Simple Linear Regression

Dr. Guangliang Chen
This lecture is based on the following textbook sections:

- **Chapter 2: 2.1 - 2.6**

Outline of this presentation:

- The simple linear regression problem
- Least-square estimation
- Inference
The simple linear regression problem

Consider the following (population) regression model

\[y = \beta_0 + \beta_1 x + \epsilon \]

where

- \(x \): predictor (fixed)
- \(y \): response (random)
- \(\epsilon \): random error/noise

\(\beta_0 \): intercept, \(\beta_1 \): slope
Sample regression model

Given a set of locations x_1, \ldots, x_n, let the corresponding responses be

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \ i = 1, \ldots, n$$

where the errors ϵ_i have mean 0 and variance σ^2:

$$E(\epsilon_i) = 0, \quad \text{Var}(\epsilon_i) = \sigma^2,$$

and additionally are uncorrelated:

$$\text{Cov}(\epsilon_i, \epsilon_j) = 0, \ i \neq j$$
In those same locations, let the observations of the responses also be \(y_1, \ldots, y_n\) (this is an abuse of notation) such that we have a data set \(\{(x_i, y_i) \mid 1 \leq i \leq n\}\).

The goal is to use the sample to estimate \(\beta_0, \beta_1\) in some way (so as to fit a line to the data).

Remark. Depending on the context, the notation \(y_i\) can denote either a random variable, or an observed value of it.
Least-squares (LS) estimation

To estimate the regression coefficients β_0, β_1, here we adopt the least squares criterion:

$$\min_{\hat{\beta}_0, \hat{\beta}_1} S(\hat{\beta}_0, \hat{\beta}_1) \overset{\text{def}}{=} \sum_{i=1}^{n} (y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i))^2$$

The corresponding minimizers are called **least squares estimators**.

Remark. Another way is to maximize the likelihood of the sample (Sec 2.11).
Notation: To solve the problem, we need to define some quantities first:

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i
\]

and

\[
S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2
\]
\[
S_{xy} = \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})
\]
Simple Linear Regression

It can be shown that

\[S_{xx} = \sum_{i=1}^{n} x_i^2 - n \bar{x}^2, \]

\[S_{xy} = \sum_{i=1}^{n} x_i y_i - n \bar{x} \bar{y} \]

Verify:
Theorem 0.1. The LS estimators of the intercept and slope in the simple linear regression model are

\[\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}, \quad \hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} \]

Proof. Taking partial derivatives of

\[S(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2 \]
and setting them to zero gives that

\[
\frac{\partial S}{\partial \hat{\beta}_0} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0
\]

\[
\frac{\partial S}{\partial \hat{\beta}_1} = -2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) x_i = 0
\]

which can then be simplified to

\[
\sum y_i = n \hat{\beta}_0 + \hat{\beta}_1 \sum x_i
\]

\[
\sum x_i y_i = \hat{\beta}_0 \sum x_i + \hat{\beta}_1 \sum x_i^2
\]

The first equation can be rewritten as

\[
\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}
\]
from which we obtain that

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Plugging it into the second equation yields that

$$\sum x_i y_i = (\bar{y} - \hat{\beta}_1 \bar{x}) n \bar{x} + \hat{\beta}_1 \sum x_i^2$$

and further that

$$\underbrace{\sum x_i y_i - n \bar{x} \bar{y}}_{S_{xy}} = \hat{\beta}_1 \left(\underbrace{\sum x_i^2 - n \bar{x}^2}_{S_{xx}} \right)$$

This thus completes the proof. \qed
Remark. We make the following observations:

- The LS regression line always passes through the centroid (\bar{x}, \bar{y}) of the data: $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 \bar{x}$.
Simple Linear Regression

- Alternative forms of the equation of the LS regression line are

\[
y = (\bar{y} - \hat{\beta}_1 \bar{x}) + \hat{\beta}_1 x = \bar{y} + \hat{\beta}_1 (x - \bar{x})
\]

To study the effect of different samples on the regression coefficients, we regard the \(y_i \) as random variables (in this case \(\bar{y}, \hat{\beta}_0, \hat{\beta}_1 \) are also random variables). It can be shown that (homework problem: 2.25)

\[
\text{Cov}(\bar{y}, \hat{\beta}_1) = 0, \quad \text{Cov}(\hat{\beta}_0, \hat{\beta}_1) = -\sigma^2 \frac{\bar{x}}{S_{xx}}
\]

That is, \(\bar{y}, \hat{\beta}_1 \) are uncorrelated, but \(\hat{\beta}_0, \hat{\beta}_1 \) are not.
The residuals of the model are

\[e_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i) = y_i - \left(\bar{y} + \hat{\beta}_1 (x_i - \bar{x}) \right). \]

\[\sum e_i = 0. \] This implies that \(\sum y_i = \sum \hat{y}_i \), and thus \(\{\hat{y}_i\} \) and \(\{y_i\} \) have the same mean.

