San José State University
 Math 261A: Regression Theory \& Methods

Simple Linear Regression

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Chapter 2: 2.1-2.6

Outline of this presentation:

- The simple linear regression problem
- Least-square estimation
- Inference

Simple Linear Regression

The simple linear regression problem

Consider the following (population) regression model

$$
y=\beta_{0}+\beta_{1} x+\epsilon
$$

where

- $x:$ predictor (fixed)

- y : response (random)
β_{0} : intercept, β_{1} : slope
- ϵ : random error/noise

Simple Linear Regression

Sample regression model

Given a set of locations x_{1}, \ldots, x_{n}, let the corresponding responses be

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where the errors ϵ_{i} have mean 0 and variance σ^{2} :

$$
\mathrm{E}\left(\epsilon_{i}\right)=0, \quad \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2},
$$

and additionally are uncorrelated:

$$
\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, i \neq j
$$

Simple Linear Regression

In those same locations, let the observations of the responses also be y_{1}, \ldots, y_{n} (this is an abuse of notation) such that we have a data set $\left\{\left(x_{i}, y_{i}\right) \mid 1 \leq i \leq n\right\}$.

The goal is to use the sample to estimate β_{0}, β_{1} in some way (so as to fit a line to the data).

Remark. Depending on the context, the notation y_{i} can denote either a random variable, or an observed value of it.

Simple Linear Regression

Least-squares (LS) estimation

To estimate the regression coefficients β_{0}, β_{1}, here we adopt the least squares criterion:
$\min _{\hat{\beta}_{0}, \hat{\beta}_{1}} S\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right) \stackrel{\text { def }}{=} \sum_{i=1}^{n}(y_{i}-(\underbrace{\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}}_{\hat{y}_{i}}))^{2}$
The corresponding minimizers are
 called least squares estimators.

Remark. Another way is to maximize the y_{i} : observation, \hat{y}_{i} : fitted value likelihood of the sample (Sec 2.11).

Simple Linear Regression

Notation: To solve the problem, we need to define some quantities first:

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

and

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
& S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Simple Linear Regression

It can be shown that

$$
\begin{aligned}
& S_{x x}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2} \\
& S_{x y}=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}
\end{aligned}
$$

Verify:

Simple Linear Regression

Theorem 0.1. The LS estimators of the intercept and slope in the simple linear regression model are

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}, \quad \hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}
$$

Proof. Taking partial derivatives of

$$
S\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

Simple Linear Regression

and setting them to zero gives that

$$
\begin{aligned}
& \frac{\partial S}{\partial \hat{\beta}_{0}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
& \frac{\partial S}{\partial \hat{\beta}_{1}}=-2 \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right) x_{i}=0
\end{aligned}
$$

which can then be simplified to

$$
\begin{aligned}
\sum y_{i} & =n \hat{\beta}_{0}+\hat{\beta}_{1} \sum x_{i} \\
\sum x_{i} y_{i} & =\hat{\beta}_{0} \sum x_{i}+\hat{\beta}_{1} \sum x_{i}^{2}
\end{aligned}
$$

The first equation can be rewritten as

$$
\bar{y}=\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}
$$

Simple Linear Regression

from which we obtain that

$$
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

Plugging it into the second equation yields that

$$
\sum x_{i} y_{i}=\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right) n \bar{x}+\hat{\beta}_{1} \sum x_{i}^{2}
$$

and further that

$$
\underbrace{\sum x_{i} y_{i}-n \bar{x} \bar{y}}_{S_{x y}}=\hat{\beta}_{1} \underbrace{\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)}_{S_{x x}}
$$

This thus completes the proof.

Simple Linear Regression

Remark. We make the following observations:

- The LS regression line always passes through the centroid (\bar{x}, \bar{y}) of the data: $\bar{y}=\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}$.

Simple Linear Regression

- Alternative forms of the equation of the LS regression line are

$$
y=\underbrace{\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right)}_{\hat{\beta}_{0}}+\hat{\beta}_{1} x=\bar{y}+\hat{\beta}_{1}(x-\bar{x})
$$

To study the effect of different samples on the regression coefficients, we regard the y_{i} as random variables (in this case $\bar{y}, \hat{\beta}_{0}, \hat{\beta}_{1}$ are also random variables). It can be shown that (homework problem: 2.25)

$$
\operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1}\right)=0, \quad \operatorname{Cov}\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=-\sigma^{2} \frac{\bar{x}}{S_{x x}}
$$

That is, $\bar{y}, \hat{\beta}_{1}$ are uncorrelated, but $\hat{\beta}_{0}, \hat{\beta}_{1}$ are not.

