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Outline

• Matrix generalized inverse

• Pseudoinverse

• Application to solving linear systems of equations



Generalized inverse and pseudoinverse

Recall
... that a square matrix A ∈ Rn×n is invertible if there exists a square matrix
B of the same size such that

AB = BA = I

In this case, B is called the matrix inverse of A and denoted as B = A−1.

We already know that two equivalent ways of characterizing a square, invertible
matrix A are

• A has full rank, i.e., rank(A) = n

• A has nonzero determinant: det(A) 6= 0
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Generalized inverse and pseudoinverse

Remark. For any invertible matrix A ∈ Rn×n and any vector b ∈ Rn, the linear
system Ax = b has a unique solution x∗ = A−1b.

MATLAB command for solving a linear system Ax = b

A\b % recommended

inv(A) ∗ b % avoid (especially when A is large)
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Generalized inverse and pseudoinverse

What about general matrices?

Let A ∈ Rm×n. We would like to address the following questions:

• Is there some kind of inverse?

• Given a vector b ∈ Rm, how can we solve the linear system Ax = b?
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Generalized inverse and pseudoinverse

More motivation
In many practical tasks such as multiple linear regression, the least squares
problem arises naturally:

min
x∈Rn

‖Ax− b‖2 (where A ∈ Rm×n, b ∈ Rm are fixed)

If A has full column rank (i.e., rank(A) = n ≤ m), then the above problem has
a unique solution

x∗ = (AT A)−1AT b

We want to better understand the matrices:

• (AT A)−1AT (pseudoinverse): Optimal solution is x∗ = (AT A)−1AT b;

• A(AT A)−1AT (projection matrix): Closest approximation of b is Ax∗ =
A(AT A)−1AT b
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Generalized inverse and pseudoinverse

Generalized inverse
Def 0.1. Let A ∈ Rm×n be any matrix. We call the matrix G ∈ Rn×m a
generalized inverse of A if it satisfies

AGA = A

Remark. If A is square and invertible, then it has one and only one generalized
inverse which must coincide with the ordinary inverse A−1. To see this, first
observe that A−1 apparently satisfies the definition and thus is a generalized
inverse. Conversely, if A has a generalized inverse G, then from the equation
AGA = A we get

G = A−1(AGA)A−1 = A−1(A)A−1 = A−1

This thus justifies the term “generalized inverse”.
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Generalized inverse and pseudoinverse

Remark. For a general matrix A ∈ Rm×n, its generalized inverse always exists
but might not be unique.

For example, let A = [1, 2] ∈ R1×2. Its generalized inverse is a matrix G =[
x

y

]
∈ R2×1 satisfying

[1, 2] = A = AGA = [1, 2]
[

x

y

]
[1, 2] = (x + 2y) · [1, 2].

This shows that any G =
[

x

y

]
∈ R2×1 with x + 2y = 1 is a generalized inverse

of A, e.g., G =
[

1
0

]
or G =

[
3
−1

]
.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/43



Generalized inverse and pseudoinverse

The following theorem indicates a way to find the generalized inverse of any
matrix.

Theorem 0.1. Let A =
[

A11 A12
A21 A22

]
∈ Rm×n be a matrix of rank r, and

A11 ∈ Rr×r. If A11 is invertible, then G =
[

A−1
11 O

O O

]
∈ Rn×m is a generalized

inverse of A.

Remark. Any matrix A ∈ Rm×n with rank r can be rearranged through row
and column permutations to have the above partitioned form with an invertible
r × r submatrix in the top-left corner. This theorem essentially establishes the
existence of a generalized inverse for any matrix.
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Generalized inverse and pseudoinverse

Remark. We skip the proof but illustrate the theorem with an example:

A =

1 2 3
4 5 6
7 8 9


Since rank(A) = 2 and the top-left 2× 2 block is invertible, we can easily find a
generalized inverse

G =

− 5
3

2
3 0

4
3 − 1

3 0
0 0 0


To verify:

AGA =

1 2 3
4 5 6
7 8 9


− 5

3
2
3 0

4
3 − 1

3 0
0 0 0


1 2 3

4 5 6
7 8 9

 =

1 2 3
4 5 6
7 8 9

 = A
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Generalized inverse and pseudoinverse

The generalized inverse can also be used to find a solution to a consistent linear
system (i.e., there exists at least a solution).

