San José State University
Math 253: Mathematical Methods for Data Visualization

Lecture 1: Review of Linear Algebra and Multivariable Calculus

Dr. Guangliang Chen

Outline

- Matrix algebra
- Multiplication
- Rank
- Trace
- Determinant
- Eigenvalues and eigenvectors
- Diagonalization of square matrices
- Constrained optimization (with equality constraints)

Linear Algebra and Multivariable Calculus Review

Notation: vectors

Vectors are denoted by boldface lowercase letters (such as $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v}, \mathbf{x}, \mathbf{y}$):

- They are assumed to be in column form, e.g., $\mathbf{a}=(1,2,3)^{T}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
- To indicate their dimensions, we use notation like $\mathbf{x} \in \mathbb{R}^{n}$.
- The i th element of a vector \mathbf{a} is written as a_{i} or $\mathbf{a}(i)$.

We introduce the following notation for denoting two constant vectors (with their dimensions implied by the context):

$$
\mathbf{0}=[0,0, \ldots, 0]^{T}, \quad \mathbf{1}=[1,1, \ldots, 1]^{T}
$$

Linear Algebra and Multivariable Calculus Review

Notation: matrices

Matrices are denoted by boldface UPPERCASE letters (such as A, B, U, V, P, Q).
Similarly, we write $\mathbf{A} \in \mathbb{R}^{m \times n}$ to indicate its size.
The (i, j) entry of \mathbf{A} is denoted by $a_{i j}$ or $\mathbf{A}(i, j)$.
The i th row of \mathbf{A} is denoted by $\mathbf{A}(i,:)$ while its columns are written as $\mathbf{A}(:, j)$, as in MATLAB.

We use \mathbf{I} to denote the identity matrix, and \mathbf{O} the zero matrix, with their sizes implied by the context.

Linear Algebra and Multivariable Calculus Review

Description of matrix shape

A matrix is a rectangular array of numbers arranged in rows and columns.
We say that a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is

- a square matrix, if $m=n$.
- a long matrix, if $m<n$
- a tall matrix, if $m>n$

Linear Algebra and Multivariable Calculus Review

A diagonal matrix is a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ whose off diagonal entries are all zero ($a_{i j}=0$ for all $i \neq j$):

$$
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & & \\
& \ddots & \\
& & a_{n n}
\end{array}\right)
$$

A diagonal matrix is uniquely defined through a vector that contains all the diagonal entries, and denoted as follows:

$$
\mathbf{A}=\operatorname{diag}(\underbrace{1,2,3,4,5}_{\mathbf{a}})=\operatorname{diag}(\mathbf{a})
$$

Linear Algebra and Multivariable Calculus Review

Matrix multiplication

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$. Their matrix product is an $m \times p$ matrix

$$
\mathbf{A B}=\mathbf{C}=\left(c_{i j}\right), \quad c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}=\mathbf{A}(i,:) \cdot \mathbf{B}(:, j) .
$$

Linear Algebra and Multivariable Calculus Review

It is possible to obtain one full row (or column) of \mathbf{C} at a time via matrix-vector multiplication:

$$
\mathbf{C}(i,:)=\mathbf{A}(i,:) \cdot \mathbf{B}, \quad \mathbf{C}(:, j)=\mathbf{A} \cdot \mathbf{B}(:, j)
$$

Linear Algebra and Multivariable Calculus Review

The full matrix \mathbf{C} can be written as a sum of rank-1 matrices:

$$
\mathbf{C}=\sum_{k=1}^{n} \mathbf{A}(:, k) \cdot \mathbf{B}(k,:)
$$

Linear Algebra and Multivariable Calculus Review

When one of the matrices is a diagonal matrix, we have the following rules:

$$
\underbrace{\mathbf{A}}_{\text {diagonal }} \mathbf{B}=\left(\begin{array}{ccc}
a_{1} & & \\
& \ddots & \\
& & a_{n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{B}(1,:) \\
\vdots \\
\mathbf{B}(n,:)
\end{array}\right)=\left(\begin{array}{c}
a_{1} \mathbf{B}(1,:) \\
\vdots \\
a_{n} \mathbf{B}(n,:)
\end{array}\right)
$$

$$
\begin{aligned}
\mathbf{A} \underbrace{\mathbf{B}}_{\text {diagonal }} & =[\mathbf{A}(:, 1) \ldots \mathbf{A}(:, n)]\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{n}
\end{array}\right) \\
& =\left[b_{1} \mathbf{A}(:, 1) \ldots b_{n} \mathbf{A}(:, n)\right]
\end{aligned}
$$

