San José State University

Math 253: Mathematical Methods for Data Visualization

Lecture 5: Singular Value Decomposition (SVD)

Dr. Guangliang Chen

Outline

- Matrix SVD

Singular Value Decomposition (SVD)

Introduction

We have seen that symmetric matrices are always (orthogonally) diagonalizable.
That is, for any symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, there exist an orthogonal matrix $\mathbf{Q}=\left[\mathbf{q}_{1} \ldots \mathbf{q}_{n}\right]$ and a diagonal matrix $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, both real and square, such that

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}
$$

We have pointed out that λ_{i} 's are the eigenvalues of \mathbf{A} and \mathbf{q}_{i} 's the corresponding eigenvectors (which are orthogonal to each other and have unit norm).

Thus, such a factorization is called the eigendecomposition of \mathbf{A}, also called the spectral decomposition of \mathbf{A}.

What about general rectangular matrices?

Singular Value Decomposition (SVD)

Existence of the SVD for general matrices

Theorem: For any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, there exist two orthogonal matrices $\mathbf{U} \in \mathbb{R}^{n \times n}, \mathbf{V} \in \mathbb{R}^{d \times d}$ and a nonnegative, "diagonal" matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times d}$ (of the same size as \mathbf{X}) such that

$$
\mathbf{X}_{n \times d}=\mathbf{U}_{n \times n} \boldsymbol{\Sigma}_{n \times d} \mathbf{V}_{d \times d}^{T} .
$$

Remark. This is called the Singular Value Decomposition (SVD) of \mathbf{X} :

- The diagonals of Σ are called the singular values of \mathbf{X} (often sorted in decreasing order).
- The columns of \mathbf{U} are called the left singular vectors of \mathbf{X}.
- The columns of V are called the right singular vectors of \mathbf{X}.

Singular Value Decomposition (SVD)

Connection to spectral decomposition of symmetric matrices

From the SVD of \mathbf{X} we obtain that

$$
\begin{aligned}
& \mathbf{X X} \mathbf{X}^{T}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T} \cdot \mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T}=\mathbf{U}\left(\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}\right) \mathbf{U}^{T} \\
& \mathbf{X}^{T} \mathbf{X}=\mathbf{V} \boldsymbol{\Sigma}^{T} \mathbf{U}^{T} \cdot \mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}=\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}
\end{aligned}
$$

This shows that

- \mathbf{U} is the eigenvectors matrix of $\mathbf{X X}{ }^{T}$;
- \mathbf{V} is the eigenvectors matrix of $\mathbf{X}^{T} \mathbf{X}$;
- The eigenvalues of $\mathbf{X} \mathbf{X}^{T}, \mathbf{X}^{T} \mathbf{X}$ (which must be the same) are equal to the squared singular values of \mathbf{X}.

Singular Value Decomposition (SVD)

How to prove the SVD theorem

Given any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$, the SVD can be thought of as solving a matrix equation for three unknown matrices (each with certain constraint):

$$
\mathbf{X}=\underbrace{\mathbf{U}}_{\text {orthogonal }} \cdot \underbrace{\boldsymbol{\Sigma}}_{\text {diagonal }} \cdot \underbrace{\mathbf{V}^{T}}_{\text {orthogonal }}
$$

Suppose such solutions exist.

- From previous slide:

$$
\mathbf{X}^{T} \mathbf{X}=\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}
$$

This tells us how to find \mathbf{V} and $\boldsymbol{\Sigma}$ (which contain the eigenvectors and square roots of eigenvalues of $\mathbf{X}^{T} \mathbf{X}$, respectively).

Singular Value Decomposition (SVD)

- After we have found both \mathbf{V} and $\boldsymbol{\Sigma}$, rewrite the matrix equation as

$$
\mathbf{X V}=\mathbf{U} \mathbf{\Sigma}
$$

or in columns,

$$
\mathbf{X}\left[\mathbf{v}_{1} \ldots \mathbf{v}_{r} \mathbf{v}_{r+1} \ldots \mathbf{v}_{d}\right]=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{r} \mathbf{u}_{r+1} \ldots \mathbf{u}_{n}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r} \\
& & \\
& &
\end{array}\right]
$$

By comparing columns, we obtain

$$
\mathbf{X v}_{i}= \begin{cases}\sigma_{i} \mathbf{u}_{i}, & 1 \leq i \leq r(\# \text { nonzero singular values }) \\ \mathbf{0}, & r<i \leq d\end{cases}
$$

This tells us how to find the matrix $\mathbf{U}: \mathbf{u}_{i}=\frac{1}{\sigma_{i}} \mathbf{X} \mathbf{v}_{i}$ for $1 \leq i \leq r$.

Singular Value Decomposition (SVD)

A rigorous proof of the SVD theorem

Let $\mathbf{C}=\mathbf{X}^{T} \mathbf{X} \in \mathbb{R}^{d \times d}$. Then \mathbf{C} is square, symmetric, and positive semidefinite.
Therefore, by the Spectral Theorem, $\mathbf{C}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$ for an orthogonal $\mathbf{V} \in \mathbb{R}^{d \times d}$ and diagonal $\boldsymbol{\Lambda}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$ with $\lambda_{1} \geq \cdots \geq \lambda_{r}>0=\lambda_{r+1}=\cdots=\lambda_{d}$ (where $r=\operatorname{rank}(\mathbf{X}) \leq d$).