Simple Linear Regression

- The residuals of the model are

$$
e_{i}=y_{i}-\hat{y}_{i}=y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)=y_{i}-\left(\bar{y}+\hat{\beta}_{1}\left(x_{i}-\bar{x}\right)\right) .
$$

- $\sum e_{i}=0$. This implies that $\sum y_{i}=\sum \hat{y}_{i}$, and thus $\left\{\hat{y}_{i}\right\}$ and $\left\{y_{i}\right\}$ have the same mean.
Proof:

Simple Linear Regression

- $\sum x_{i} e_{i}=0$, and $\sum \hat{y}_{i} e_{i}=0$

Proof:

Simple Linear Regression

Example 0.1 (Toy data). Given a data set of 3 points: $(0,1),(1,0),(2,2)$, find the least-squares regression line.

Simple Linear Regression

Solution. First, $\bar{x}=1=\bar{y}$, and

$$
S_{x x}=\sum x_{i}^{2}-n \bar{x}^{2}=5-3=2, \quad S_{x y}=\sum x_{i} y_{i}-n \bar{x} \bar{y}=4-3=1
$$

It follows that

$$
\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{1}{2}, \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}=\frac{1}{2} .
$$

Thus, the regression line is given by

$$
y=\hat{\beta}_{0}+\hat{\beta}_{1} x=\frac{1}{2}+\frac{1}{2} x .
$$

The fitted values and their residuals are

$$
\hat{y}_{1}=\frac{1}{2}, \hat{y}_{2}=1, \hat{y}_{3}=\frac{3}{2} \quad \text { and } e_{1}=\frac{1}{2}, e_{2}=-1, e_{3}=\frac{1}{2}
$$

Simple Linear Regression

Example 0.2 (R demonstration). Consider the dataset that contains weights and heights of 507 physically active individuals (247 men and 260 women). ${ }^{1}$ We fit a regression line of weight (y) versus height (x) by \mathbf{R}.

${ }^{1}$ http://jse.amstat.org/v11n2/datasets.heinz.html

Simple Linear Regression

Simple Linear Regression

Inference in simple linear regression

- Model parameters: β_{0} (intercept), β_{1} (slope), σ^{2} (noise variance)
- Inference tasks (for each parameter above): point estimation, interval estimation*, hypothesis testing*
- Inference of the mean response at any location x_{0} :

$$
\mathrm{E}\left(y \mid x_{0}\right)=\beta_{0}+\beta_{1} x_{0}
$$

*To perform the last two inference tasks, we will additionally assume that the model errors ϵ_{i} are normally and independently distributed with mean 0 and variance σ^{2}, i.e., $\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.

Simple Linear Regression

Point estimation in regression

Theorem 0.2. The LS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$ are unbiased linear estimators of the model parameters β_{0}, β_{1}, that is,

$$
\mathrm{E}\left(\hat{\beta}_{0}\right)=\beta_{0}, \quad \mathrm{E}\left(\hat{\beta}_{1}\right)=\beta_{1}
$$

Furthermore,

$$
\operatorname{Var}\left(\hat{\beta}_{0}\right)=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right), \quad \operatorname{Var}\left(\hat{\beta}_{1}\right)=\frac{\sigma^{2}}{S_{x x}}
$$

Remark. The Gauss-Markov Theorem stats that the LS estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$ are the best linear unbiased estimators in that they have the smallest possible variance (among all linear unbiased estimators of β_{0}, β_{1}).

Simple Linear Regression

Proof. Write

$$
\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}=\frac{\sum\left(x_{i}-\bar{x}\right) y_{i}}{S_{x x}}=\sum c_{i} y_{i}, \quad c_{i}=\frac{x_{i}-\bar{x}}{S_{x x}}
$$

It follows that

$$
\mathrm{E}\left(\hat{\beta}_{1}\right)=\sum c_{i} \mathrm{E}\left(y_{i}\right)=\sum c_{i}\left(\beta_{0}+\beta_{1} x_{i}\right)=\beta_{0} \underbrace{\sum c_{i}}_{=0}+\beta_{1} \underbrace{\sum c_{i} x_{i}}_{=1}=\beta_{1}
$$

and

$$
\operatorname{Var}\left(\hat{\beta}_{1}\right)=\sum c_{i}^{2} \underbrace{\operatorname{Var}\left(y_{i}\right)}_{=\sigma^{2}}=\sigma^{2} \sum c_{i}^{2}=\sigma^{2} \cdot \frac{1}{S_{x x}}=\frac{\sigma^{2}}{S_{x x}}
$$

Simple Linear Regression

For $\hat{\beta}_{0}$, it is unbiased for estimating β_{0} because

$$
\mathrm{E}\left(\hat{\beta}_{0}\right)=\mathrm{E}\left(\bar{y}-\hat{\beta}_{1} \bar{x}\right)=\mathrm{E}(\bar{y})-\mathrm{E}\left(\hat{\beta}_{1}\right) \bar{x}=\left(\beta_{0}+\beta_{1} \bar{x}\right)-\beta_{1} \bar{x}=\beta_{0} .
$$