Linear Algebra and Multivariable Calculus Review

Finally, below are some identities involving the vector $\mathbf{1} \in \mathbb{R}^{n}$:

$$
\begin{array}{rlrl}
\mathbf{1 1}^{T} & =\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right) & \left(\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right), \\
\mathbf{1}^{T} \mathbf{1} & =n, & & \\
\mathbf{A 1} & =\sum_{j} \mathbf{A}(:, j), & & \text { (vector of row sums) } \\
\mathbf{1}^{T} \mathbf{A} & =\sum_{i} \mathbf{A}(i,:), & & \text { (horizontal vector of column sums) } \\
\mathbf{1}^{T} \mathbf{A} \mathbf{1} & =\sum_{i} \sum_{j} \mathbf{A}(i, j) & & \text { (total sum of all entries) }
\end{array}
$$

Linear Algebra and Multivariable Calculus Review

Example 0.1. Let

$\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right), \mathbf{B}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1 \\ 2 & 3\end{array}\right), \boldsymbol{\Lambda}_{1}=\left(\begin{array}{lll}1 & & \\ & 0 & \\ & & -1\end{array}\right), \boldsymbol{\Lambda}_{2}=\left(\begin{array}{ll}2 & \\ & -3\end{array}\right)$.
Find the products $\mathbf{A B}, \boldsymbol{\Lambda}_{1} \mathbf{B}, \mathbf{B} \boldsymbol{\Lambda}_{2}, \mathbf{1}^{T} \mathbf{B}, \mathbf{B} \mathbf{1}$ and verify the above rules.

Linear Algebra and Multivariable Calculus Review

The Hadamard product

Another way to multiply two matrices of the same size, say $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$, is through the Hadamard product, also called the entrywise product:

$$
\mathbf{C}=\mathbf{A} \circ \mathbf{B} \in \mathbb{R}^{m \times n}, \quad \text { with } \quad c_{i j}=a_{i j} b_{i j}
$$

For example,

$$
\left(\begin{array}{ccc}
0 & 2 & -3 \\
-1 & 0 & -4
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 0 & -3 \\
2 & 1 & -1
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 9 \\
-2 & 0 & 4
\end{array}\right)
$$

An important application of the entrywise product is in efficiently computing the product of a diagonal matrix and a rectangular matrix by software.

Linear Algebra and Multivariable Calculus Review

Let $\mathbf{A}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times k}$. Define also a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T} \in \mathbb{R}^{n}$, which represents the diagonal of \mathbf{A}.

Then

$$
\mathbf{A B}=\underbrace{[\mathbf{a} \ldots \mathbf{a}]}_{k \text { copies }} \circ \mathbf{B} .
$$

The former takes $\mathcal{O}\left(n^{2} k\right)$ operations, while the latter takes only $\mathcal{O}(n k)$ operations, which is one magnitude faster.

Linear Algebra and Multivariable Calculus Review

Matrix transpose

The transpose of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is another matrix $\mathbf{B} \in \mathbb{R}^{n \times m}$ with $b_{i j}=a_{j i}$ for all i, j. We denote the transpose of \mathbf{A} by \mathbf{A}^{T}.

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be symmetric if $\mathbf{A}^{T}=\mathbf{A}$.
Let $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$, and $k \in \mathbb{R}$. Then

- $\left(\mathbf{A}^{T}\right)^{T}=\mathbf{A}$
- $(k \mathbf{A})^{T}=k \mathbf{A}^{T}$
- $(\mathbf{A}+\mathbf{B})^{T}=\mathbf{A}^{T}+\mathbf{B}^{T}$
- $(\mathbf{A B})^{T}=\mathbf{B}^{T} \mathbf{A}^{T}$

Linear Algebra and Multivariable Calculus Review

Matrix inverse

A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be invertible if there exists another square matrix of the same size \mathbf{B} such that $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$.

