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Linear Algebra and Multivariable Calculus Review

Notation: vectors
Vectors are denoted by boldface lowercase letters (such as a,b,u,v,x,y):

• They are assumed to be in column form, e.g., a = (1, 2, 3)T =

1
2
3


• To indicate their dimensions, we use notation like x ∈ Rn.

• The ith element of a vector a is written as ai or a(i).

We introduce the following notation for denoting two constant vectors (with their
dimensions implied by the context):

0 = [0, 0, . . . , 0]T , 1 = [1, 1, . . . , 1]T
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Linear Algebra and Multivariable Calculus Review

Notation: matrices
Matrices are denoted by boldface UPPERCASE letters (such as A,B,U,V,P,Q).

Similarly, we write A ∈ Rm×n to indicate its size.

The (i, j) entry of A is denoted by aij or A(i, j).

The ith row of A is denoted by A(i, :) while its columns are written as A(:, j),
as in MATLAB.

We use I to denote the identity matrix, and O the zero matrix, with their sizes
implied by the context.
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Linear Algebra and Multivariable Calculus Review

Description of matrix shape

A matrix is a rectangular array of numbers arranged in rows and columns.

We say that a matrix A ∈ Rm×n is

• a square matrix, if m = n.

• a long matrix, if m < n

• a tall matrix, if m > n
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Linear Algebra and Multivariable Calculus Review

A diagonal matrix is a square matrix A ∈ Rn×n whose off diagonal entries are
all zero (aij = 0 for all i 6= j):

A =

a11
. . .

ann



A diagonal matrix is uniquely defined through a vector that contains all the
diagonal entries, and denoted as follows:

A = diag(1, 2, 3, 4, 5︸ ︷︷ ︸
a

) = diag(a).
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Matrix multiplication
Let A ∈ Rm×n and B ∈ Rn×p. Their matrix product is an m× p matrix

AB = C = (cij), cij =
n∑

k=1
aikbkj = A(i, :) ·B(:, j).

=C A B
b

i

j

i

j

m× p m× n n× p
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It is possible to obtain one full row (or column) of C at a time via matrix-vector
multiplication:

C(i, :) = A(i, :) ·B, C(:, j) = A ·B(:, j)

=C BA
b b b b b b

=C A B

b
b
b
b
b
b
b
b
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The full matrix C can be written as a sum of rank-1 matrices:

C =
n∑

k=1
A(:, k) ·B(k, :).

=C BA
b b b b

b

b

= + + · · ·+
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When one of the matrices is a diagonal matrix, we have the following rules:

A︸︷︷︸
diagonal

B =

a1
. . .

an


B(1, :)

...
B(n, :)

 =

a1B(1, :)
...

anB(n, :)



A B︸︷︷︸
diagonal

= [A(:, 1) . . .A(:, n)]

b1
. . .

bn


= [b1A(:, 1) . . . bnA(:, n)]
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Finally, below are some identities involving the vector 1 ∈ Rn:

11T =


1
1
...
1


(

1 1 . . . 1
)

=


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ,

1T 1 = n,

A1 =
∑

j

A(:, j), (vector of row sums)

1T A =
∑

i

A(i, :), (horizontal vector of column sums)

1T A1 =
∑

i

∑
j

A(i, j) (total sum of all entries)
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Linear Algebra and Multivariable Calculus Review

Example 0.1. Let

A =

 3 0 0
5 1 −1
−2 2 4

 , B =

1 0
0 −1
2 3

 , Λ1 =

1
0
−1

 , Λ2 =
(

2
−3

)
.

Find the products AB,Λ1B,BΛ2,1T B,B1 and verify the above rules.
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The Hadamard product
Another way to multiply two matrices of the same size, say A,B ∈ Rm×n, is
through the Hadamard product, also called the entrywise product:

C = A ◦B ∈ Rm×n, with cij = aijbij .

For example, (
0 2 −3
−1 0 −4

)
◦

(
1 0 −3
2 1 −1

)
=
(

0 0 9
−2 0 4

)
.

An important application of the entrywise product is in efficiently computing the
product of a diagonal matrix and a rectangular matrix by software.
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Let A = diag(a1, . . . , an) ∈ Rn×n and B ∈ Rn×k. Define also a vector
a = (a1, . . . , an)T ∈ Rn, which represents the diagonal of A.

Then
AB = [a . . .a]︸ ︷︷ ︸

k copies

◦B.

The former takes O(n2k) operations, while the latter takes only O(nk) operations,
which is one magnitude faster.

= ◦B B
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Matrix transpose
The transpose of a matrix A ∈ Rm×n is another matrix B ∈ Rn×m with bij = aji

for all i, j. We denote the transpose of A by AT .