Using the formula

$$
\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)-2 \operatorname{Cov}(X, Y)
$$

we obtain that

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{0}\right) & =\operatorname{Var}(\bar{y})+\operatorname{Var}\left(\hat{\beta}_{1} \bar{x}\right)-2 \operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1} \bar{x}\right) \\
& =\frac{1}{n^{2}} \sum \operatorname{Var}\left(y_{i}\right)+\bar{x}^{2} \operatorname{Var}\left(\hat{\beta}_{1}\right)-2 \bar{x} \underbrace{\operatorname{Cov}\left(\bar{y}, \hat{\beta}_{1}\right)}_{=0} \\
& =\frac{1}{n^{2}} n \sigma^{2}+\bar{x}^{2} \frac{\sigma^{2}}{S_{x x}}=\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right) .
\end{aligned}
$$

Simple Linear Regression

To estimate the noise variance σ^{2}, we need to define

- Total Sum of Squares

$$
S S_{T}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

- Regression Sum of Squares

$$
S S_{R}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

- Residual Sum of Squares

$$
S S_{R e s}=\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Simple Linear Regression

Simple Linear Regression

It can be shown that

$$
S S_{T}=S S_{R}+S S_{R e s}
$$

Proof:

$$
\begin{aligned}
S S_{T} & =\sum\left(y_{i}-\bar{y}\right)^{2} \\
& =\sum\left(y_{i}-\hat{y}_{i}+\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}+2 \sum\left(y_{i}-\hat{y}_{i}\right)\left(\hat{y}_{i}-\bar{y}\right) \\
& =S S_{\text {Res }}+S S_{R}+2 \underbrace{\sum e_{i} \hat{y}_{i}}_{=0}
\end{aligned}
$$

Simple Linear Regression

Another useful result is

$$
S S_{R}=\hat{\beta}_{1}^{2} S_{x x}
$$

Proof.

$$
\begin{aligned}
S S_{R} & =\sum\left(\hat{y}_{i}-\bar{y}\right)^{2} \\
& =\sum(\underbrace{\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)}_{\hat{y}_{i}}-\underbrace{\left(\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}\right)}_{\bar{y}})^{2} \\
& =\sum \hat{\beta}_{1}^{2}\left(x_{i}-\bar{x}\right)^{2} \\
& =\hat{\beta}_{1}^{2} S_{x x} .
\end{aligned}
$$

Simple Linear Regression

The following theorem indicates how to use the residual sum of squares to estimate the error variance σ^{2} when it is unknown.

Theorem 0.3. We have

$$
\mathrm{E}\left(S S_{R e s}\right)=(n-2) \sigma^{2}
$$

This implies that the residual mean square

$$
M S_{R e s}=\frac{S S_{R e s}}{n-2}
$$

is an unbiased estimator for σ^{2}.

Simple Linear Regression

Proof. Write

$$
S S_{R e s}=S S_{T}-S S_{R}=\left(\sum y_{i}^{2}-n \bar{y}^{2}\right)-\hat{\beta}_{1}^{2} S_{x x}
$$

Using the formula $\mathrm{E}\left(X^{2}\right)=\mathrm{E}(X)^{2}+\operatorname{Var}(X)$, we have

$$
\begin{aligned}
& \mathrm{E}\left(S S_{R e s}\right)=\sum \mathrm{E}\left(y_{i}^{2}\right)-n \mathrm{E}\left(\bar{y}^{2}\right)-\mathrm{E}\left(\hat{\beta}_{1}^{2}\right) S_{x x} \\
& =\sum\left[\left(\beta_{0}+\beta_{1} x_{i}\right)^{2}+\sigma^{2}\right]-n\left[\left(\beta_{0}+\beta_{1} \bar{x}\right)^{2}+\frac{\sigma^{2}}{n}\right]-\left(\beta_{1}^{2}+\frac{\sigma^{2}}{S_{x x}}\right) S_{x x} \\
& =(n-2) \sigma^{2}
\end{aligned}
$$

This implies that $\mathrm{E}\left(M S_{\text {Res }}\right)=\mathrm{E}\left(S S_{\text {Res }}\right) /(n-2)=\sigma^{2}$.

Simple Linear Regression

Another way to use the sums of squares is to define a measure of the goodness of fit of the regression line.

Def 0.1 (Coefficient of determination).

$$
R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{R e s}}{S S_{T}}
$$

Remark. The quantity $0 \leq R^{2} \leq 1$ indicates the proportion of variation of the response that is explained by the regression line.

Simple Linear Regression

Example 0.3 (Toy data). Consider again the toy data set that consists of 3 points: $(0,1),(1,0),(2,2)$. We have fitted the LS regression line earlier. It is straightforward to obtain that

$$
S S_{R e s}=\sum e_{i}^{2}=\left(\frac{1}{2}\right)^{2}+(-1)^{2}+\left(\frac{1}{2}\right)^{2}=\frac{3}{2}
$$

Accordingly, a point estimate of σ^{2} is

$$
M S_{R e s}=S S_{R e s} /(n-2)=1.5
$$

To compute the coefficient of determination, we also need to compute $S S_{T}=\sum\left(y_{i}-\bar{y}\right)^{2}=2$. It follows that

$$
R^{2}=1-\frac{S S_{R e s}}{S S_{T}}=1-\frac{1.5}{2}=0.25
$$

Simple Linear Regression

Example 0.4 (weight-height).

