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Singular Value Decomposition (SVD)

Introduction
We have seen that symmetric matrices are always (orthogonally) diagonalizable.

That is, for any symmetric matrix A ∈ Rn×n, there exist an orthogonal matrix
Q = [q1 . . .qn] and a diagonal matrix Λ = diag(λ1, . . . , λn), both real and
square, such that

A = QΛQT .

We have pointed out that λi’s are the eigenvalues of A and qi’s the corresponding
eigenvectors (which are orthogonal to each other and have unit norm).

Thus, such a factorization is called the eigendecomposition of A, also called
the spectral decomposition of A.

What about general rectangular matrices?
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Singular Value Decomposition (SVD)

Existence of the SVD for general matrices
Theorem: For any matrix X ∈ Rn×d, there exist two orthogonal matrices
U ∈ Rn×n,V ∈ Rd×d and a nonnegative, “diagonal” matrix Σ ∈ Rn×d (of the
same size as X) such that

Xn×d = Un×nΣn×dVT
d×d.

Remark. This is called the Singular Value Decomposition (SVD) of X:

• The diagonals of Σ are called the singular values of X (often sorted in
decreasing order).

• The columns of U are called the left singular vectors of X.

• The columns of V are called the right singular vectors of X.
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Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)

Connection to spectral decomposition of
symmetric matrices
From the SVD of X we obtain that

XXT= UΣVT ·VΣTUT = U
(
ΣΣT

)
UT

XTX= VΣTUT ·UΣVT = V
(
ΣTΣ

)
VT

This shows that

• U is the eigenvectors matrix of XXT ;

• V is the eigenvectors matrix of XTX;

• The eigenvalues of XXT ,XTX (which must be the same) are equal to
the squared singular values of X.
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Singular Value Decomposition (SVD)

How to prove the SVD theorem

Given any matrix X ∈ Rn×d, the SVD can be thought of as solving a matrix
equation for three unknown matrices (each with certain constraint):

X = U︸︷︷︸
orthogonal

· Σ︸︷︷︸
diagonal

· VT︸︷︷︸
orthogonal

.

Suppose such solutions exist.

• From previous slide:
XTX = V

(
ΣTΣ

)
VT

This tells us how to find V and Σ (which contain the eigenvectors and
square roots of eigenvalues of XTX, respectively).
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Singular Value Decomposition (SVD)

• After we have found both V and Σ, rewrite the matrix equation as

XV = UΣ,

or in columns,

X[v1 . . .vr vr+1 . . .vd] = [u1 . . .ur ur+1 . . .un]


σ1

. . .
σr

.
By comparing columns, we obtain

Xvi =
{
σiui, 1 ≤ i ≤ r (#nonzero singular values)
0, r < i ≤ d

This tells us how to find the matrix U: ui = 1
σi

Xvi for 1 ≤ i ≤ r.
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Singular Value Decomposition (SVD)

A rigorous proof of the SVD theorem
Let C = XTX ∈ Rd×d. Then C is square, symmetric, and positive semidefinite.

Therefore, by the Spectral Theorem, C = VΛVT for an orthogonal V ∈ Rd×d

and diagonal Λ = diag(λ1, . . . , λd) with λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λd
(where r = rank(X) ≤ d).

Let σi =
√
λi and correspondingly form the matrix Σ ∈ Rn×d:

Σ =
[

diag(σ1, . . . , σr) Or×(d−r)
O(n−r)×r O(n−r)×(d−r)

]

Define also
ui = 1

σi
Xvi ∈ Rn, for each 1 ≤ i ≤ r.
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Singular Value Decomposition (SVD)

Then u1, . . . ,ur are orthonormal vectors. To see this,

uTi uj =
(

1
σi

Xvi
)T ( 1

σj
Xvj

)
= 1
σiσj

vTi XTX︸ ︷︷ ︸
=C

vj

= 1
σiσj

vTi (λjvj) = σj
σi

vTi vj (λj = σ2
j )

=
{

1, i = j

0, i 6= j

Choose ur+1, . . . ,un ∈ Rn (through basis completion) such that

U = [u1 . . .urur+1 . . .un] ∈ Rn×n

is an orthogonal matrix.
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Singular Value Decomposition (SVD)

It remains to verify that XV = UΣ, i.e.,

X[v1 . . .vr vr+1 . . .vd] = [u1 . . .ur ur+1 . . .un]


σ1

. . .
σr

.

Consider two cases:

• 1 ≤ i ≤ r: Xvi = σiui by construction.