A square matrix A ∈ Rn×n is said to be symmetric if AT = A.

Let A ∈ Rm×n,B ∈ Rn×p, and k ∈ R. Then

• (AT )T = A

• (kA)T = kAT

• (A + B)T = AT + BT

• (AB)T = BT AT
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Matrix inverse
A square matrix A ∈ Rn×n is said to be invertible if there exists another square
matrix of the same size B such that AB = BA = I.

In this case, B is called the matrix inverse of A and denoted as B = A−1.

Let A,B be two invertible matrices of the same size, and k 6= 0. Then

• (kA)−1 = 1
k A−1

• (AB)−1 = B−1A−1

• (AT )−1 = (A−1)T

(Note that A + B is not necessarily still invertible)
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Matrix trace
The trace of a square matrix A ∈ Rn×n is defined as the sum of the entries in
its diagonal:

trace(A) =
∑

i

aii.

Clearly, trace(A) = trace(AT ).

Trace is a linear operator: trace(kA) = k trace(A) and trace(A + B) =
trace(A) + trace(B).

If A is an m× n matrix and B is an n×m matrix, then

trace(AB) = trace(BA)

Note that as matrices, AB is not necessarily equal to BA.
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Matrix rank

Let A ∈ Rm×n. The largest number of linearly independent rows (or columns)
contained in the matrix is called the rank of A, and often denoted as rank(A).

A square matrix P ∈ Rn×n is said to be of full rank (or nonsingular) if rank(P) =
n; otherwise, it is said to be rank deficient (or singular).

A rectangular matrix A ∈ Rm×n is said to have full column rank if rank(B) = n.

Similarly, a rectangular matrix A ∈ Rm×n is said to have full row rank if
rank(B) = m.
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Linear Algebra and Multivariable Calculus Review

Some useful properties of the matrix rank:

• For any A ∈ Rm×n, 0 ≤ rank(A) = rank(AT ) ≤ min(m,n), and
rank(A) = 0 if and only if A = O.

• Any nonzero row or column vector has rank 1 (as a matrix).

• For any (column) vectors u,v, rank(uvT ) = 1.

• For any two matrices A ∈ Rm×n,B ∈ Rn×p,

rank(AB) ≤ min(rank(A), rank(B)).

• For any A ∈ Rm×n and square, nonsingular P ∈ Rm×m,Q ∈ Rn×n,

rank(PA) = rank(A) = rank(AQ).
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Linear Algebra and Multivariable Calculus Review

Matrix determinant
The matrix determinant is a rule to evaluate square matrices to numbers (in order
to determine if they are nonsingular):

det : A ∈ Rn×n 7→ det(A) ∈ R.

A remarkable property is that A ∈ Rn×n is invertible or nonsingular (i.e., of full
rank) if and only if det(A) 6= 0.

Let A,B ∈ Rn×n and k ∈ R. Then

• det(kA) = kn det(A)

• det(AT ) = det(A)

• det(AB) = det(A) det(B)
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Linear Algebra and Multivariable Calculus Review

Example 0.2. For the matrix

A =

 3 0 0
5 1 −1
−2 2 4

 ,

find its rank, trace and determinant.

Answer. rank(A) = 3, trace(A) = 8, det(A) = 18
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Linear Algebra and Multivariable Calculus Review

Eigenvalues and eigenvectors
Let A ∈ Rn×n. The characteristic polynomial of A is

p(λ) = det(A− λI).

The roots of the characteristic equation p(λ) = 0 are called eigenvalues of A.

For a specific eigenvalue λi, any nonzero vector vi satisfying

(A− λiI)vi = o

or equivalently,
Avi = λivi

is called an eigenvector of A (associated to the eigenvalue λi).
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Linear Algebra and Multivariable Calculus Review

Example 0.3. For the matrix A =

 3 0 0
5 1 −1
−2 2 4

 , find its eigenvalues and

associated eigenvectors.

Answer. The eigenvalues are λ1 = 3, λ2 = 2 with corresponding eigenvectors
v1 = (0, 1,−2)T ,v2 = (0, 1,−1)T .
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Linear Algebra and Multivariable Calculus Review

All eigenvectors associated to λi span a linear subspace, called the eigenspace:

E(λi) = {v ∈ Rn : (A− λiI)v = o}.

The dimension gi of E(λi) is called the geometric multiplicity of λi, while the
degree ai of the factor (λ−λi)ai in p(λ) is called the algebraic multiplicity of λi.

Note that we must have
∑
ai = n and for all i, 1 ≤ gi ≤ ai.