 From the R output:- The residual standard error is $\hat{\sigma}=9.308$;
- The residual mean square is $M S_{\text {Res }}=9.308^{2}=86.639$.
- The coefficient of determination is $R^{2}=0.5145$ (meaning that the LS regression line only captures 51.45% of the total variation).

```
> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)
Call:
lm(formula = weight }~\mathrm{ height, data = mydata)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-18.743 & -6.402 & -1.231 & 5.059 & 41.103
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
height 1.01762 0.04399 23.14 <2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16
> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,
    xlab="Height (cm)", ylab="Weight (kg)",
    pch=16, col="blue",
    main="y=-105.01125+1.01762x")
    > abline(mymodel, col="red",lwd=3)
```


Simple Linear Regression

Summary: Point estimation in simple linear regression

Model				
parameters	Point	estimators	Properties	
	Bias	Variance		
β_{0}	$\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}$	unbiased	$\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)$	
β_{1}	$\hat{\beta}_{1}=\frac{S_{x y}}{S_{x x}}$	unbiased	$\frac{\sigma^{2}}{S_{x x}}$	
σ^{2}	$M S_{\text {Res }}=\frac{S S_{\text {Res }}}{n-2}$	unbiased		

Remark. For the mean response at x_{0} :

$$
\mathrm{E}\left(y \mid x_{0}\right)=\beta_{0}+\beta_{1} x_{0}
$$

it is easy to see that $\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$ is an unbiased point estimator.

Simple Linear Regression

Next

We consider the following inference tasks in regression:

- Hypothesis testing
- Interval estimation

Simple Linear Regression

The χ^{2}, t and F distributions

First, we need to review/introduce the following distributions:

- χ^{2}
- t
- F

Simple Linear Regression

The χ^{2} distribution

χ^{2} is a special instance of Gamma: $\chi_{k}^{2}=\operatorname{Gamma}\left(\alpha=\frac{k}{2}, \lambda=\frac{1}{2}\right)$, where k is a positive integer and commonly referred to as the degree of freedom of the distribution. It can be shown that χ_{k}^{2} is the distribution of $X=Z_{1}^{2}+\cdots+Z_{k}^{2}$ for $Z_{1}, \ldots, Z_{k} \stackrel{i i d}{\sim} N(0,1)$.

Below are some known results about $X \sim \chi_{k}^{2}$ (inferred from Gamma):

- Density: $f(x)=\frac{1}{2^{k / 2} \Gamma(k / 2)}\left(\frac{x}{2}\right)^{\frac{k}{2}-1} e^{-\frac{x}{2}}, x>0$
- Properties: $\mathrm{E}(X)=k, \operatorname{Var}(X)=2 k$

Simple Linear Regression

Dr. Guangliang Chen | Mathematics \& Statistics, San José State University 37/70

Simple Linear Regression

Student's t distribution

This is the distribution of a random variable of the form

$$
T=\frac{Z}{\sqrt{X / \nu}}, \quad \text { where } Z \sim N(0,1), X \sim \chi_{\nu}^{2} \text { are independent. }
$$

Similarly, ν is referred to as the degree of freedom of the t distribution.
Density curves of the t-family are all unimodal, symmetric and bell-shaped, like those of the normal distributions. Below are some results about $T \sim t(\nu)$:

- Density: $f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}},-\infty<x<\infty$
- Properties: $\mathrm{E}(T)=0, \operatorname{Var}(T)=\frac{\nu}{\nu-2}($ when $\nu>2)$.

Simple Linear Regression

Simple Linear Regression

Snedecor's F distribution

This is the distribution of a random variable of the form

$$
X=\frac{X_{1} / d_{1}}{X_{2} / d_{2}}, \quad \text { where } X_{1} \sim \chi_{d_{1}}^{2}, X_{2} \sim \chi_{d_{2}}^{2} \text { are independent. }
$$

What we know about $X \sim \mathrm{~F}\left(d_{1}, d_{2}\right)$:

- Density: $f_{X}(x)=\frac{1}{B\left(\frac{d_{1}}{2}, \frac{d_{2}}{2}\right)}\left(\frac{d_{1}}{d_{2}}\right)^{\frac{d_{1}}{2}} x^{\frac{d_{1}}{2}-1}\left(1+\frac{d_{1}}{d_{2}} x\right)^{-\frac{d_{1}+d_{2}}{2}}, x>0$
- $\mathrm{E}(X)=\frac{d_{2}}{d_{2}-2}\left(\right.$ if $\left.d_{2}>2\right)$, and $\operatorname{Var}(X)=\frac{2 d_{2}^{2}\left(d_{1}+d_{2}-2\right)}{d_{1}\left(d_{2}-2\right)^{2}\left(d_{2}-4\right)}\left(\right.$ if $\left.d_{2}>4\right)$

