San José State University Math 253: Mathematical Methods for Data Visualization

## Lecture 2: Matrix Computing in MATLAB

Dr. Guangliang Chen

## Outline

- Focus of this lecture: Vector and matrix operations in MATLAB
- Learning resources:
  - Language fundamentals<sup>1</sup>
  - Matrices and arrays<sup>2</sup>
  - Linear algebra<sup>3</sup>
- HW2 (programming): due 2/11 in class

<sup>&</sup>lt;sup>1</sup>https://www.mathworks.com/help/matlab/language-fundamentals.html <sup>2</sup>https://www.mathworks.com/help/matlab/matrices-and-arrays.html <sup>3</sup>https://www.mathworks.com/help/matlab/linear-algebra.html

## What is MATLAB?

MATLAB is an abbreviation for "matrix laboratory."

Linear algebra functions and matrix operations in MATLAB are built on LAPACK (Linear Algebra Package),<sup>4</sup> which is a large Fortran library of routines that provides fast, robust algorithms for numerical linear algebra and matrix computations.



<sup>4</sup>http://www.netlib.org/lapack/

#### Matrix Computing in MATLAB

# Why MATLAB?

- Efficient and specially designed for linear algebra operations
- High quality and powerful data plotting
- Simple, flexible, easy to use
- Very thorough documentation with examples
- The dimension reduction algorithms were all originally implemented in MATLAB

# My strategies for teaching MATLAB as a tool of this course

- Focus on what is truly needed by this course (i.e., linear algebra operations, and later data plotting)
- Example-based
- Emphasize on good practices in MATLAB programming (through my experience)
  - simplicity
  - efficiency
  - clarity

## In-class demonstrations

See sample scripts from instructor

## Storing data as matrices

The following data objects can all be conveniently represented as matrices:

- Linear systems of equations
- Data sets in Euclidean spaces
- Digital images and their collections
- Text corpus (collections of text documents)
- Graph/network data
- Markov chains

#### Linear systems as matrices

$$\begin{cases} 2x_1 - x_2 + 5x_3 = 0 \\ x_1 - 2x_2 + 4x_3 = -1 \\ 3x_1 + 0x_2 + 6x_3 = 1 \end{cases} \longrightarrow \begin{bmatrix} 2 & -1 & 5 & 0 \\ 1 & -2 & 4 & -1 \\ 3 & 0 & 6 & 1 \end{bmatrix}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/14

#### Data sets as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 9/14

#### Digital images as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/14

#### Collections of documents as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/14

### Network (graph) data as matrices



#### Transition probabilities of a Markov chain as matrices



Dr. Guangliang Chen | Mathematics & Statistics, San José State University 13/14

# HW2 assigned (see Canvas)

Due: 2/11, Tuesday, in class.