Theorem 0.2. Consider the linear system Ax = b. Suppose b ∈ Col(A) such that
the system is consistent. Let G be a generalized inverse of A, i.e., AGA = A.
Then x∗ = Gb is a particular solution to the system.

Proof. Multiplying both sides of Ax = b by AG gives that

(AG)b = (AG)Ax = (AGA)x = Ax = b.

This shows that x∗ = Gb is a particular solution to the linear system.
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Generalized inverse and pseudoinverse

Example 0.1. Consider the linear system Ax = b, where

A =

1 2 3
4 5 6
7 8 9

 , b =

 6
15
24

 .

According to the system, a particular solution to the system is

x∗ = Gb =

− 5
3

2
3 0

4
3 − 1

3 0
0 0 0


 6

15
24

 =

0
3
0
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Generalized inverse and pseudoinverse

Projection matrices
Def 0.2. A square matrix P is called a projection matrix if P = P2.

Example 0.2. The following are some projection matrices (but not all):

I,

1 0 0
0 1 0
0 0 0

 ,

1 0 0
0 0 0
0 0 0

 , O

Remark. Projection matrices must have a determinant of 0 or 1, because

det(P) = det(P2) = [det(P)]2.
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Generalized inverse and pseudoinverse

Remark. The following statements explain what a projection matrix does:

• A projection matrix P ∈ Rn×n projects any vector in Rn onto its range
(column space). To see this, let x ∈ Rn. Then

Px = [p1 . . . pn]

x1
...

xn

 =
∑

xipi ∈ Col(P) ≡ Range(P)

• A projection matrix keeps all points from its range (when applied to them)
in their original places. To see this, let v ∈ Range(P). Then there exists
some x ∈ Rn such that v = Px. It follows that

Pv = P(Px) = P2x = Px = v.
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Generalized inverse and pseudoinverse

Theorem 0.3. Let A ∈ Rm×n with a generalized inverse G ∈ Rn×m. Then
AG ∈ Rm×m is a projection matrix.

Proof. From AGA = A, we obtain

(AG)(AG) = (AGA)G = AG.

This shows that AG is a projection matrix.

Remark. Similarly, we can show that GA ∈ Rn×n is also a projection matrix

(GA)(GA) = GA

We’ll focus on AG below.
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Generalized inverse and pseudoinverse

Remark. AG and A must have the same column space. To see this,

(1) For any y ∈ Col(AG), there exists some x ∈ Rm such that y = (AG)x. It
follows that y = A(Gx) ∈ Col(A). This shows that Col(AG) ⊆ Col(A).

(2) For any y ∈ Col(A), there exists some x ∈ Rn such that y = Ax. Write
y = (AGA)x = (AG)(Ax). This shows that y ∈ Col(AG). Thus,
Col(A) ⊆ Col(AG).

Therefore, AG is a projection matrix onto the column space of A.

Similarly, we can show that GA is a projection matrix onto the row space of A.
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Generalized inverse and pseudoinverse

Example 0.3. Consider the matrix A and its generalized inverse G:

A =

1 2 3
4 5 6
7 8 9

 , G =

− 5
3

2
3 0

4
3 − 1

3 0
0 0 0


We have

AG =

1 2 3
4 5 6
7 8 9


− 5

3
2
3 0

4
3 − 1

3 0
0 0 0

 =

 1 0 0
0 1 0
−1 2 0


According to the previous slide,

• AG and A have the same column space.

• AG is a projection matrix onto the column space of A.
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Generalized inverse and pseudoinverse

Pseudoinverse
Briefly speaking, the matrix pseudoinverse is a generalized inverse with more
constraints.

Def 0.3. Let A ∈ Rm×n. We call the matrix B ∈ Rn×m the pseudoinverse of
A if it satisfies all four conditions below:

(1) ABA = A ←− B is a generalized inverse of A

(2) BAB = B ←− A is a generalized inverse of B

(3) (AB)T = AB ←− AB is symmetric

(4) (BA)T = BA ←− BA is symmetric
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Generalized inverse and pseudoinverse

Remark.