Simple Linear Regression

Simple Linear Regression

Additional normality assumption on the errors

To perform the hypothesis testing and interval estimation tasks in regression, we need to assume additionally that the errors ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$. This implies that

$$
y_{i} \sim \mathrm{~N}\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right), i=1, \ldots, n
$$

and they are independent (but not identically distributed).
Since $\hat{\beta}_{1}$ is a linear combination of the random variables y_{i}, under the additional assumption we have

$$
\hat{\beta}_{1} \sim \mathrm{~N}\left(\beta_{1}, \frac{\sigma^{2}}{S_{x x}}\right)
$$

Simple Linear Regression

Hypothesis testing in regression

Consider first the following hypothesis test about the slope parameter:

$$
H_{0}: \beta_{1}=\beta_{10}, \quad \text { vs } \quad H_{1}: \beta_{1} \neq \beta_{10}
$$

where β_{10} represents a particular value (e.g., 0) that β_{1} might take.
Under the normality assumption on the errors, we have the following result.
Theorem 0.4. At level α, a rejection region of the above test is

$$
\begin{cases}\frac{\left|\hat{\beta}_{1}-\beta_{10}\right|}{\sqrt{\sigma^{2} / S_{x x}}>z_{\alpha / 2},} & \text { if } \sigma^{2} \text { known } \\ \frac{\left|\hat{\beta}_{1}-\beta_{10}\right|}{\sqrt{M S_{\text {Res }} / S_{x x}}}>t_{\alpha / 2, n-2}, & \text { if } \sigma^{2} \text { unknown }\end{cases}
$$

Dr. Guangliang Chen | Mathematics \& Statistics, San José State University

Simple Linear Regression

Proof. When H_{0} is true, the distribution of $\hat{\beta}_{1}$ is

$$
\hat{\beta}_{1} \sim \mathrm{~N}\left(\beta_{10}, \frac{\sigma^{2}}{S_{x x}}\right)
$$

Therefore, we can write down the following decision rule (at level α):

$$
\frac{\left|\hat{\beta}_{1}-\beta_{10}\right|}{\sqrt{\sigma^{2} / S_{x x}}}>z_{\alpha / 2}
$$

When σ^{2} is unknown, we need to use its estimator $M S_{\text {Res }}$ instead. This leads to a t test:

$$
\frac{\left|\hat{\beta}_{1}-\beta_{10}\right|}{\sqrt{M S_{R e s} / S_{x x}}}>t_{\alpha / 2, n-2}
$$

Simple Linear Regression

Remark. $\sqrt{\sigma^{2} / S_{x x}}$ is the standard deviation of $\hat{\beta}_{1}$, while $\sqrt{M S_{R e s} / S_{x x}}$ is called the standard error of $\hat{\beta}_{1}$:

$$
\operatorname{Std}\left(\hat{\beta}_{1}\right)=\sqrt{\sigma^{2} / S_{x x}}, \quad \operatorname{se}\left(\hat{\beta}_{1}\right)=\sqrt{M S_{R e s} / S_{x x}}
$$

Depending on whether σ^{2} is given, the test statistic needed is

$$
Z_{0}=\frac{\hat{\beta}_{1}-\beta_{10}}{\operatorname{Std}\left(\hat{\beta}_{1}\right)}\left(\sigma^{2} \text { known }\right), \quad t_{0}=\frac{\hat{\beta}_{1}-\beta_{10}}{\operatorname{se}\left(\hat{\beta}_{1}\right)}\left(\sigma^{2} \text { unknown }\right)
$$

with corresponding decision rule:

$$
\left|Z_{0}\right|>z_{\alpha / 2}\left(\sigma^{2} \text { known }\right), \quad\left|t_{0}\right|>t_{\alpha / 2, n-2}\left(\sigma^{2} \text { unknown }\right)
$$

Simple Linear Regression

Remark. An important special case of the above hypothesis test is when $\beta_{10}=0$, which concerns the significance of regression:
$H_{0}: \beta_{1}=0$ (There is no linear relationship between y and x)
$H_{1}: \beta_{1} \neq 0$ (There is a linear relationship between y and x)

Simple Linear Regression

Example 0.5 (weight-height).

From the R output, we see that

- The value of the t statistic for testing $H_{0}: \beta_{1} \neq 0$ against $H_{0}: \beta_{1}=0$ is $t_{0}=23.14$;
- The p-value of the test is less than $2 e-16$.

