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This lecture is based on the following textbook sections:

• Chapter 10: 10.1 – 10.3

Outline of this presentation:

• Consequences of model misspecification

• Criteria for evaluating subset regression models

• Computational techniques for variable selection



Variable Selection and Model Building

Introduction
In previous chapters when performing regression, we assume that

• we have a very good idea of the basic form of the model, and

• we know all (or nearly all) of the regressors that should be used.

Our focus was on techniques to ensure that

• the functional form of the model was correct, and

• the underlying assumptions were not violated.
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Our basic strategy is as follows:

1. Fit the full model (with all of the regressors under consideration).

2. Perform a thorough analysis of this model, including a full residual
analysis.

3. Determine if transformations of the response or of some of the
regressors are necessary.

4. Use the t tests on the individual regressors to edit the model.

5. Perform a thorough analysis of the edited model, especially a residual
analysis, to determine the model’s adequacy.
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However, in most practical problems, we face a rather large pool of
candidate regressors, of which only a few are likely to be important.

Additionally, some of the important variables may be correlated with each
other, so we don’t really need all of them (even though individually they
may appear important).

Finding an appropriate subset of regressors for the model is often called
the variable selection problem.
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Building a regression model that includes only a subset of the available
regressors involves two conflicting objectives:

(1) Use as many regressors as possible for accurate estimation/prediction;

(2) Use as few regressors as possible so that the model is simple, yet
still accurate.

The process of finding a model that is a compromise between these two
objectives is called selecting the “best” regression equation.

Unfortunately, there is no unique definition of “best”, and different variable
selection procedures frequently specify different subsets of the candidate
regressors as best.
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Consequences of model misspecification

Assume a population regression model consisting of K = k + r regressors

y = β0 + β1x1 + · · ·+ βkxk︸ ︷︷ ︸
to be retained

+ βk+1xk+1 + · · ·+ βk+rxk+r︸ ︷︷ ︸
to be deleted

+ ε

The sample regression model is

y = Xβ + ε =
[
Xp Xr

] [
βp

βr

]
+ ε = Xpβp + Xrβr + ε

where p = k + 1.
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For the full model, the least squares estimate of β is

β̂∗ =
[
β̂∗p
β̂∗r

]
= (X′X)−1X′y

In particular, β̂∗p is an estimator of βp, and it is unbiased.

For the subset model,
y = Xpβp + ε

the least squares of estimate of βp is

β̂p = (X′pXp)−1X′py

We have thus obtained two estimators of βp: β̂∗p and β̂p.
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As variables are deleted from the model, for the retained variables in Xp,

• we may potentially introduce bias into their coefficient estimates β̂p

E(β̂p) = (X′pXp)−1X′p(Xpβp + Xrβr)
= βp + (X′pXp)−1X′pXrβr

unless the two sets of variables are orthogonal (X′pXr = O).

• meanwhile, we may improve the variance (precision) of β̂p

Overall, we could reduce the mean square error (MSE) of β̂p, if the deleted
variables have small effects.
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Criteria for Evaluating Subset Regression Models
Two key aspects of the variable selection problem are generating the subset
models and deciding if one subset is better than another.

We have the following evaluation criteria:

• Coefficient of determination R2

• Adjusted R2

• Residual mean square MSRes

• Mallow’s Cp statistic

• AIC and BIC
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Coefficient of determination

R2 = SSR

SST
= 1− SSRes

SST

R2 can be used to compare subset regression models that have the same
number of predictors.

Generally, R2 is not used as a criterion for choosing the number of regressors
to include in the model.
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Adjusted R2

R2
adj = 1− n− 1

n− p
(1−R2) = 1− SSRes/(n− p)

SST /(n− 1)

where p = k + 1 and k is the number of regressors (subset size).

This measure can be used to compare subset regression models with
different numbers of regressors.
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How to use R2
adj for choosing the optimal subset of regressors:

• For each subset size k = 1, . . . ,K, find the best k regressors that
maximize R2 (and also R2

adj). Denote the maximum by R2
adj(k).

• Compare R2
adj(k) for all k and select k such that R2

adj(k) is highest.
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Residual mean square

MSRes = SSRes

n− k − 1

It can also be used as a model evaluating/selection criterion:

• For each subset size k = 1, . . . ,K, find the best subset of k regressors
that minimizes MSRes. Denote the minimum by MSRes(k).

• Compare MSRes(k) for different k and select k such that MSRes(k)
is smallest, or approximately equal to that of the full model.

This criterion (minimum MSRes) is equivalent to the maximum adjusted
R2 criterion, because R2

adj = 1− MSRes
SST /(n−1)
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Mallows’ Cp statistic

Cp = 1
σ2 SSRes(p)︸ ︷︷ ︸

fitting error

−n+ 2p︸︷︷︸
penalty

(p = k + 1)

It can be shown that

E(SSRes(p)) =
n∑

i=1
(E(ŷi)− E(yi)︸ ︷︷ ︸

bias

)2 + (n− p)σ2

If the model has zero bias (such as the OLS),

E(Cp) = (n− p)σ2

σ2 − n+ 2p = p

(Otherwise, it will be bigger than p)
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Regression equations with little bias
will have values of Cp near the line
Cp = p while those with substantial
bias will fall above this line.