Example 0.4. For the eigenvalues of the matrix on previous slide, find their
algebraic and geometric multiplicities.

Answer. a1 = 2, a2 = 1 and g1 = g2 = 1.
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Linear Algebra and Multivariable Calculus Review

The following theorem indicates that the trace and determinant of a square matrix
can both be computed from the eigenvalues of the matrix.

Theorem 0.1. Let A be a real square matrix whose eigenvalues are λ1, . . . , λn

(possibly with repetitions). Then

det(A) =
n∏

i=1
λi and trace(A) =

n∑
i=1

λi.

Example 0.5. For the matrix A defined previously, verify the identities in the
above theorem.
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Similar matrices
Two square matrices of the same size A,B ∈ Rn×n if there exists an invertible
matrix P ∈ Rn×n such that

B = PAP−1

Similar matrices have the same

• rank

• trace

• determinant

• characteristic polynomial

• eigenvalues and their multiplicities (but not eigenvectors)
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Linear Algebra and Multivariable Calculus Review

Diagonalizability of square matrices
Definition 0.1. A square matrix A is diagonalizable if it is similar to a diagonal
matrix, i.e., there exist an invertible matrix P and a diagonal matrix Λ such that

A = PΛP−1, or equivalently, P−1AP = Λ.

Remark. If we write P = (p1, . . . ,pn) and Λ = diag(λ1, . . . , λn), then the
above equation can be rewritten as

AP = PΛ, or in columns, Api = λipi, 1 ≤ i ≤ n.

This shows that each λi is an eigenvalue of A and pi the corresponding eigenvector.
Thus, the above factorization is called the eigenvalue decomposition of A, or
sometimes the spectral decomposition of A.
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Linear Algebra and Multivariable Calculus Review

Example 0.6. The matrix

A =
(

0 1
3 2

)
is diagonalizable because(

0 1
3 2

)
=
(

1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

but the matrix

B =
(

0 1
−1 2

)
is not.
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Linear Algebra and Multivariable Calculus Review

Why is diagonalization important?
We can use instead the diagonal matrix (that is similar to the given matrix) to
compute the determinant and eigenvalues (and their algebraic multiplicities),
which is a lot simpler.

Additionally, it can help compute matrix powers (Ak). To see this, suppose
A is diagonalizable, that is, A = PDP−1 for some invertible matrix P and a
diagonal matrix Λ. Then

A2 = PΛP−1 ·PΛP−1 = PΛ2P−1

A3 = PΛP−1 ·PΛP−1 ·PΛP−1 = PΛ3P−1

Ak = PΛkP−1 (for any positive integer k)
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Linear Algebra and Multivariable Calculus Review

Checking diagonalizability of a square matrix
Theorem 0.2. A matrix A ∈ Rn×n is diagonalizable if and only if it has n linearly
independent eigenvectors (i.e.,

∑
gi = n).

Corollary 0.3. The following matrices are diagonalizable:

• Any matrix whose eigenvalues all have identical geometric and algebraic
multiplicities, i.e., gi = ai for all i;

• Any matrix with n distinct eigenvalues (gi = ai = 1 for all i);

Example 0.7. The matrix B =
(

0 1
−1 2

)
is not diagonalizable because it has

only one distinct eigenvalue λ1 = 1 with a1 = 2 and g1 = 1.
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Orthogonal matrices

An orthogonal matrix is a square matrix Q ∈ Rn×n whose inverse equals its
transpose, i.e., Q−1 = QT .

In other words, orthogonal matrices Q satisfy QQT = QT Q = I.

For example, the following are orthogonal matrices:

(
1√
2 − 1√

2
1√
2

1√
2

)
,


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3
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Theorem 0.4. A square matrix Q = [q1 . . .qn] is orthogonal if and only if its
columns form an orthonormal basis for Rn. That is,

qT
i qj =

{
0, i 6= j

1, i = j

Proof. This is a direct consequence of the following identity

QT Q =

qT
1
...

qT
n

[q1 . . . qn

]
= (qT

i qj)

Remark. Geometrically, an orthogonal matrix multiplying a vector (i.e., Qx ∈ Rn)
represents an rotation of the vector in the space.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/42



Linear Algebra and Multivariable Calculus Review

Spectral decomposition of symmetric matrices
Theorem 0.5. Let A ∈ Rn×n be a symmetric matrix. Then there exist an
orthogonal matrix Q = [q1 . . .qn] and a diagonal matrix Λ = diag(λ1, . . . , λn),
such that

A = QΛQT (we say that A is orthogonally diagonalizable)

Remark. Note that the above equation is equivalent to AQ = QΛ, or in columns,

Aqi = λiqi, i = 1, . . . , n

Therefore, the λi’s represent eigenvalues of A while the qi’s are the associated
eigenvectors (with unit norm).
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Remark. One can rewrite the matrix decomposition

A = QΛQT

into a sum of rank-1 matrices:

A =
(
q1 . . . qn

)λ1
. . .