Let $\sigma_{i}=\sqrt{\lambda_{i}}$ and correspondingly form the matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{n \times d}$:

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) & \mathbf{O}_{r \times(d-r)} \\
\mathbf{O}_{(n-r) \times r} & \mathbf{O}_{(n-r) \times(d-r)}
\end{array}\right]
$$

Define also

$$
\mathbf{u}_{i}=\frac{1}{\sigma_{i}} \mathbf{X} \mathbf{v}_{i} \in \mathbb{R}^{n}, \quad \text { for each } 1 \leq i \leq r
$$

Singular Value Decomposition (SVD)

Then $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are orthonormal vectors. To see this,

$$
\begin{aligned}
\mathbf{u}_{i}^{T} \mathbf{u}_{j} & =\left(\frac{1}{\sigma_{i}} \mathbf{X} \mathbf{v}_{i}\right)^{T}\left(\frac{1}{\sigma_{j}} \mathbf{X} \mathbf{v}_{j}\right)=\frac{1}{\sigma_{i} \sigma_{j}} \mathbf{v}_{i}^{T} \underbrace{\mathbf{X}^{T} \mathbf{X}}_{=\mathbf{C}} \mathbf{v}_{j} \\
& =\frac{1}{\sigma_{i} \sigma_{j}} \mathbf{v}_{i}^{T}\left(\lambda_{j} \mathbf{v}_{j}\right)=\frac{\sigma_{j}}{\sigma_{i}} \mathbf{v}_{i}^{T} \mathbf{v}_{j} \\
& = \begin{cases}1, & i=j \\
0, & i \neq j\end{cases}
\end{aligned}
$$

Choose $\mathbf{u}_{r+1}, \ldots, \mathbf{u}_{n} \in \mathbb{R}^{n}$ (through basis completion) such that

$$
\mathbf{U}=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{r} \mathbf{u}_{r+1} \ldots \mathbf{u}_{n}\right] \in \mathbb{R}^{n \times n}
$$

is an orthogonal matrix.

Singular Value Decomposition (SVD)

It remains to verify that $\mathbf{X V}=\mathbf{U \Sigma}$, i.e.,

$$
\mathbf{X}\left[\mathbf{v}_{1} \ldots \mathbf{v}_{r} \mathbf{v}_{r+1} \ldots \mathbf{v}_{d}\right]=\left[\mathbf{u}_{1} \ldots \mathbf{u}_{r} \mathbf{u}_{r+1} \ldots \mathbf{u}_{n}\right]\left[\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r} \\
& &
\end{array}\right]
$$

Consider two cases:

- $1 \leq i \leq r: \mathbf{X v}_{i}=\sigma_{i} \mathbf{u}_{i}$ by construction.
- $i>r: \mathbf{X v}_{i}=\mathbf{0}$, which is due to $\mathbf{X}^{T} \mathbf{X} \mathbf{v}_{i}=\mathbf{C} \mathbf{v}_{i}=0 \mathbf{v}_{i}=\mathbf{0}$.

Consequently, we have obtained that $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{T}$.

Singular Value Decomposition (SVD)

Example 0.1. Compute the SVD of

$$
\mathbf{X}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right)
$$

Answer:

$$
\mathbf{X}=\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right) \cdot\left(\begin{array}{cc}
\sqrt{3} & \\
& 1 \\
&
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right)^{T}
$$

Singular Value Decomposition (SVD)

Geometric interpretation of SVD

Given any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, it defines a linear transformation:

$$
f: \mathbb{R}^{n} \mapsto \mathbb{R}^{m}, \quad \text { with } \quad f(\mathbf{x})=\mathbf{A x} .
$$

The SVD of \mathbf{A} indicates that the linear transformation f can be decomposed into a sequence of three operations:

Singular Value Decomposition (SVD)

Different versions of SVD

- Full SVD: $\mathbf{X}_{n \times d}=\mathbf{U}_{n \times n} \boldsymbol{\Sigma}_{n \times d} \mathbf{V}_{d \times d}^{T}$
- Compact SVD: Suppose $\operatorname{rank}(\mathbf{X})=r$. Define

$$
\begin{aligned}
\mathbf{U}_{r} & =\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right] \in \mathbb{R}^{n \times r} \\
\mathbf{V}_{r} & =\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{r}\right] \in \mathbb{R}^{d \times r} \\
\boldsymbol{\Sigma}_{r} & =\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r \times r}
\end{aligned}
$$

Then

$$
\mathbf{X}=\mathbf{U}_{r} \boldsymbol{\Sigma}_{r} \mathbf{V}_{r}^{T}
$$

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

- Rank-1 decomposition:

$$
\mathbf{X}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
\mathbf{v}_{1}^{T} \\
\vdots \\
\mathbf{v}_{r}^{T}
\end{array}\right]=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} .
$$

This has the interpretation that \mathbf{X} is a weighted sum of rank-one matrices, as for a square, symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$:

$$
\mathbf{A}=\mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{T}=\sum_{i=1}^{n} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{T}
$$

In sum, $\mathbf{X}=\mathbf{U} \Sigma \mathbf{V}^{T}$ where both \mathbf{U}, \mathbf{V} have orthonormal columns and $\boldsymbol{\Sigma}$ is diagonal.