Generally, small values of Cp are
desirable (in the right plot, Model
C should be preferred to A and B).

To calculate Cp, we need an unbi-
ased estimate of σ2. Frequently, we
use the residual mean square of the
full model for this purpose.
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Two more commonly-used model selection criteria:

• Akaike Information Criterion:

AIC = −2 log(L) + 2p = n log(SSRes/n) + 2p

It is based on maximizing the expected entropy of the model.

• Bayesian Information Criterion:

BIC = −2 log(L) + p log(n) = n log(SSRes/n) + p log(n)

This criterion is also based on information theory but set within a
Bayesian context. Comparing with AIC, it places a greater penalty
on adding regressors as the sample size increases.
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Computational Techniques for Variable Selection

• All possible regressions ←− brute-force, exhaustive search

• Stepwise regression methods ←− smarter, but no guarantee

– Forward selection

– Backward elimination

– Stepwise regression (hybrid scheme)
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All possible regressions

This procedure requires that the analyst fit all the regression equations
involving 1 candidate regressor, 2 candidate regressors, and so on.

If there are K candidate regressors, there are 2K total equations to be
estimated and examined. ←− not practical for large K

These equations are evaluated according to some suitable criterion and
the “best” regression model selected.

The R function regsubsets() in the leaps package can be used to
perform all possible regressions.
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Example: The Hald Cement Data

Hald [1952] presents data concerning the heat evolved in calories per gram
of cement (y) as a function of the amount of each of four ingredients in
the mix: tricalcium aluminate (x1), tricalcium silicate (x2), tetracalcium
alumino ferrite (x3), and dicalcium silicate (x4).

The data set is rather small, containing only 13 observations.

Since there are K = 4 candidate regressors, there are 24 = 16 possible
regression equations.
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All possible regressions with a categorical predictor:

The regsubsets() function can be used in the same way. However, in
this scenario, the categorical variable (with ` levels) is reduced to ` − 1
indicator variables (treated as new predictors), so that effectively there are
a total of (K − 1) + (`− 1) predictors for forming subset models.

For certain subset size, it is possible that the best model of that size uses
only some but not all of the `−1 indicator variables. If such a model turns
out to be the best overall, it still implies that the categorical variable is
selected by the final model, just that some of the `− 1 indicator variables
have zero coefficients (which means that those levels are no different from
the reference level and they will share the same intercept).
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Stepwise regression methods

• Forward selection

• Backward elimination

• Stepwise regression (combination of forward and backward actions)
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Forward selection: add regressors from a candidate set {x1, . . . , xK},
one at a time, until certain stopping condition is met.

Cutoff needed: αIN

Step 0: Start without any regressor in the model (only the intercept)

Step 1: Add the most significant regressor to the model if the corresponding
F statistic has a p-value < αIN:

F = SSR(βj | β0)
MSRes(β0, βj) , j = 1, . . . ,K

Suppose x1 is added to the model.
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Variable Selection and Model Building

Step 2: For each remaining regressor xj , j = 2, . . . ,K, add the one with the
largest partial F statistic

F = SSR(β2 | β1, β0)
MSRes(β0, β1, β2)

(if the p-value is less than αIN, otherwise terminate the procedure).

Repeat the procedure with the remaining regressors until no regressor
can be added.
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Backward elimination: eliminate regressors one at a time.

Cutoff needed: αOUT

Step 0: Fit a model with all regressors

Step 1: Compute the partial F statistic for each regressor in the model
(given all other regressors) and remove the regressor with the largest
p-value if it exceeds the threshold αOUT

Step 2: Fit a new model with the remaining regressors, and repeat the above
procedure until no regressor can be eliminated from the model
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Stepwise regression: a combination of forward selection and backward
elimination actions

Cutoffs needed: αIN, αOUT

→ Start with no regressors in the model, and add regressors one at a
time (using the cutoff αIN)

← Each time a new regressor is added, check to see if any of the
previously added regressors may be eliminated from the model (using
the cutoff αOUT)

© Repeat until no regressor can be added to the model
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Comments:

• Backward elimination is often a very good variable selection proce-
dure. It is particularly favored by analysts who like to see the effect
of including all the candidate regressors.

• Berk [1978] has noted that forward selection tends to agree with all
possible regressions for small subset sizes but not for large ones, while
backward elimination tends to agree with all possible regressions for
large subset sizes but not for small ones.

• The three procedures do not necessarily lead to the same final model.

• None of them guarantees to find the best subset regression model.
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Stepwise regression when categorical variables are present

Suppose there are K candidate predictors, among which there is a cate-
gorical predictor xj with ` levels.

The R functions for the three methods are used in the same way as for
continuous variables (as long as xj has been converted by as.factor()).

xj is treated as a single variable (not `− 1 separate indicator variables)
and thus there is only a single partial F statistic

F = SSR(βj | . . .)/(`− 1)
MSRes(βj , . . .)

and a single p-value (to be used to make the corresponding decision).
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