• If B satisfies Condition (1), it is known as a generalized inverse of A; if B
satisfies Conditions (1) and (2), it is called a reflexive generalized inverse.
Only when B satisfies all 4 conditions, it is called the pseudoinverse of A.

• It can be shown that for any matrix A ∈ Rm×n, the pseudoinverse always
exists and is unique. We denote the pseudoinverse of A as A†.

• A pseudoinverse is sometimes called the Moore–Penrose inverse, after
the pioneering works by E. H. Moore and Roger Penrose.

• The symmetric form of the definition implies B = A† and A = B†, and
thus, A = (A†)†.
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Generalized inverse and pseudoinverse

Example 0.4. Consider A = [1, 2] ∈ R1×2 again. We showed that any matrix
G = (x, y)T ∈ R2×1 with x + 2y = 1 is a generalized inverse of A:

[1, 2] = A = AGA = [1, 2]
[

x

y

]
[1, 2] = (x + 2y) · [1, 2].

To find its pseudoinverse, we need to write down three more equations:[
x

y

]
= G = GAG =

[
x

y

]
[1, 2]

[
x

y

]
= (x + 2y) ·

[
x

y

]

x + 2y = (AG)T = AG = [1, 2]
[

x

y

]
= x + 2y[

x y

2x 2y

]
= (GA)T = GA =

[
x

y

]
[1, 2] =

[
x 2x

y 2y

]
−→ 2x = y
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Generalized inverse and pseudoinverse

Solving the two equations together gives that x = 1
5 , y = 2

5 . Thus, the pseudoin-
verse of A is

A† =
[

1
5

2
5

]T

.

Example 0.5. Let

A =
[

1 0
1 0

]
.

Verify that

A† =
[

1
2

1
2

0 0

]
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Generalized inverse and pseudoinverse

Example 0.6 (Cont’d). Consider the matrix again

A =

1 2 3
4 5 6
7 8 9


which has the following generalized inverse

G =

− 5
3

2
3 0

4
3 − 1

3 0
0 0 0


That is, AGA = A. It can be verified that A is also a generalized inverse of G:

GAG = G

Thus, G must be at least a reflexive generalized inverse of A.
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Generalized inverse and pseudoinverse

However, neither AG nor GA is symmetric:

AG =

1 2 3
4 5 6
7 8 9


− 5

3
2
3 0

4
3 − 1

3 0
0 0 0

 =

 1 0 0
0 1 0
−1 2 0


GA =

− 5
3

2
3 0

4
3 − 1

3 0
0 0 0


1 2 3

4 5 6
7 8 9

 =

1 0 −1
0 1 2
0 0 0



Therefore, G is not the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Orthogonal projection matrices
Since the matrix pseudoinverse is still a generalized inverse, it will automatically
inherit the properties of the matrix generalized inverse. Nevertheless, in many
cases, stronger results can be obtained for a matrix pseudoinverse.

Def 0.4. A square matrix P is called a orthogonal projection matrix if P = PT

and P = P2.

Example 0.7.

1 0 0
0 1 0
0 0 0

 ,

[
1
2

1
2

1
2

1
2

]
are both orthogonal projection matrices,

but

 1 0 0
0 1 0
−1 2 0

 is not (it is just a projection matrix).
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Generalized inverse and pseudoinverse

Theorem 0.4. For any matrix A ∈ Rm×n, AA† is an orthogonal projection
matrix (onto the column space of A).

Proof. First, A† is still a generalized inverse. Thus, AA† is a projection matrix
(onto the column space of A).

Secondly, since A† is the pseudoinverse of A, AA† must be symmetric.

Therefore, by definition, AA† is an orthogonal projection matrix.

Remark. Similarly, A†A is also an orthogonal projection matrix (onto the row
space of A).
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Generalized inverse and pseudoinverse

Remark. For any projection matrix P ∈
Rn×n and vector x ∈ Rn, we have

x = Px + (I−P)x

If P is an orthogonal projection (i.e.,
P = PT ), then the two components
are orthogonal to each other:

(Px)T (I−P)x = xT P(I−P)x
= xT (P−P2)x
= 0.

This implies that orthogonal projections
produce orthogonal decompositions of
vectors.

b x

Px
b

Range(P)

b
0

(I−P)x
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Generalized inverse and pseudoinverse

Finding matrix pseudoinverse

Let A ∈ Rm×n. Our goal is to find A† (which exists and is unique).