Singular Value Decomposition (SVD)

Remark. For any version of SVD, the form is not unique (this is mainly due to different choices of orthogonal basis for each eigenspace).

Remark. For any matrix $\mathbf{X} \in \mathbb{R}^{n \times d}$ and integer $1 \leq K \leq r$, we define the truncated SVD of X with K terms as

$$
\mathbf{X} \approx \sum_{i=1}^{K} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}=\mathbf{X}_{K}
$$

where the singular values are assumed to be sorted from large to small (so $\sigma_{1}, \ldots, \sigma_{K}$ represent the largest K singular values).

Note that \mathbf{X}_{K} has a rank of K and is not exactly equal to \mathbf{X} (thus can be regarded as an approximation to \mathbf{X}).

Singular Value Decomposition (SVD)

Power method for numerical computing of SVD

Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a matrix whose SVD is to be computed: $\mathbf{A}=\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$. Consider $\mathbf{C}=\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$. Then

$$
\begin{aligned}
\mathbf{C} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right) \mathbf{V}^{T}=\sum \sigma_{i}^{2} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \\
\mathbf{C}^{2} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)^{2} \mathbf{V}^{T}=\sum \sigma_{i}^{4} \mathbf{v}_{i} \mathbf{v}_{i}^{T} \\
\vdots & \\
\mathbf{C}^{k} & =\mathbf{V}\left(\boldsymbol{\Sigma}^{T} \boldsymbol{\Sigma}\right)^{k} \mathbf{V}^{T}=\sum \sigma_{i}^{2 k} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
\end{aligned}
$$

If $\sigma_{1}>\sigma_{2}$, then the first term dominates, so $\mathbf{C}^{k} \rightarrow \sigma_{1}^{2 k} \mathbf{v}_{1} \mathbf{v}_{1}^{T}$ as $k \rightarrow \infty$.
This means that a close estimate to \mathbf{v}_{1} can be computed by simply taking the first column of \mathbf{C}^{k} and normalizing it to a unit vector.

Singular Value Decomposition (SVD)

The previous method is very costly due to the matrix power part.
A better approach. Instead of computing \mathbf{C}^{k}, we select a random vector $\mathrm{x} \in \mathbb{R}^{n}$ and compute $\mathbf{C}^{k} \mathbf{x}$ through a sequence of matrix-vector multiplications (which are very efficient especially when one dimension of \mathbf{A} is small, or \mathbf{A} is sparse):

$$
\mathbf{C}^{k} \mathbf{x}=\mathbf{A}^{T} \mathbf{A} \cdots \mathbf{A}^{T} \mathbf{A} \mathbf{x}
$$

Write $\mathbf{x}=\sum c_{i} \mathbf{v}_{i}\left(\right.$ since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ form an orthonormal basis for $\left.\mathbb{R}^{n}\right)$. Then

$$
\mathbf{C}^{k} \mathbf{x} \approx\left(\sigma_{1}^{2 k} \mathbf{v}_{1} \mathbf{v}_{1}^{T}\right)\left(\sum c_{i} \mathbf{v}_{i}\right)=\sigma_{1}^{2 k} c_{1} \mathbf{v}_{1} .
$$

Normalizing the vector $\mathbf{C}^{k} \mathbf{x}$ for some large k then yields \mathbf{v}_{1}, the first right singular vector of \mathbf{A}.

Singular Value Decomposition (SVD)

MATLAB commands for computing matrix SVD

1. Full SVD

svd - Singular Value Decomposition.
$[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\mathbf{s v d}(\mathbf{X})$ produces a diagonal matrix S , of the same dimension as X and with nonnegative diagonal elements in decreasing order, and orthogonal matrices U and V so that $\mathrm{X}=\mathrm{U}^{*} \mathrm{~S}^{*} \mathrm{~V}^{T}$.
$\mathbf{s}=\mathbf{s v d}(\mathbf{X})$ returns a vector containing the singular values.

Singular Value Decomposition (SVD)

2. Truncated SVD

svds - Find a few singular values and vectors.
$\mathbf{S}=\mathbf{s v d s}(\mathbf{A}, \mathbf{K})$ computes the K largest singular values of A.
$[\mathbf{U}, \mathbf{S}, \mathbf{V}]=\mathbf{s v d s}(\mathbf{A}, \mathbf{K})$ computes the singular vectors as well. If A is $\mathrm{M}-\mathrm{by}-\mathrm{N}$ and K singular values are computed, then U is M -by- K with orthonormal columns, S is K -by- K diagonal, and V is $\mathrm{N}-$ by- K with orthonormal columns.

In many applications, a truncated SVD is enough, and it is much easier to compute than the full SVD.