In this case, \mathbf{B} is called the matrix inverse of \mathbf{A} and denoted as $\mathbf{B}=\mathbf{A}^{-1}$.
Let \mathbf{A}, \mathbf{B} be two invertible matrices of the same size, and $k \neq 0$. Then

- $(k \mathbf{A})^{-1}=\frac{1}{k} \mathbf{A}^{-1}$
- $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
- $\left(\mathbf{A}^{T}\right)^{-1}=\left(\mathbf{A}^{-1}\right)^{T}$
(Note that $\mathrm{A}+\mathrm{B}$ is not necessarily still invertible)

Linear Algebra and Multivariable Calculus Review

Matrix trace

The trace of a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is defined as the sum of the entries in its diagonal:

$$
\operatorname{trace}(\mathbf{A})=\sum_{i} a_{i i}
$$

Clearly, trace $(\mathbf{A})=\operatorname{trace}\left(\mathbf{A}^{T}\right)$.
Trace is a linear operator: $\operatorname{trace}(k \mathbf{A})=k \operatorname{trace}(A)$ and $\operatorname{trace}(\mathbf{A}+\mathbf{B})=$ $\operatorname{trace}(\mathbf{A})+\operatorname{trace}(\mathbf{B})$.

If \mathbf{A} is an $m \times n$ matrix and \mathbf{B} is an $n \times m$ matrix, then

$$
\operatorname{trace}(\mathbf{A B})=\operatorname{trace}(\mathbf{B A})
$$

Note that as matrices, AB is not necessarily equal to BA .

Linear Algebra and Multivariable Calculus Review

Matrix rank

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. The largest number of linearly independent rows (or columns) contained in the matrix is called the rank of \mathbf{A}, and often denoted as $\operatorname{rank}(\mathbf{A})$.

A square matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ is said to be of full rank (or nonsingular) if $\operatorname{rank}(\mathbf{P})=$ n; otherwise, it is said to be rank deficient (or singular).

A rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have full column rank if $\operatorname{rank}(\mathbf{B})=n$.
Similarly, a rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is said to have full row rank if $\operatorname{rank}(\mathbf{B})=m$.

Linear Algebra and Multivariable Calculus Review

Some useful properties of the matrix rank:

- For any $\mathbf{A} \in \mathbb{R}^{m \times n}, 0 \leq \operatorname{rank}(\mathbf{A})=\operatorname{rank}\left(\mathbf{A}^{T}\right) \leq \min (m, n)$, and $\operatorname{rank}(\mathbf{A})=0$ if and only if $\mathbf{A}=\mathbf{O}$.
- Any nonzero row or column vector has rank 1 (as a matrix).
- For any (column) vectors $\mathbf{u}, \mathbf{v}, \operatorname{rank}\left(\mathbf{u v}^{T}\right)=1$.
- For any two matrices $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{B} \in \mathbb{R}^{n \times p}$,

$$
\operatorname{rank}(\mathbf{A B}) \leq \min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B})) .
$$

- For any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and square, nonsingular $\mathbf{P} \in \mathbb{R}^{m \times m}, \mathbf{Q} \in \mathbb{R}^{n \times n}$,

$$
\operatorname{rank}(\mathbf{P A})=\operatorname{rank}(\mathbf{A})=\operatorname{rank}(\mathbf{A Q}) .
$$

Linear Algebra and Multivariable Calculus Review

Matrix determinant

The matrix determinant is a rule to evaluate square matrices to numbers (in order to determine if they are nonsingular):

$$
\operatorname{det}: \mathbf{A} \in \mathbb{R}^{n \times n} \mapsto \operatorname{det}(\mathbf{A}) \in \mathbb{R} .
$$

A remarkable property is that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible or nonsingular (i.e., of full rank) if and only if $\operatorname{det}(\mathbf{A}) \neq 0$.

Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ and $k \in \mathbb{R}$. Then

- $\operatorname{det}(k \mathbf{A})=k^{n} \operatorname{det}(\mathbf{A})$
- $\operatorname{det}\left(\mathbf{A}^{T}\right)=\operatorname{det}(\mathbf{A})$
- $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{B})$

Linear Algebra and Multivariable Calculus Review

Example 0.2. For the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
3 & 0 & 0 \\
5 & 1 & -1 \\
-2 & 2 & 4
\end{array}\right)
$$

find its rank, trace and determinant.

Answer. $\operatorname{rank}(\mathbf{A})=3, \operatorname{trace}(\mathbf{A})=8, \operatorname{det}(\mathbf{A})=18$

Linear Algebra and Multivariable Calculus Review

Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. The characteristic polynomial of \mathbf{A} is

$$
p(\lambda)=\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) .
$$

The roots of the characteristic equation $p(\lambda)=0$ are called eigenvalues of \mathbf{A}.
For a specific eigenvalue λ_{i}, any nonzero vector \mathbf{v}_{i} satisfying

$$
\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{v}_{i}=\mathbf{o}
$$

or equivalently,

$$
\mathbf{A} \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}
$$

is called an eigenvector of \mathbf{A} (associated to the eigenvalue λ_{i}).

Linear Algebra and Multivariable Calculus Review

Example 0.3. For the matrix $\mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ 5 & 1 & -1 \\ -2 & 2 & 4\end{array}\right)$, find its eigenvalues and associated eigenvectors.

Answer. The eigenvalues are $\lambda_{1}=3, \lambda_{2}=2$ with corresponding eigenvectors $\mathbf{v}_{1}=(0,1,-2)^{T}, \mathbf{v}_{2}=(0,1,-1)^{T}$.

Linear Algebra and Multivariable Calculus Review

All eigenvectors associated to λ_{i} span a linear subspace, called the eigenspace:

$$
\mathrm{E}\left(\lambda_{i}\right)=\left\{\mathbf{v} \in \mathbb{R}^{n}:\left(\mathbf{A}-\lambda_{i} \mathbf{I}\right) \mathbf{v}=\mathbf{o}\right\} .
$$

The dimension g_{i} of $\mathrm{E}\left(\lambda_{i}\right)$ is called the geometric multiplicity of λ_{i}, while the degree a_{i} of the factor $\left(\lambda-\lambda_{i}\right)^{a_{i}}$ in $p(\lambda)$ is called the algebraic multiplicity of λ_{i}.

Note that we must have $\sum a_{i}=n$ and for all $i, 1 \leq g_{i} \leq a_{i}$.

Example 0.4. For the eigenvalues of the matrix on previous slide, find their algebraic and geometric multiplicities.

Answer. $a_{1}=2, a_{2}=1$ and $g_{1}=g_{2}=1$.

Linear Algebra and Multivariable Calculus Review

The following theorem indicates that the trace and determinant of a square matrix can both be computed from the eigenvalues of the matrix.

Theorem 0.1. Let \mathbf{A} be a real square matrix whose eigenvalues are $\lambda_{1}, \ldots, \lambda_{n}$ (possibly with repetitions). Then

$$
\operatorname{det}(\mathbf{A})=\prod_{i=1}^{n} \lambda_{i} \quad \text { and } \quad \operatorname{trace}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}
$$

Example 0.5. For the matrix A defined previously, verify the identities in the above theorem.

Linear Algebra and Multivariable Calculus Review

Similar matrices

Two square matrices of the same size $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times n}$ if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{B}=\mathbf{P A P}^{-1}
$$

Similar matrices have the same

- rank
- trace
- determinant
- characteristic polynomial
- eigenvalues and their multiplicities (but not eigenvectors)

Linear Algebra and Multivariable Calculus Review

Diagonalizability of square matrices

Definition 0.1. A square matrix \mathbf{A} is diagonalizable if it is similar to a diagonal matrix, i.e., there exist an invertible matrix \mathbf{P} and a diagonal matrix $\boldsymbol{\Lambda}$ such that

$$
\mathbf{A}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}, \quad \text { or equivalently }, \quad \mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\boldsymbol{\Lambda} .
$$