λn


qT

1
...

qn

 =
n∑

i=1
λiqiqT

i

For convenience, the diagonal elements of Λ are often assumed to be sorted in
decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn
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Example 0.8. Find the spectral decomposition of the following matrix

A =
(

0 2
2 3

)

Answer.

A = 1√
5

(
1 −2
2 1

)
︸ ︷︷ ︸

Q

·

(
4
−1

)
︸ ︷︷ ︸

Λ

· 1√
5

(
1 −2
2 1

)T

︸ ︷︷ ︸
QT

= 4
(

1√
5

2√
5

)(
1√
5

2√
5

)
+ (−1)

(
− 2√

5
1√
5

)(
− 2√

5
1√
5

)
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Positive (semi)definite matrices
Definition 0.2. A symmetric matrix A ∈ Rn×n is said to be positive semidefi-
nite if xT Ax ≥ 0 for all x ∈ Rn.

If the equality holds true only for x = 0 (i.e., xT Ax > 0 for all x 6= 0), then A
is said to be positive definite.

Example 0.9. For any rectangular matrix A ∈ Rm×n, show that both of the
matrices AAT ∈ Rm×m and AT A ∈ Rn×n are positive semidefinite.

Theorem. A symmetric matrix is positive definite (semidefinite) if and only
if all of its eigenvalues are positive (nonnegative).
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Review of multivariable calculus
First, consider the following constrained optimization problem with an equality
constraint in Rn (i.e., x ∈ Rn):

max / min f(x) subject to g(x) = b

For example,1 consider

max /min 8x2 − 2y︸ ︷︷ ︸
f(x,y)

subject to x2 + y2︸ ︷︷ ︸
g(x,y)

= 1︸︷︷︸
b

which can be interpreted as finding the extreme values of f(x, y) = 8x2 − 2y
over the unit circle in R2.

1http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers.
aspx
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To solve such problems, one can use the method of Lagrange multipliers:

1. Form the Lagrange function (by introducing an extra variable λ)

L(x, λ) = f(x)− λ(g(x)− b)

2. Find all critical points of the Lagrangian L by solving

∂

∂xL = 0 −→ ∇f(x) = λ∇g(x)

∂

∂λ
L = 0 −→ g(x) = b

3. Evaluate and compare the function f at all the critical points to select the
maximum and/or minimum.
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Now, let us solve

max /min 8x2 − 2y︸ ︷︷ ︸
f(x,y)

subject to x2 + y2︸ ︷︷ ︸
g(x,y)

= 1︸︷︷︸
b

By the method of Lagrange multipliers, we have
∂f

∂x
= λ

∂g

∂x
−→ 16x = λ(2x)

∂f

∂y
= λ

∂g

∂y
−→ −2 = λ(2y)

g(x) = b −→ x2 + y2 = 1

from which we obtain 4 critical points with corresponding function values:

f(0,−1) = 2, f(0, 1) = −2︸︷︷︸
min

, f(−3
8
√

7,−1
8) = 65

8︸︷︷︸
max
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Question 1: What if there are multiple equality constraints?

max /min f(x) subject to g1(x) = b1, . . . , gk(x) = bk

The method of Lagrange multipliers works very similarly:

1. Form the Lagrange function

L(x, λ1, . . . , λk) = f(x)− λ1(g1(x)− b1)− · · · − λk(gk(x)− bk)

2. Find all critical points by solving

∇xL = 0 −→ ∇f(x) = λ1∇g1(x) + · · ·+ λk∇gk(x)
∂L

∂λ1
= 0, . . . , ∂L

∂λk
= 0 −→ g1(x)− b1 = 0, . . . , gk(x)− bk = 0

3. Evaluate and compare the function at all the critical points found above.
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Question 2: What if inequality constraints?

min f(x) subject to g(x) ≥ b

We will review this part later this semester when it is needed.
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Next time: Matrix Computing in MATLAB
Make sure to do the following before Tuesday:

• Install MATLAB on your laptop

• Complete the 2-hour MATLAB Onramp tutorial2

• Explore the MATLAB documentation - Getting Started with MATLAB3

Lastly, bring your laptop to class next Tuesday.

2https://www.mathworks.com/learn/tutorials/matlab-onramp.html
3https://www.mathworks.com/help/matlab/getting-started-with-matlab.

html

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 42/42