Thus, we can reject H_{0} (at level 1%) and correspondingly conclude that there is a significant linear relationship between x and y.

```
> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)
Call:
lm(formula = weight }~\mathrm{ height, data = mydata)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-18.743 & -6.402 & -1.231 & 5.059 & 41.103
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
height 1.01762 0.04399 23.14 <2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16
> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,
    xlab="Height (cm)", ylab="Weight (kg)",
    pch=16, col="blue",
    main="y=-105.01125+1.01762x")
    > abline(mymodel, col="red",lwd=3)
```


Simple Linear Regression

Another approach to testing the significance of regression is through the Analysis of Variance (ANOVA):

$$
S S_{T}=S S_{R}+S S_{R e s}, \quad \text { with d.o.f.: } \quad n-1=1+(n-2)
$$

We have previously defined the residual mean square

$$
M S_{\text {Res }}=\frac{S S_{\text {Res }}}{n-2} \quad \text { with } \quad \mathrm{E}\left(M S_{\text {Res }}\right)=\sigma^{2}
$$

Define also the regression mean square

$$
M S_{R}=S S_{R} / 1
$$

It can be shown that

$$
\mathrm{E}\left(M S_{R}\right)=\sigma^{2}+\beta_{1}^{2} S_{x x}
$$

Simple Linear Regression

Observation: $M S_{R}$ contains information about β_{1}.

- $\mathrm{E}\left(M S_{R}\right)=\mathrm{E}\left(M S_{R e s}\right)$ if $\beta_{1}=0$;
- $\mathrm{E}\left(M S_{R}\right)>\mathrm{E}\left(M S_{R e s}\right)$ if $\beta_{1} \neq 0$.

As a result, large values of their ratio

$$
F_{0}=\frac{M S_{R}}{M S_{\text {Res }}}=\frac{S S_{R} / 1}{S S_{\text {Res }} /(n-2)} \quad\left({ }^{H_{0}} \sim^{\text {true }} F_{1, n-2}\right)
$$

are evidence against $H_{0}: \beta_{1}=0$.
Therefore, we have the following significance of regression test:

$$
\text { Reject } H_{0}: \beta_{1}=0 \text { if and only if } F_{0}>F_{\alpha, 1, n-2}
$$

Simple Linear Regression

The ANOVA procedure is summarized in the following able.

Source of variation	Sum of squares	Degrees of freedom	Mean square	Test statistic
Regression	$S S_{R}=\hat{\beta}_{1}^{2} S_{x x}$	1	$M S_{R}$	$F_{0}=\frac{M S_{R}}{M S_{R e s}}$
Residual	$S S_{\text {Res }}$	$n-2$	$M S_{\text {Res }}$	
Total	$S S_{T}$	$n-1$		

Simple Linear Regression

Example 0.6 (weight-height).

From the R output, we see that

- The F statistic for testing H_{0} : $\beta_{1}=0$ against a two-sided alternative is $F_{0}=535.2$ with 1 and 505 degrees of freedom;
- The p-value of the test is less than $2.2 e-16$.

Thus, we can conclude that $\beta_{1} \neq 0$, i.e., there is a significant linear relationship between x and y.

```
> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)
```


Call:

$\operatorname{lm}($ formula $=$ weight \sim height, data $=$ mydata $)$
Residuals:

Min	$1 Q$	Median	30	Max
-18.743	-6.402	-1.231	5.059	41.103

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-105.01125	7.53941	-13.93	<2e-16	
height	1.01762	0.04399	23.14	$<2 \mathrm{e}-16$	

Signif. cod	$0{ }^{* * *}$,	. 001 '**	0.01		0

Residual standard error: 9.308 on 505 degrees of freedom Multiple R-squared: 0.5145, Adjusted R-squared: 0.5136 F-statistic: 535.2 on 1 and 505 DF, p-value: < $2.2 \mathrm{e}-16$
> \# plot the regression line on top of data
> plot(mydata\$height, mydata\$weight,
xlab="Height (cm)", ylab="Weight (kg)",
pch=16, col="blue",
main=" $y=-105.01125+1.01762 x$ ")
abline(mymodel, col="red",lwd=3)

Simple Linear Regression

A more direct way of performing ANOVA in R is to use the anova function:
> anova(mymodel)
Analysis of Variance Table
Response: weight
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
height $14637046370 \quad 535.21<2.2 e-16$ ***
Residuals $50543753 \quad 87$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Simple Linear Regression

Remark. The ANOVA F test is equivalent to the (two-sided) t test regarding whether $\beta_{1}=0$ or not:

$$
t_{0}^{2}=\frac{\hat{\beta}_{1}^{2}}{M S_{R e s} / S_{x x}}=\frac{\hat{\beta}_{1}^{2} S_{x x}}{M S_{R e s}}=\frac{S S_{R} / 1}{S S_{R e s} /(n-2)}=F_{0}
$$

However, when one-sided alternatives such as

$$
H_{0}: \beta_{1}=0 \quad \text { vs } \quad H_{1}: \beta_{1}>0
$$

are used, only the t test can be used:

$$
t_{0}=\frac{\hat{\beta}_{1}-0}{\sqrt{M S_{\text {Res }} / S_{x x}}}>t_{\alpha, n-2} \quad\left(\sigma^{2} \text { unknown }\right)
$$

