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Principal Component Analysis (PCA)

Introduction

e Many data sets have very high dimensions nowadays, causing signifi-
cant challenge in storing and processing them.

e We need a way to reduce the dimensionality of the data in order to
reduce memory requirement while increasing speed.

e If we discard some dimensions, will that degrade the performance?

e The answer can be no, as long as we do it carefully by preserving
only the information that is needed by the task. In fact, it may
even lead to better results in many cases.
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Different dimentionality reduction algorithms preserve different kinds of
information (when reducing the dimension):

e Principal Component Analysis (PCA): variance

e Multidimensional Scaling (MDS): distance

ISOMap: geodesic distance

Local Linear Embedding (LLE): local geometry

Laplacian Eigenmaps: local affinity

Linear Discriminant Analysis (LDA): separation among classes
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A demonstration

“Useful” information of a data set is often contained in only a small number
of dimensions.
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Another example

Average intensity value of each pixel of the MNIST handwritten digits:

mean intensity value at each pixel
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e Boundary pixels tend to be zero;

e Number of degrees of freedom of each digit is much less than 784.
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The one-dimensional PCA problem

Problem. Given a set of data points
Xi,...,X, € R% find a line S
parametrized by x(t) = t-v+Db
(with ||v]| = 1) such that the orthog-
onal projections of the data onto the
line

Ps(x;) =vvl(x; —b)+b

=a;v+b, 1<i<n

have the largest possible variance.
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Mathematical formulation

First observe that for parallel lines, the projections are different, but the
amounts of variance are the same! <— This implies that the choice of b

is not unique.

To make the problem well defined, we add a constraint by requiring that
1
=a=— Z(},—VT Z( i—b)=vl.(x—b)

This yields that b = x = %in, i.e., we only consider lines passing
through the centroid of the data set.
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We have thus eliminated the variable b from the problem, so that we only
need to focus on the unit-vector variable v (representing the direction of
the line).

Since we now have a = 0, the variance of the projections is simply

and we can correspondingly reformulate the original problem as follows:

max a?, where a; = v (x; — X).
vilv][=1 ——
scatter
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Let us further rewrite the objective function:

Z a? = ZVT(xi - %) (xi —x)Tv

:Zv { (XZ—X)T]V
=V Y = %) (i = %) | v
:=C (dxd matrix)

=vICv.

Remark. The matrix C is called the sample covariance matrix or scatter
matrix of the data. It is square, symmetric, and positive semidefinite,
because it is a sum of such matrices!
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Accordingly, we have obtained the following (Rayleigh quotient) problem

max v!Cv
vi|v||=1

By applying the theorem, we can easily obtain the following result.

Theorem 0.1. Given a set of data points X, ..., X, in R with centroid
X = %in, the optimal direction for projecting the data (in order to have
maximum variance) is the largest eigenvector of the sample covariance

matrix C = . (x; — X)(x; — %) 7"

max v Cv = A1, achieved when v = vy.
v:||v||=1 ~~
max scatter
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Remark. It can be shown that

max vICv = )y, achieved when v = vg;
vi|vl=1,v]v=0

max vICv = A3, achieved when v = vs.
vi|[v]|=1,vTv=0,vIv=0

This shows that vo, v3 etc. are the next best orthogonal directions.
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For each 1 <7 <mn, let

(so on and so forth for subsequent
orthogonal directions).

The scatter of the projections of the
data onto each of those directions is

Za? = V?Cvl =)\
D bf =v5Cvy =X
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The total scatter of the k-dimensional PCA projections is equal to the sum
of the scatter onto each direction. We prove this for the case of k = 2:

> las bi) = (0,0)[17 =Y (a7 +b7) =D af + > b7 =M+ Ao

It is also the maximum possible amount of scatter that can be preserved
by all planes of the same dimension.

Furthermore, the orthogonal projections onto different eigenvectors v; are
uncorrelated: Since >~ a; =0 = > b;, their covariance is

Zaibi = ZV’{ X; — }_()(Xi — )_C)TVQ

= vICvy = v (\ava) = Xa(vIva) = 0.
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Principal component analysis (PCA)
The previous procedure is called principal component analysis.
e v, is called the jth principal direction;

e The projection of the data point x; onto vj, i.e., VJT(XZ- —X), is
called the jth principal component of x;.

In fact, PCA is just a change of coordinate system to use the maximum-

variance directions of the data set!
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Example 0.1. Perform PCA (by hand) on the following data set (rows
are data points):
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Computing

PCA requires constructing a d x d matrix from the given data
C= Z(xZ —x)(x; —x)T
and computing its (top) eigenvectors
C~ VA, VE
which can be a significant challenge for large data sets in high dimensions.

We show that the eigenvectors of C can be efficiently computed from the
Singular Value Decomposition (SVD) of the centered data matrix.
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xi X1
let X=| : | eR™and X = | : | € R™ (where X; = x; — X) be
xF xI

n n
the original and centered data matrices (rows are data points).