Remark. If we write $\mathbf{P}=\left(\mathbf{p}_{1}, \ldots, \mathbf{p}_{n}\right)$ and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then the above equation can be rewritten as

$$
\mathbf{A P}=\mathbf{P} \boldsymbol{\Lambda}, \quad \text { or in columns }, \quad \mathbf{A} \mathbf{p}_{i}=\lambda_{i} \mathbf{p}_{i}, 1 \leq i \leq n .
$$

This shows that each λ_{i} is an eigenvalue of \mathbf{A} and \mathbf{p}_{i} the corresponding eigenvector. Thus, the above factorization is called the eigenvalue decomposition of \mathbf{A}, or sometimes the spectral decomposition of \mathbf{A}.

Linear Algebra and Multivariable Calculus Review

Example 0.6. The matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)
$$

is diagonalizable because

$$
\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)\left(\begin{array}{ll}
3 & \\
& -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & -1
\end{array}\right)^{-1}
$$

but the matrix

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 2
\end{array}\right)
$$

is not.

Linear Algebra and Multivariable Calculus Review

Why is diagonalization important?

We can use instead the diagonal matrix (that is similar to the given matrix) to compute the determinant and eigenvalues (and their algebraic multiplicities), which is a lot simpler.

Additionally, it can help compute matrix powers (\mathbf{A}^{k}). To see this, suppose \mathbf{A} is diagonalizable, that is, $\mathbf{A}=\mathbf{P D P}^{-1}$ for some invertible matrix \mathbf{P} and a diagonal matrix $\boldsymbol{\Lambda}$. Then

$$
\begin{aligned}
& \mathbf{A}^{2}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{2} \mathbf{P}^{-1} \\
& \mathbf{A}^{3}=\mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1} \cdot \mathbf{P} \boldsymbol{\Lambda} \mathbf{P}^{-1}=\mathbf{P} \boldsymbol{\Lambda}^{3} \mathbf{P}^{-1} \\
& \mathbf{A}^{k}=\mathbf{P} \boldsymbol{\Lambda}^{k} \mathbf{P}^{-1} \quad(\text { for any positive integer } k)
\end{aligned}
$$

Linear Algebra and Multivariable Calculus Review

Checking diagonalizability of a square matrix

Theorem 0.2. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is diagonalizable if and only if it has n linearly independent eigenvectors (i.e., $\sum g_{i}=n$).
Corollary 0.3 . The following matrices are diagonalizable:

- Any matrix whose eigenvalues all have identical geometric and algebraic multiplicities, i.e., $g_{i}=a_{i}$ for all i;
- Any matrix with n distinct eigenvalues ($g_{i}=a_{i}=1$ for all i);

Example 0.7. The matrix $\mathbf{B}=\left(\begin{array}{cc}0 & 1 \\ -1 & 2\end{array}\right)$ is not diagonalizable because it has only one distinct eigenvalue $\lambda_{1}=1$ with $a_{1}=2$ and $g_{1}=1$.

Linear Algebra and Multivariable Calculus Review

Orthogonal matrices

An orthogonal matrix is a square matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ whose inverse equals its transpose, i.e., $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$.

In other words, orthogonal matrices \mathbf{Q} satisfy $\mathbf{Q Q}^{T}=\mathbf{Q}^{T} \mathbf{Q}=\mathbf{I}$.
For example, the following are orthogonal matrices:

$$
\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right), \quad\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right)
$$

Linear Algebra and Multivariable Calculus Review

Theorem 0.4. A square matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ is orthogonal if and only if its columns form an orthonormal basis for \mathbb{R}^{n}. That is,

$$
\mathbf{q}_{i}^{T} \mathbf{q}_{j}= \begin{cases}0, & i \neq j \\ 1, & i=j\end{cases}
$$

Proof. This is a direct consequence of the following identity

$$
\mathbf{Q}^{T} \mathbf{Q}=\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\vdots \\
\mathbf{q}_{n}^{T}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}
\end{array}\right]=\left(\mathbf{q}_{i}^{T} \mathbf{q}_{j}\right)
$$

Remark. Geometrically, an orthogonal matrix multiplying a vector (i.e., $\mathbf{Q x} \in \mathbb{R}^{n}$) represents an rotation of the vector in the space.