We first consider the following two special settings:

• A is a tall matrix with full column rank (i.e., rank(A) = n ≤ m).
Note that in this case, AT A ∈ Rn×n is invertible.

• A is a “diagonal” matrix (i.e., aij = 0 whenever i 6= j).

Afterwards, we present a theorem to show how to find the pseudoinverse of a
general matrix via its SVD.
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Generalized inverse and pseudoinverse

Theorem 0.5. Let A ∈ Rm×n be any tall matrix with full column rank (i.e.,
rank(A) = n ≤ m). Then the pseudoinverse of A is

A† = (AT A)−1AT .

Proof. It suffices to verify the four conditions for being a pseudoinverse:

AA†A = A · (AT A)−1AT ·A = A
A†AA† = (AT A)−1AT ·A · (AT A)−1AT = A†

AA† = A(AT A)−1AT (symmetric)
A†A = (AT A)−1AT ·A = In (symmetric)

Therefore, A† = (AT A)−1AT is the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Remark. The theorem implies that for any tall matrix A ∈ Rm×n with full column
rank (i.e., rank(A) = n ≤ m), the following is an orthogonal projection matrix
(onto the column space of A):

AA† = A(AT A)−1AT .

Remark. Let U ∈ Rm×n be a tall matrix with orthonormal columns (e.g., an
orthonormal basis matrix). Then it has full column rank, and

UT U =

uT
1
...

uT
n

 [u1 . . . un] =

1
. . .

1

 = In

It follows that

U† = UT (pseudoinverse), and UU† = UUT (orthogonal projection matrix)
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Generalized inverse and pseudoinverse

Example 0.8. Find the pseudoinverse of

X =

1 −1
0 1
1 0

 .

Solution: Observe that this matrix has full column rank (i.e., 2). We first
compute

XT X =
(

1 0 1
−1 1 0

)1 −1
0 1
1 0

 =
(

2 −1
−1 2

)

It follows that

X† = (XT X)−1XT = 1
3

(
2 1
1 2

)(
1 0 1
−1 1 0

)
= 1

3

(
1 1 2
−1 2 1

)
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Generalized inverse and pseudoinverse

Theorem 0.6. Let A ∈ Rm×n be a diagonal matrix, i.e., all of its entries are zero
except some of those along its diagonal. Then the pseudoinverse of A is another
diagonal matrix B ∈ Rn×m such that

bii =
{

1
aii

, if aii 6= 0
0, if aii = 0

Proof. We verify this result using an example. Let

A =
[

0 0 0
0 3 0

]
and B =

0 0
0 1

3
0 0

 .
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Generalized inverse and pseudoinverse

Then

AB =
[

0 0
0 1

]
and BA =

0 0 0
0 1 0
0 0 0


both of which are symmetric. Furthermore,

ABA =
[

0 0
0 1

][
0 0 0
0 3 0

]
=
[

0 0 0
0 3 0

]
= A

BAB =

0 0 0
0 1 0
0 0 0


0 0

0 1
3

0 0

 =

0 0
0 1

3
0 0

 = B.

Thus, B is the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Theorem 0.7. Let A ∈ Rm×n be any matrix. Suppose its full SVD is A = UΣVT .
Then the pseudoinverse of A is

A† = VΣ†UT

Proof. We verify the four conditions directly:

AA†A = UΣVT ·VΣ†UT ·UΣVT = UΣΣ†ΣVT = UΣVT = A
A†AA† = VΣ†UT ·UΣVT ·VΣ†UT = VΣ†ΣΣ†UT = VΣ†UT = A†

AA† = UΣVT ·VΣ†UT = UΣΣ†UT (symmetric)
A†A = VΣ†UT ·UΣVT = VΣ†ΣVT (symmetric)

This completes the proof.
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Generalized inverse and pseudoinverse

Example 0.9. Consider again the matrix

X =

1 −1
0 1
1 0

 .