Then
]
C=> %% =[%1...%) | : | =X"X.
ST
xn

Again, this shows that C is square, symmetric and positive semidefinite
and thus only has nonnegative eigenvalues.
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PCA through SVD

Recall that the principal directions of a data set are given by the top
eigenvectors of the sample covariance matrix

C =X"X e R¥*?,
Algebraically, they are also the right singular vectors of X:
X"X = vs'uT . usv’ = v (37x) V7
A

Thus, one may just use the SVD of X to compute the principal directions
(and components), which is much more efficient.
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Interpretations:
Let the SVD of a centered data matrix X be the following
X=U.-2-vi=uz.Vv7
Then
e Columns of V (right singular vectors v;) are principal directions;

e Squared singular values (\; = o?) represent amounts of scatter
captured by each principal direction;

e Columns of UX are different principal components of the data.
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To see the last one, consider any principal direction v;. The corresponding
principal component is
XVj = O'jllj

with scatter \; = o7.

Collectively, for the top & principal directions, the principal components of
the entire data set are

\Y’;: [ivl...ivk] :i[vl...vk] <—in
nxk
g1
:[Ulul...okuk]:[ul...uk] — Uiy

Ok
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Note also the following:

e The total scatter preserved by the k-dimensional projections is

doN= D a

1<j<k 1<j<k

e A parametric equation of the k-dimensional PCA plane is

X=X+ Via

e Projections of the data onto this plane are given by the rows of

Ps(X) = 1x7 + XV, VL
Y
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An SVD-based algorithm for PCA

Input: Data matrix X € R"*? and integer k (with 0 < k < d)

Output: Top k principal directions v1, ..., Vv, and corresponding principal
components Y € R™*k,

Steps:
1. Center data: X = [X1 —X,...,X, — X|T where x = %in
2. Perform rank-k SVD: X ~ UkEkV;‘g

3. Return: Y = in =U,X;

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/49



Principal Component Analysis (PCA)

Connection to orthogonal least-squares fitting

We have seen that the following two
planes coincide:

(1) PCA plane: which maximizes
the projection variance,

(2) Orthogonal best-fit plane:
which minimizes the orthogonal
least-squares fitting error.

Mathematical justification:

T — —
SNiki—=lP= Y ar + Y Ixi—pil? P =V (i —X)+4xX
—_——— ——
total scatter proj. var.  ortho. fitting error
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Other interpretations of PCA

The PCA plane also tries to preserve, as much as possible, the Euclidean
distances between the given data points:

||Y7, — Y_]H? ~ ||Xl — Xj||2 for “most” pairs ) 75‘]
More on this when we get to the MDS part.
PCA can also be regarded as a feature extraction method:

L

v =
J .
Aj

1 ~rn ~ ~ ~
Cv; = )\—jXT(ij) € Col(XT), for all j < rank(X)

This shows that each v; is a linear combination of the centered data points
(and also a linear combination of the original data points).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 24/49



Principal Component Analysis (PCA)

MATLAB implementation of PCA
MATLAB built-in: [V, US] = pca(X); % Rows of X are observations

Alternatively, you may want to code it yourself:

Xtilde = X - mean(X,1);
[U,S,V] = svds(Xtilde, k); % k is the reduced dimension
Y = Xtilde*V;

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 25/49




Principal Component Analysis (PCA)

Application to data visualization

Given a high dimensional data set x1,...,x, € R? one can visualize the
data by

e projecting the data onto a 2 or 3 dimensional PCA plane and

e plotting the principal components as new coordinates

. pel (Xvy)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 26/49



Principal Component Analysis (PCA)

2D visualization of MNIST handwritten digits

1. The “average” writer

2. The full appearance of each digit class
0-3

(cont’d on next page)
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How to set the parameter k in other settings?
Generally, there are two ways to choose the reduced dimension k:
e Set k = #"dominant” singular values

e Choose k such that the top k principal components explain a certain
fraction of the total scatter of the data:

k r
2 2
E o; / g o; > p.
i=1 i=1
—— ——
explained variance total variance

Common values of p are .95 (the most commonly used), or .99 (more
conservative, less reduction), or .90, .80 (more aggressive).
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However, in practical contexts, it is possible to get much lower than this
threshold while maintaining or even improving the accuracy.

Example: MNIST handwritten digits
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Concluding remarks on PCA
PCA projects the (centered) data onto a k-dim plane that
e maximize the amount of variance in the projection domain,
e minimizes the orthogonal least-squares fitting error
As a dimension reduction and feature extraction method, it is
e unsupervised (blind to labels),
e nonparameteric (model-free), and

e very popular!
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PCA is a deterministic procedure, assuming no measurement errors in the
data:

X=Y V7
To extend it to deal with measurement errors, we can assume a statistical
model
N k
Xij = Z Fywy; + €5, forall i,j
r=1
which in matrix form is
X= F - W + E
—~~ ~— —

factor scores factor loadings  errors

This method is called factor analysis and its solution can be derived by
using the MLE approach.
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Lastly, PCA is a linear projection method:
y=V'(x-x)

For nonlinear data, PCA will need to use a dimension higher than the
manifold dimension (in order to preserve most of the variance).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 33/49



Principal Component Analysis (PCA)

On the matter of centering

PCA requires data centering (equivalent to fitting a plane through the
centroid). What is the best plane through the origin (linear subspace)?
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Why using linear subspaces?