Simple Linear Regression

For the hypothesis test about the intercept parameter β_{0},

$$
H_{0}: \beta_{0}=\beta_{00}, \quad \text { vs } \quad H_{1}: \beta_{0} \neq \beta_{00}
$$

we have the following result.
Theorem 0.5. At level α, a rejection region of the test is

$$
\begin{cases}\frac{\left|\hat{\beta}_{0}-\beta_{00}\right|}{\sqrt{\sigma^{2}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)}>z_{\alpha / 2},} & \text { if } \sigma^{2} \text { known } \\ \frac{\left|\hat{\beta}_{0}-\beta_{00}\right|}{\sqrt{M S_{\text {Res }}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)}}>t_{\alpha / 2, n-2}, & \text { if } \sigma^{2} \text { unknown }\end{cases}
$$

Simple Linear Regression

Remark. The previous R output also contains the results of the corresponding t-test for
$H_{0}: \beta_{0}=0$ (The regression line passes through the origin)
$H_{1}: \beta_{0} \neq 0$ (The regression line does not pass through the origin)

Simple Linear Regression

Summary: hypothesis testing in regression

We covered the following tests with corresponding decision rules:

- $H_{0}: \beta_{1}=\beta_{10}$ vs $H_{1}: \beta_{1} \neq \beta_{10}: \frac{\left|\hat{\beta}_{1}-\beta_{10}\right|}{\sqrt{M S_{\text {Res }} / S_{x x}}}>t_{\alpha / 2, n-2}$
- Significance of regression test $\left(H_{0}: \beta_{1}=0\right.$ vs $\left.H_{1}: \beta_{1} \neq 0\right)$

$$
-t \text {-test: } \frac{\left|\hat{\beta}_{1}\right|}{\sqrt{M S_{R e s} / S_{x x}}}>t_{\alpha / 2, n-2}
$$

- ANOVA F-test: $\frac{M S_{R}}{M S_{\text {Res }}}>F_{\alpha, 1, n-2}$
- $H_{0}: \beta_{0}=\beta_{00}$ vs $H_{1}: \beta_{0} \neq \beta_{00}: \frac{\left|\hat{\beta}_{0}-\beta_{00}\right|}{\sqrt{M S_{R e s}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)}}>t_{\alpha / 2, n-2}$

Simple Linear Regression

Interval estimation in regression

Under the normality assumptions, the $1-\alpha$ Cls for β_{0}, β_{1} are

- $\hat{\beta}_{0} \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)}$
- $\hat{\beta}_{1} \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s} / S_{x x}}$

This is implemented in R through the CONFINT function:
> confint(mymodel, level=0.95)

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) -119.8237251-90.198783
height $0.9311971 \quad 1.104036$
We next construct a $1-\alpha$ confidence interval for the noise variance σ^{2}.

Simple Linear Regression

Theorem 0.6. Under the normality assumptions, a level $1-\alpha$ confidence interval for σ^{2} is

$$
\left(\frac{(n-2) M S_{R e s}}{\chi_{\frac{\alpha}{2}, n-2}^{2}}, \frac{(n-2) M S_{R e s}}{\chi_{1-\frac{\alpha}{2}, n-2}^{2}}\right)
$$

Proof. It can be shown that

$$
\frac{S S_{R e s}}{\sigma^{2}}=\frac{(n-2) M S_{R e s}}{\sigma^{2}} \sim \chi_{n-2}^{2}
$$

Thus,

$$
1-\alpha=P\left(\chi_{1-\frac{\alpha}{2}, n-2}^{2}<\frac{(n-2) M S_{R e s}}{\sigma^{2}}<\chi_{\frac{\alpha}{2}, n-2}^{2}\right)
$$

Solving the inequalities for σ^{2} yields the desired result.

Simple Linear Regression

Example 0.7 (weight-height). A 95\% confidence interval for σ^{2} is

$$
\left(\frac{505 M S_{\text {Res }}}{\chi_{.025,505}^{2}}, \frac{505 M S_{\text {Res }}}{\chi_{.975,505}^{2}}\right)=\left(\frac{505 \cdot 9.308^{2}}{569.1608}, \frac{505 \cdot 9.308^{2}}{444.6268}\right)=(76.87,98.40)
$$

R commands:
> qchisq(.975, 505)
[1] 569.1608
> pchisq(569.1608,505)
[1] 0.9750001
> qchisq(.025, 505)
[1] 444.6268

Simple Linear Regression

The mean response

A major use of a regression model is to estimate the mean response at a particular location $x=x_{0}$

$$
\mathrm{E}\left(y \mid x_{0}\right)=\beta_{0}+\beta_{1} x_{0}
$$

Under the normality assumption, we obtain the following result.
Theorem 0.7. A $1-\alpha$ confidence interval for $\mathrm{E}\left(y \mid x_{0}\right)$ is