Linear Algebra and Multivariable Calculus Review

Spectral decomposition of symmetric matrices

Theorem 0.5. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exist an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, such that

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T} \quad \text { (we say that } \mathbf{A} \text { is orthogonally diagonalizable) }
$$

Remark. Note that the above equation is equivalent to $\mathbf{A Q}=\mathbf{Q} \boldsymbol{\Lambda}$, or in columns,

$$
\mathbf{A} \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}, \quad i=1, \ldots, n
$$

Therefore, the λ_{i} 's represent eigenvalues of \mathbf{A} while the \mathbf{q}_{i} 's are the associated eigenvectors (with unit norm).

Linear Algebra and Multivariable Calculus Review

Remark. One can rewrite the matrix decomposition

$$
\mathbf{A}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{T}
$$

into a sum of rank-1 matrices:

$$
\mathbf{A}=\left(\begin{array}{lll}
\mathbf{q}_{1} & \ldots & \mathbf{q}_{n}
\end{array}\right)\left(\begin{array}{ccc}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right)\left(\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\vdots \\
\mathbf{q}_{n}
\end{array}\right)=\sum_{i=1}^{n} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{T}
$$

For convenience, the diagonal elements of $\boldsymbol{\Lambda}$ are often assumed to be sorted in decreasing order:

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}
$$

Linear Algebra and Multivariable Calculus Review

Example 0.8. Find the spectral decomposition of the following matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 2 \\
2 & 3
\end{array}\right)
$$

Answer.

$$
\left.\begin{array}{rl}
\mathbf{A} & =\underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)}_{\mathbf{Q}} \cdot \underbrace{\left(\begin{array}{cc}
4 & -1
\end{array}\right)}_{\boldsymbol{\Lambda}} \cdot \underbrace{\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right)^{T}}_{\mathbf{Q}^{T}} \\
& =4\binom{\frac{1}{\sqrt{5}}}{\frac{2}{\sqrt{5}}}\left(\frac{1}{\sqrt{5}}\right.
\end{array} \frac{2}{\sqrt{5}}\right)+(-1)\binom{-\frac{2}{\sqrt{5}}}{\frac{1}{\sqrt{5}}}\left(\begin{array}{ll}
-\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right) .
$$

Linear Algebra and Multivariable Calculus Review

Positive (semi)definite matrices

Definition 0.2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to be positive semidefinite if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.

If the equality holds true only for $\mathbf{x}=\mathbf{0}$ (i.e., $\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$), then \mathbf{A} is said to be positive definite.

Example 0.9. For any rectangular matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, show that both of the matrices $\mathbf{A} \mathbf{A}^{T} \in \mathbb{R}^{m \times m}$ and $\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$ are positive semidefinite.

Theorem. A symmetric matrix is positive definite (semidefinite) if and only if all of its eigenvalues are positive (nonnegative).

Linear Algebra and Multivariable Calculus Review

Review of multivariable calculus

First, consider the following constrained optimization problem with an equality constraint in \mathbb{R}^{n} (i.e., $\mathbf{x} \in \mathbb{R}^{n}$):

$$
\max / \min \mathbf{f}(\mathrm{x}) \quad \text { subject to } \quad g(\mathrm{x})=b
$$

For example, ${ }^{1}$ consider

$$
\max / \min \underbrace{8 x^{2}-2 y}_{f(x, y)} \quad \text { subject to } \underbrace{x^{2}+y^{2}}_{g(x, y)}=\underbrace{1}_{b}
$$

which can be interpreted as finding the extreme values of $f(x, y)=8 x^{2}-2 y$ over the unit circle in \mathbb{R}^{2}.