They are very useful for modeling document collections:

terms
XXX X XXX XXX XXX XX XXX

FF Tt
FE T
F 4+ T
T+

Topic 1

Topic 2

documents
EEEEEEEEER
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How to fit a plane through the origin?

Theorem 0.2. Let X € R™*? be the given data set and k& > 1 an integer.
The best k-dimensional plane through the origin for fitting the data is
spanned by the top k right singular vectors of X:

X ~ X = U, Vi
S~ Ny —_——
given data  projections  coefficients basis

Proof. It suffices to solve

min [X - XVVT|?
VERIxXk: VIV=I,

The optimal V is such that XVV7T = X, and can be chosen to be V.
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Example 0.2. Consider a data set PCA line SVD line
of 3 points in R?:
31
(1,3),(2,2),(3,1).
21

The PCA line is

x(t) = (2,2) + (\f }) il
while the SVD line (best-fit line ; . .

through the origin) is
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Application: Visualization of 20 newsgroups data

comp.graphics h .

comp.os.ms-windows.misc talk. politics.misc seicrypt

comp.sys.ibm.pc.hardware sci.electronics
talk.politics.guns

comp.sys.mac.hardware o B sci.med

comp.windows x Rl O sci space

rec autos
rec._motorcycles
rec.sport.baseball
rec.sport.hockey

alt atheism
soc.religion_christian

misc forsale

talk_religion.misc ‘

2907
2380 2372
1573 1455
‘ 582
. . /4
comp rec sci political religion misc
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480 464
H 376
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Summary information:

e 18,774 documents partitioned nearly evenly across 20 different news-
groups.

e A total of 61,118 unique words (including stopwords) present in the
corpus.

A significant challenge:

e The stopwords dominate in most documents in terms of frequency
and make the newsgroups very hard to be .
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A fake document-term matrix:

the an zzzz math design car cars
doc 1 8 12 1 4 2
doc 2 7 10 3 4
doc 3 9 15 5 2
doc 4 5 9 2 2 2
doc 5 9 7 3 3 1
doc 6 1 1 2

We will not use any text processing software to perform stopword removal
(or other kinds of language processing such as stemming), but rather
rely on the following statistical operations (in the shown order) on the
document-term frequency matrix X to deal with stopwords:
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1. Convert all the frequency counts into binary (0/1) form

the an zzzz matrix design car cars
doc1 1 1 1 1 1
doc 2 1 1 1 1
doc 3 1 1 1 1
doc 4 1 1 1
doc 5 1 1 1
doc 6 1 1
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2. Remove words that occur either in exactly one document (rare words
or typos) or in “too many" documents (stopwords or common words)

math design car cars
doc 1 1 1
doc 2 1 1
doc 3 1 1
doc 4 1 1
doc 5 1 1
doc 6 1
6 3 5 3 1
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3. Apply the inverse document frequency (IDF) weighting to the re-

maining columns of X:

X(:J) < wi-X(5,j),  wj = log(n/ny),

where n; is the number of documents that contain the j-th word

math  design car cars
doc1 | 0.6931 0.1823
doc 2 | 0.6931 0.1823
doc 3| 0.6931 0.1823
doc 4 0.1823 0.6931 1.0986
doc 5 0.1823 0.6931 1.0986
doc 6 0.6931
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4. Rescale the rows of X to have unit norm in order to remove the

documents’ length information

math  design car cars
doc1 | 0.9671 0.2544
doc 2 | 0.9671 0.2544
doc 3 | 0.9671 0.2544

doc 4 0.1390 0.5284 0.8375
doc b 0.1390 0.5284 0.8375
doc 6 1
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By applying the above procedure (a particular TF-IDF weighting scheme!)
to the 20newsgroups data and keeping only the words with frequencies
between 2 and 939 (average cluster size), we obtain a matrix of 18,768
nonempty documents and 55,570 unique words, with average row sparsity
73.4.

For ease of demonstration, we focus on six newsgroups in the processed
data set (one from each category) and project them by SVD into a
3-dimensional plane through the origin for visualization.

'Full name: term frequency inverse document frequency.
See https://en.wikipedia.org/wiki/Tf-idf
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02 + comp.graphics
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We also display the top 20 words that are the most “relevant” to the
underlying topic of each class.

To rank the words based on relevance to each newsgroup, we first compute
the top right singular vector v; of a fixed newsgroup (without centering),
which represents the dominant direction of the cluster.

Each keyword i corresponds to a distinct dimension of the data and is
represented by e;.

The following score can then be used to measure and compare the relevance
of each keyword:

score(i) = cosb; = (vi,e;) =vi(i), i=1,...,55570
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word 2

word 1
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