• i > r: Xvi = 0, which is due to XTXvi = Cvi = 0vi = 0.

Consequently, we have obtained that X = UΣVT .
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Singular Value Decomposition (SVD)

Example 0.1. Compute the SVD of

X =

1 −1
0 1
1 0

 .

Answer:

X =


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3

 ·

√

3
1

 ·( 1√
2

1√
2

− 1√
2

1√
2

)T
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Singular Value Decomposition (SVD)

Geometric interpretation of SVD

Given any matrix A ∈ Rm×n, it defines a linear transformation:

f : Rn 7→ Rm, with f(x) = Ax.

The SVD of A indicates that the linear transformation f can be decomposed
into a sequence of three operations:

Ax︸︷︷︸
full transformation

= U︸︷︷︸
rotation

· Σ︸︷︷︸
rescaling

· VTx︸ ︷︷ ︸
rotation
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Singular Value Decomposition (SVD)

Different versions of SVD

• Full SVD: Xn×d = Un×nΣn×dVT
d×d

• Compact SVD: Suppose rank(X) = r. Define

Ur = [u1, . . . ,ur] ∈ Rn×r

Vr = [v1, . . . ,vr] ∈ Rd×r

Σr = diag(σ1, . . . , σr) ∈ Rr×r

Then
X = UrΣrVT

r .
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Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)

• Rank-1 decomposition:

X = [u1, . . . ,ur]

σ1
. . .

σr


vT1

...
vTr

 =
r∑
i=1

σiuivTi .

This has the interpretation that X is a weighted sum of rank-one matrices,
as for a square, symmetric matrix A ∈ Rn×n :

A = QΛQT =
n∑
i=1

λiqiqTi .

In sum, X = UΣVT where both U,V have orthonormal columns and Σ is
diagonal.
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Singular Value Decomposition (SVD)

Remark. For any version of SVD, the form is not unique (this is mainly due to
different choices of orthogonal basis for each eigenspace).

Remark. For any matrix X ∈ Rn×d and integer 1 ≤ K ≤ r, we define the
truncated SVD of X with K terms as

X ≈
K∑
i=1

σiuivTi = XK

where the singular values are assumed to be sorted from large to small (so
σ1, . . . , σK represent the largest K singular values).

Note that XK has a rank of K and is not exactly equal to X (thus can be
regarded as an approximation to X).
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Singular Value Decomposition (SVD)

Power method for numerical computing of SVD
Let A ∈ Rm×n be a matrix whose SVD is to be computed: A = UΣVT .
Consider C = ATA ∈ Rn×n. Then

C = V(ΣTΣ)VT =
∑

σ2
i vivTi

C2 = V(ΣTΣ)2VT =
∑

σ4
i vivTi

...

Ck = V(ΣTΣ)kVT =
∑

σ2k
i vivTi

If σ1 > σ2, then the first term dominates, so Ck → σ2k
1 v1vT1 as k →∞.

This means that a close estimate to v1 can be computed by simply taking the
first column of Ck and normalizing it to a unit vector.
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Singular Value Decomposition (SVD)

The previous method is very costly due to the matrix power part.

A better approach. Instead of computing Ck, we select a random vector x ∈ Rn

and compute Ckx through a sequence of matrix-vector multiplications (which
are very efficient especially when one dimension of A is small, or A is sparse):

Ckx = ATA · · ·ATAx

Write x =
∑
civi (since v1, . . . ,vn form an orthonormal basis for Rn). Then

Ckx ≈ (σ2k
1 v1vT1 )

(∑
civi

)
= σ2k

1 c1v1.

Normalizing the vector Ckx for some large k then yields v1, the first right singular
vector of A.
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Singular Value Decomposition (SVD)

MATLAB commands for computing matrix SVD

1. Full SVD

svd – Singular Value Decomposition.

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension as
X and with nonnegative diagonal elements in decreasing order, and orthogonal
matrices U and V so that X = U*S*VT .

s = svd(X) returns a vector containing the singular values.
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Singular Value Decomposition (SVD)

2. Truncated SVD

svds – Find a few singular values and vectors.

S = svds(A,K) computes the K largest singular values of A.

[U,S,V] = svds(A,K) computes the singular vectors as well. If A is M-by-N and
K singular values are computed, then U is M-by-K with orthonormal columns, S
is K-by-K diagonal, and V is N-by-K with orthonormal columns.

In many applications, a truncated SVD is enough, and it is much easier to compute
than the full SVD.
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