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This lecture is based on the following textbook sections:

• Chapter 13: 13.1 – 13.3

Outline of this presentation:

• What is a GLM?

• Logistic regression

• Poisson regression



Generalized Linear Models (GLMs)

What is a GLM?
In ordinary linear regression, we assume that the response is a linear
function of the regressors plus Gaussian noise:

y = β0 + β1x1 + · · ·+ βkxk︸ ︷︷ ︸
linear form x′β

+ ε︸︷︷︸
N(0,σ2) noise

∼ N(x′β, σ2)

The model can be reformulate in terms of

• distribution of the response: y | x ∼ N(µ, σ2), and

• dependence of the mean on the predictors: µ = E(y | x) = x′β
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Generalized Linear Models (GLMs)
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Generalized Linear Models (GLMs)

Generalized linear models (GLM) extend linear regression by allowing
the response variable to have

• a general distribution (with mean µ = E(y | x)) and

• a mean that depends on the predictors through a link function g:

That is,
g(µ) = β′x

or equivalently,
µ = g−1(β′x)
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Generalized Linear Models (GLMs)

In GLM, the response is typically assumed to have a distribution in the
exponential family, which is a large class of probability distributions that
have pdfs of the form f(x | θ) = a(x)b(θ) exp(c(θ) · T (x)), including

• Normal - ordinary linear regression

• Bernoulli - Logistic regression, modeling binary data

• Binomial - Multinomial logistic regression, modeling general cate-
gorical data

• Poisson - Poisson regression, modeling count data

• Exponential, Gamma - survival analysis
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Generalized Linear Models (GLMs)

In theory, any combination of the response distribution and link function
(that relates the mean response to a linear combination of the predictors)
specifies a generalized linear model.

Some combinations turn out to be much more useful and mathematically
more tractable than others in practice.

Response distribution Link function g(µ) Use
Normal Identity µ OLS
Bernoulli Logit log

(
µ

1−µ

)
Logistic regression

Poisson Log log(µ) Poisson regression
Exponential/Gamma Inverse −1/µ Survival analysis
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Generalized Linear Models (GLMs)

Applications:

• Logistic Regression: Predict the likelihood that a consumer of an
online shopping website will buy a specific item (say, a camera)
within the next month based on the consumer’s purchase history.

• Poisson regression: Modeling the number of children a couple has
as a function of their ages, numbers of siblings, income, education
levels, etc.

• Exponential: Modeling the survival time (time until death) of
patients in a clinical study as a function of disease, age, gender, type
of treatment etc.
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Generalized Linear Models (GLMs)

Logistic regression
Logistic regression is a GLM that combines the Bernoulli distribution (for
the response) and the logit link function (relating the mean response to
predictors):

log
(

µ

1− µ

)
= β′x (y ∼ Bernoulli(p))

Remark. Since µ = E(y | x) = p, we have

log
(

p

1− p

)
= β′x (y ∼ Bernoulli(p))

where p: probability of success, p
1−p : odds, log( p

1−p): log-odds.
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Generalized Linear Models (GLMs)

Solving for µ (and also p), we obtain that

µ = 1
1 + e−β′x = σ(β′x), s(z) = 1

1 + e−z
,

where s(·) is the sigmoid function, also called the logistic function.
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Properties of the sigmoid function:

• s(0) = 0.5

• 0 < s(z) < 1 for all z

• s(z) monotonically increases
as z goes from −∞ to +∞
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Generalized Linear Models (GLMs)

For fixed β (model parameter) and
each given x (sampled location),

µ = p = s(z), z = β′x

has the following interpretations:

• mean response

E(y | x,β) = s(z)

• probability of success:

P (y = 1 | x,β) = s(z)
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Population model:

y | x,β ∼ Bernoulli(p = s(β′x))
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Generalized Linear Models (GLMs)

A sample from the logistic regression model, with p = s(−3 + 2x)
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Generalized Linear Models (GLMs)

Parameter estimation via MLE

Given a data set (x1, y1), . . . , (xn, yn),
fitting a logistic regression model is
equivalent to choosing the value of
β such that the mean response

µ = s(β′x)

matches the sample as “closely” as
possible.
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Generalized Linear Models (GLMs)

Mathematically, the best β is usually found by maximizing the likelihood
of the sample:

L(β | y1, . . . , yn) = f(y1, . . . , yn | β) =
n∏
i=1

f(yi | β)

where f(yi | β) is the probability function of the ith observation:

f(yi | β) = pyi
i (1− pi)1−yi =

pi, yi = 1
1− pi yi = 0

and
pi = 1

1 + e−β′xi

However, there is no closed-form solution, and the optimal β has to be
computed numerically.
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Generalized Linear Models (GLMs)

Prediction by logistic regression

Once the optimal parameter β̂ is found, the mean response at a new
location x0 is

E(y | x0, β̂) = 1
1 + e−β̂′x0

Note that this would not be our exact prediction at x0 (why?).
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Generalized Linear Models (GLMs)

To make a prediction at x0 based on the estimates β̂, consider

y0 | x0, β̂ ∼ Bernoulli(p̂0), p̂0 = 1
1 + e−β̂′x0

.

The prediction at x0 is

ŷ0 =

1, if p̂0 > 0.5
0, if p̂0 < 0.5
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Generalized Linear Models (GLMs)

R scripts

x = c(162, 165, 166, 170, 171, 168, 171, 175, 176, 182, 185)
y = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1)
model ← glm(y∼x,family=binomial(link=’logit’))

p = model$fitted.values
# p = [0.0168, 0.0708, 0.1114, 0.4795, 0.6026, 0.2537, 0.6026, 0.9176,
0.9483, 0.9973, 0.9994]

beta = model$coefficients # beta = [-84.8331094 0.4985354]

fitted.prob← predict(model,data.frame(x=c(168,170,173)),type=’response’)
# fitted.prob = [0.2537, 0.4795 0.8043 ]
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Generalized Linear Models (GLMs)
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Generalized Linear Models (GLMs)

Other models for binary response data

Instead of using the logit link function,

p = 1
1 + e−β′x

to force the estimated probabilities to lie between 0 and 1:

y | x,β ∼ Bernoulli(p)

one could use

• Probit: p = Φ(β′x), where Φ is the cdf of standard normal.

• Complimentary log-log: p = 1− exp(− exp(β′x))
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Generalized Linear Models (GLMs)
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Generalized Linear Models (GLMs)

Poisson regression
Poisson regression is a GLM that combines the Poisson distribution (for the
response) and the log link function (relating mean response to predictors):

log (µ) = β′x (y ∼ Poisson(λ))

Remark. Since µ = E(y | x) = λ, we have

log λ = β′x or λ = eβ′x

That is,
y | x,β ∼ Poisson(λ = eβ′x)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/24



Generalized Linear Models (GLMs)
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Generalized Linear Models (GLMs)

R code

poisson.model ← glm(y∼x,family=poisson(link=’log’))

poisson.model$coefficients

(Intercept) x
1.003291 -3.019297
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Generalized Linear Models (GLMs)

Summary and beyond
We talked about the concept of generalized linear models and its two
special instances:

• Logistic regression: logit link function + Bernoulli distribution

• Poisson regression: log link function + Poisson distribution

Note that parameter estimation for GLM is through MLE; prediction is
based on the mean (plus some necessary adjustments).

Further learning on logistic and multinomial regression:
http://www.sjsu.edu/faculty/guangliang.chen/Math251F18/lec5logistic.pdf
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