪Ac where Ai ∩Aj = ∅, i 6= j.

We (need to) introduce more graph terminology below.
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Laplacian Eigenmaps

Given a subset of vertices A ⊂ V , we define the indicator vector 1A of A
as

1A = (a1, . . . , an)T , ai = 1 (if i ∈ A) and ai = 0 (if i ∈ Ā).

There are two ways to measure the “size” of a subset A ⊂ V :

|A| = #vertices in A;

Vol(A) =
∑
i∈A

di

The former simply counts the number of vertices in A while the latter
measures how strongly the vertices in A are connected to all vertices of G.
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Laplacian Eigenmaps

Example 0.9. In the graph below, the left three vertices induce a subgraph
A with 1A = (1, 1, 1, 0, 0)T , |A| = 3 and Vol(A) = 1.6 + 1.6 + 1.7 = 4.9 .

b

b b b b

0.8 0.8

0.8 0.1

0.9

D =


1.6

1.6
1.7

1
0.9
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Laplacian Eigenmaps

For any two subsets A,B ⊂ V (not necessarily disjoint), define

W (A,B) =
∑

i∈A, j∈B
wij .

Two special cases:

• If B = Ā, W (A, Ā) is called a cut:

Cut(A, Ā) = W (A, Ā) =
∑

i∈A, j∈Ā

wij

• If B = V ,

W (A, V ) =
∑

i∈A, j∈V
wij =

∑
i∈A

di = Vol(A)
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Laplacian Eigenmaps

To find the “optimal” bipartition of a graph V = A ∪B with B = Ā, Shi
and Malik (2003) proposed to minimize the following normalized cut

NCut(A,B) = Cut(A,B)
( 1

Vol(A) + 1
Vol(B)

)
such that

• Cut(A,B) is as small as possible (minimal loss of edge weights);

• both Vol(A) and Vol(B) are large (for achieving a balanced cut)

This is a combinatorial optimization problem which is NP-hard.
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Laplacian Eigenmaps

To solve the Ncut problem, consider any partition V = A ∪ B with
Vol(A) = a,Vol(B) = b.

Define f = 1
a1A − 1

b1B ∈ Rn with

fi =


1
a , i ∈ A
−1
b , i ∈ B

Note that f is uniquely determined by the bipartition. On the other hand,
if f is given first, then A,B can be easily and uniquely identified.
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Laplacian Eigenmaps

We have

fTLf =
∑
i,j

wij(fi − fj)2

=
∑

i∈A, j∈B
wij

(1
a

+ 1
b

)2

= Cut(A,B)
(1
a

+ 1
b

)2

fTDf =
∑
i

diif
2
i

=
∑
i∈A

1
a2dii +

∑
j∈B

1
b2
dii

= 1
a2 Vol(A) + 1

b2
Vol(B) = 1

a
+ 1
b
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Laplacian Eigenmaps

It follows that

fTLf
fTDf = Cut(A,B)

(1
a

+ 1
b

)
= NCut(A,B)

Additionally, f satisfies

fTD1 =
∑
i

fidii =
∑
vi∈A

1
a
dii −

∑
vi∈B

1
b
dii = 1

a
Vol(A)− 1

b
Vol(B) = 0

Therefore, we can obtain the following equivalent problem

min
A∪B=V
A∩B=∅

NCut(A,B)⇐⇒ min
f∈{α,−β}n

fT D1=0

fTLf
fTDf
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Laplacian Eigenmaps

This problem is still discrete in nature. To find an approximate solution,
we eliminate the condition f ∈ {α,−β}n to solve the relaxed problem

min
f 6=0∈Rn

fT D1=0

fTLf
fTDf

This is exactly the same generalized Rayleigh quotient problem we obtained
for Laplacian Eigenmaps, with the same minimizer f∗ = v2 (the second
smallest eigenvector of Lrw = D−1L).

New interpretation: v2 represents an approximate solution to the Ncut
problem, providing information about the labels of the data.
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Laplacian Eigenmaps

Example 0.10. For the graph below (which is connected),
b

b b b b

0.8 0.8

0.8 0.1

0.9

the second smallest eigenvector of the normalized graph Laplacian Lrw is
v2 = (−0.2594,−0.2594,−0.2235, 0.6152, 0.6610).
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Laplacian Eigenmaps

Matlab demonstration

• Two Gaussians

• Two circles
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Laplacian Eigenmaps

Remark. The RatioCut algorithm uses | · | instead of Vol(·) to measure
the size of each cluster so as to seek a balanced cut:

RatioCut(A,B) = Cut(A,B)
( 1
|A|

+ 1
|B|

)
It can be shown to lead to the following relaxed problem

min
f 6=0∈Rn

fT 1=0

fTLf
fT f

whose solution is given by the second smallest eigenvector of L.

In general, the NCut algorithm works better, especially when the cluster
sizes vary a lot.
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Laplacian Eigenmaps

Further learning on spectral clustering

• “Normalized Cuts and Image Segmentation”, Jianbo Shi and Jitendra
Malik, IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Vol. 22, No. 8, pages 888–905, August 2000. URL: https:
//people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf

• “A Tutorial on Spectral Clustering”, Ulrike von Luxburg, Statistics
and Computing, Volume 17, pages 395–416 (2007). URL: https:
//arxiv.org/pdf/0711.0189.pdf
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