We have previously found its SVD:

X =


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3

 ·

√

3 0
0 1
0 0

 ·( 1√
2

1√
2

− 1√
2

1√
2

)T

By the last theorem,

X† =
(

1√
2

1√
2

− 1√
2

1√
2

)
·

(
1√
3 0 0

0 1 0

)
·


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3


T

= 1
3

(
1 1 2
−1 2 1

)
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Generalized inverse and pseudoinverse

MATLAB function for computing pseudoinverse
pinv Pseudoinverse.

X = pinv(A) produces a matrix X of the same dimensions
as A′ so that A ∗X ∗A = A, X ∗A ∗X = X and A ∗X and X ∗A

are Hermitian. The computation is based on SV D(A) and any
singular values less than a tolerance are treated as zero.

pinv(A, TOL) treats all singular values of A that are less than TOL as
zero. By default, TOL = max(size(A)) ∗ eps(norm(A)).
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Generalized inverse and pseudoinverse

Applications of matrix pseudoinverse

• Linear least squares

• Minimum norm solution to a consistent linear system
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Generalized inverse and pseudoinverse

Linear least squares

Consider a system of linear equations Ax = b where A ∈ Rm×n and b ∈ Rm.

In general, a vector x that solves the system may not exist, or if one does exist,
it may not be unique.

In either case, we seek a least squares solution instead by solving the following
least squares problem

min
x∈Rn

‖Ax− b‖

This problem always has a solution, as the next slide shows.
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Generalized inverse and pseudoinverse

Theorem 0.8. A minimizer of the above
least squares problem is

x∗ = A†b.

Proof. Since

Ax ∈ Col(A),

the optimal x should be such that

Ax = (AA†)b

Obviously, x∗ = A†b solves this equa-
tion and thus is a solution of the least
squares problem (but it might not be
the only solution).

b b

Ax
b

Col(A)

b
0

a1 a2

an

Remark. If A has full column rank
(i.e., rank(A) = n ≤ m), then the
least squares solution exits and is unique:
x∗ = A†b = (AT A)−1AT b.
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Generalized inverse and pseudoinverse

Minimum-norm solution to a consistent linear system

For linear systems Ax = b with non-unique solutions (such as under-determined
systems), the pseudoinverse may be used to construct the solution with minimum
Euclidean norm among all solutions.

Theorem 0.9. Let A ∈ Rm×n and b ∈ Rm. If the linear system Ax = b has
solutions, then x∗ = A†b is an exact solution and has the smallest possible norm,
i.e., ‖x∗‖ ≤ ‖x‖ for all solutions x.
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Generalized inverse and pseudoinverse

Proof. First, since A† is a generalized inverse, it must be a solution to Ax = b.
To show that it has the smallest possible norm, for any solution x ∈ Rn, consider
its orthogonal decomposition via A†A ∈ Rn×n:

x = (A†A)x + (I−A†A)x = A†b + (I−A†A)x

It follows that

‖x‖2 = ‖A†b‖2 + ‖(I−A†A)x‖2 ≥ ‖A†b‖2

This shows that ‖x‖ ≥ ‖A†b‖.
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Generalized inverse and pseudoinverse

Summary

• Generalized inverse G ∈ Rn×m for a matrix A ∈ Rm×n:

– Definition: AGA = A

– Existence: G always exists but might not be unique

– Computing : How to find a generalized inverse (see slide 9 for formula)

– Property : AG is a projection matrix onto Col(A)

– Application: x = Gb is a solution to Ax = b (if consistent)
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Generalized inverse and pseudoinverse

• Pseudoinverse A† ∈ Rn×m for a matrix A ∈ Rm×n:

– Definition: AA†A = A†, and A†AA† = A, and both AA†, A†A
are symmetric

– Existence: A† always exists and is unique

– Computing : How to find the pseudoinverse:

∗ If A has full column rank: A† = (AT A)−1AT

∗ If A is “diagonal”: A† ∈ Rn×m is also “diagonal” with recipro-
cals of nonzero diagonals of A

∗ In general: A† = VΣ†UT (if A = UΣVT )

– Property : AA† is an orthogonal projection matrix onto Col(A)
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Generalized inverse and pseudoinverse

– Application: For any A ∈ Rm×n, b ∈ Rm, A†b solves the least
squares problem

min
x∈Rn

‖Ax− b‖

If Ax = b has exact solutions, then A†b is the minimum-norm
solution.
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