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}
$$

Simple Linear Regression

Proof. The point estimator of the mean response, $\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}$, is a linear combination of the responses y_{i}, thus having a normal distribution with mean

$$
\mathrm{E}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)=\beta_{0}+\beta_{1} x_{0}
$$

and variance

$$
\begin{aligned}
\operatorname{Var}\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) & =\operatorname{Var}\left(\bar{y}+\hat{\beta}_{1}\left(x_{0}-\bar{x}\right)\right) \\
& =\operatorname{Var}(\bar{y})+\operatorname{Var}\left(\hat{\beta}_{1}\right)\left(x_{0}-\bar{x}\right)^{2} \\
& =\frac{\sigma^{2}}{n}+\frac{\sigma^{2}}{S_{x x}}\left(x_{0}-\bar{x}\right)^{2} \\
& =\sigma^{2}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)
\end{aligned}
$$

Simple Linear Regression

It follows that

$$
\frac{\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)-\left(\beta_{0}+\beta_{1} x_{0}\right)}{\sqrt{M S_{R e s}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}} \sim t_{n-2}
$$

and consequently we can use the following equality

$$
1-\alpha=P\left(-t_{\frac{\alpha}{2}, n-2}<\frac{\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right)-\left(\beta_{0}+\beta_{1} x_{0}\right)}{\sqrt{M S_{\operatorname{Res}}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}}<t_{\frac{\alpha}{2}, n-2}\right)
$$

to construct a level $1-\alpha$ confidence interval for $\beta_{0}+\beta_{1} x_{0}$.

Simple Linear Regression

Remark. The confidence interval for the mean response is the shortest at the location $x_{0}=\bar{x}$ and becomes wider as x moves away from \bar{x} in either direction.

Simple Linear Regression

Prediction of new observations

Another way of using a regression model is to develop a prediction interval for the future observation at some specified location $x=x_{0}$:
$y_{0}=\beta_{0}+\beta_{1} x_{0}+\epsilon_{0}, \quad \epsilon_{0} \sim \mathrm{~N}\left(0, \sigma^{2}\right)$

Theorem 0.8. A $1-\alpha$ prediction interval for the response y_{0} at $x=x_{0}$ is

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}
$$

Simple Linear Regression

Proof. First, note that a point estimator for the fixed component of y_{0} (i.e., $\beta_{0}+\beta_{1} x_{0}$) is

$$
\hat{y}_{0}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}
$$

Let $\Psi=y_{0}-\hat{y}_{0}$ be the difference between the true response and the point estimator for its fixed part. Then Ψ (as a linear combination of $y_{0}, y_{1}, \ldots, y_{n}$) is normally distributed with mean

$$
\Psi=\mathrm{E}\left(y_{0}\right)-\mathrm{E}\left(\hat{y}_{0}\right)=\left(\beta_{0}+\beta_{1} x_{0}\right)-\left(\beta_{0}+\beta_{1} x_{0}\right)=0
$$

and variance

$$
\operatorname{Var}(\Psi)=\operatorname{Var}\left(y_{0}\right)+\operatorname{Var}\left(\hat{y}_{0}\right)=\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)
$$

Simple Linear Regression

We then have

$$
\frac{y_{0}-\hat{y}_{0}}{\sqrt{\sigma^{2}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}} \sim N(0,1)
$$

and correspondingly,

$$
\frac{y_{0}-\hat{y}_{0}}{\sqrt{M S_{\text {Res }}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}} \sim t_{n-2}
$$

Accordingly, a $1-\alpha$ prediction interval on a future observation y_{0} at x_{0} is

$$
\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}
$$

Simple Linear Regression

Remark. The prediction interval for the response at all locations has a similar pattern to the confidence interval for the mean response but is much wider.

Simple Linear Regression

Summary: interval estimation in regression

- β_{0} (intercept): $\hat{\beta}_{0} \pm t_{\alpha / 2, n-2} \sqrt{M S_{\text {Res }}\left(\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right)}$
- β_{1} (slope): $\hat{\beta}_{1} \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s} / S_{x x}}$
- σ^{2} (error variance): $\left(\frac{(n-2) M S_{R e s}}{\chi_{\frac{\alpha}{2}, n-2}^{2}}, \frac{(n-2) M S_{R e s}}{\chi_{1-\frac{\alpha}{2}, n-2}^{2}}\right)$
- $\mathrm{E}\left(y \mid x_{0}\right):\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}$
- y_{0} (response): $\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{0}\right) \pm t_{\alpha / 2, n-2} \sqrt{M S_{R e s}\left(1+\frac{1}{n}+\frac{\left(x_{0}-\bar{x}\right)^{2}}{S_{x x}}\right)}$

Simple Linear Regression

Some considerations in the use of regression

Read Section 2.9 to understand the following issues (they will be covered in more depth later in this course):

- Extrapolation
- Influential points
- Outliers

- Correlation does not imply causation

Simple Linear Regression

Further learning

- 2.10 Regression Through the Origin
- 2.11 Maximum Likelihood Estimation
- 2.12 Case Where the Regressor x Is Random
- Linear regression via gradient descent
- Weighted least squares

$$
S\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)=\sum_{i=1}^{n} w_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)^{2}
$$