[^0]
Linear Algebra and Multivariable Calculus Review

To solve such problems, one can use the method of Lagrange multipliers:

1. Form the Lagrange function (by introducing an extra variable λ)

$$
L(\mathbf{x}, \lambda)=f(\mathbf{x})-\lambda(g(\mathbf{x})-b)
$$

2. Find all critical points of the Lagrangian L by solving

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}} L & =\mathbf{0} \longrightarrow \nabla f(\mathbf{x})=\lambda \nabla g(\mathbf{x}) \\
\frac{\partial}{\partial \lambda} L & =0 \longrightarrow g(\mathbf{x})=b
\end{aligned}
$$

3. Evaluate and compare the function f at all the critical points to select the maximum and/or minimum.

Linear Algebra and Multivariable Calculus Review

Now, let us solve

$$
\max / \min \underbrace{8 x^{2}-2 y}_{f(x, y)} \quad \text { subject to } \underbrace{x^{2}+y^{2}}_{g(x, y)}=\underbrace{1}_{b}
$$

By the method of Lagrange multipliers, we have

$$
\begin{array}{cc}
\frac{\partial f}{\partial x}=\lambda \frac{\partial g}{\partial x} \longrightarrow & 16 x=\lambda(2 x) \\
\frac{\partial f}{\partial y}=\lambda \frac{\partial g}{\partial y} \longrightarrow & -2=\lambda(2 y) \\
g(\mathbf{x})=b \longrightarrow & x^{2}+y^{2}=1
\end{array}
$$

from which we obtain 4 critical points with corresponding function values:

$$
f(0,-1)=2, \quad f(0,1)=\underbrace{-2}_{\min }, \quad f\left(-\frac{3}{8} \sqrt{7},-\frac{1}{8}\right)=\underbrace{\frac{65}{8}}_{\max }
$$

Linear Algebra and Multivariable Calculus Review

Question 1: What if there are multiple equality constraints?

$$
\max / \min f(\mathbf{x}) \quad \text { subject to } \quad g_{1}(\mathbf{x})=b_{1}, \ldots, g_{k}(\mathbf{x})=b_{k}
$$

The method of Lagrange multipliers works very similarly:

1. Form the Lagrange function

$$
L\left(\mathbf{x}, \lambda_{1}, \ldots, \lambda_{k}\right)=f(\mathbf{x})-\lambda_{1}\left(g_{1}(\mathbf{x})-b_{1}\right)-\cdots-\lambda_{k}\left(g_{k}(\mathbf{x})-b_{k}\right)
$$

2. Find all critical points by solving

$$
\begin{aligned}
\nabla_{\mathbf{x}} L & =\mathbf{0} \longrightarrow \nabla f(\mathbf{x})=\lambda_{1} \nabla g_{1}(\mathbf{x})+\cdots+\lambda_{k} \nabla g_{k}(\mathbf{x}) \\
\frac{\partial L}{\partial \lambda_{1}}=0, \ldots, \frac{\partial L}{\partial \lambda_{k}} & =0 \longrightarrow g_{1}(\mathbf{x})-b_{1}=0, \ldots, g_{k}(\mathbf{x})-b_{k}=0
\end{aligned}
$$

3. Evaluate and compare the function at all the critical points found above.

Linear Algebra and Multivariable Calculus Review

Question 2: What if inequality constraints?

$$
\min f(\mathbf{x}) \quad \text { subject to } \quad g(\mathbf{x}) \geq b
$$

We will review this part later this semester when it is needed.

Linear Algebra and Multivariable Calculus Review

Next time: Matrix Computing in MATLAB

Make sure to do the following before Tuesday:

- Install MATLAB on your laptop
- Complete the 2-hour MATLAB Onramp tutorial ${ }^{2}$
- Explore the MATLAB documentation - Getting Started with MATLAB ${ }^{3}$

Lastly, bring your laptop to class next Tuesday.

[^1]
[^0]: ${ }^{1}$ http://tutorial.math.lamar.edu/Classes/CalcIII/LagrangeMultipliers. aspx

[^1]: ${ }^{2}$ https://www.mathworks.com/learn/tutorials/matlab-onramp.html
 ${ }^{3}$ https://www.mathworks.com/help/matlab/getting-started-with-matlab. html