Proof:
• $\sum x_i e_i = 0$, and $\sum \hat{y}_i e_i = 0$

Proof:
Example 0.1 (Toy data). Given a data set of 3 points: \((0, 1), (1, 0), (2, 2)\), find the least-squares regression line.
Solution. First, $\bar{x} = 1 = \bar{y}$, and

$$S_{xx} = \sum x_i^2 - n\bar{x}^2 = 5 - 3 = 2, \quad S_{xy} = \sum x_i y_i - n\bar{x}\bar{y} = 4 - 3 = 1.$$

It follows that

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{1}{2}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \frac{1}{2}.$$

Thus, the regression line is given by

$$y = \hat{\beta}_0 + \hat{\beta}_1 x = \frac{1}{2} + \frac{1}{2} x.$$

The fitted values and their residuals are

$$\hat{y}_1 = \frac{1}{2}, \quad \hat{y}_2 = 1, \quad \hat{y}_3 = \frac{3}{2} \quad \text{and} \quad e_1 = \frac{1}{2}, \quad e_2 = -1, \quad e_3 = \frac{1}{2}.$$
Example 0.2 (R demonstration). Consider the dataset that contains weights and heights of 507 physically active individuals (247 men and 260 women).\(^1\) We fit a regression line of weight \((y)\) versus height \((x)\) by R.

\[^1\text{http://jse.amstat.org/v11n2/datasets.heinz.html}\]
Simple Linear Regression

\[y = -105.01125 + 1.01762x \]

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

```r
> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
  lm(formula = weight ~ height, data = mydata)

Residuals:
    Min     1Q Median     3Q    Max
-18.743  -6.402  -1.231   5.059  41.103

Coefficients:
             Estimate Std. Error t value Pr(>|t|) 
(Intercept)  -105.01125   7.53941  -13.93   <2e-16 ***
height       1.01762     0.04399   23.14   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared:  0.5145,   Adjusted R-squared:  0.5136
F-statistic: 535.2 on 1 and 505 DF,  p-value: < 2.2e-16
```

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,
+ xlab="Height (cm)", ylab="Weight (kg)",
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")
> abline(mymodel, col="red",lwd=3)
Inference in simple linear regression

- **Model parameters**: β_0 (intercept), β_1 (slope), σ^2 (noise variance)

- **Inference tasks** (for each parameter above): point estimation, interval estimation*, hypothesis testing*

- **Inference of the mean response** at any location x_0:

$$E(y \mid x_0) = \beta_0 + \beta_1 x_0$$

*To perform the last two inference tasks, we will additionally assume that the model errors ϵ_i are normally and independently distributed with mean 0 and variance σ^2, i.e., $\epsilon_1, \ldots, \epsilon_n \overset{iid}{\sim} N(0, \sigma^2)$.
Simple Linear Regression

Point estimation in regression

Theorem 0.2. The LS estimators $\hat{\beta}_0, \hat{\beta}_1$ are unbiased linear estimators of the model parameters β_0, β_1, that is,

$$E(\hat{\beta}_0) = \beta_0, \quad E(\hat{\beta}_1) = \beta_1$$

Furthermore,

$$\text{Var}(\hat{\beta}_0) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right), \quad \text{Var}(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$$

Remark. The Gauss-Markov Theorem stats that the LS estimators $\hat{\beta}_0, \hat{\beta}_1$ are the best linear unbiased estimators in that they have the smallest possible variance (among all linear unbiased estimators of β_0, β_1).
Proof. Write

\[\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \frac{\sum(x_i - \bar{x})y_i}{S_{xx}} = \sum c_i y_i, \quad c_i = \frac{x_i - \bar{x}}{S_{xx}} \]

It follows that

\[E(\hat{\beta}_1) = \sum c_i E(y_i) = \sum c_i (\beta_0 + \beta_1 x_i) = \beta_0 \sum c_i + \beta_1 \sum c_i x_i = \beta_1 \]

and

\[\text{Var}(\hat{\beta}_1) = \sum c_i^2 \text{Var}(y_i) = \sigma^2 \sum c_i^2 = \sigma^2 \cdot \frac{1}{S_{xx}} = \frac{\sigma^2}{S_{xx}} \]
For $\hat{\beta}_0$, it is unbiased for estimating β_0 because

$$E(\hat{\beta}_0) = E(\bar{y} - \hat{\beta}_1 \bar{x}) = E(\bar{y}) - E(\hat{\beta}_1)\bar{x} = (\beta_0 + \beta_1 \bar{x}) - \beta_1 \bar{x} = \beta_0.$$

Using the formula

$$\text{Var}(X - Y) = \text{Var}(X) + \text{Var}(Y) - 2\text{Cov}(X, Y),$$

we obtain that

$$\text{Var}(\hat{\beta}_0) = \text{Var}(\bar{y}) + \text{Var}(\hat{\beta}_1 \bar{x}) - 2\text{Cov}(\bar{y}, \hat{\beta}_1 \bar{x})$$

$$= \frac{1}{n^2} \sum \text{Var}(y_i) + \bar{x}^2 \text{Var}(\hat{\beta}_1) - 2\bar{x} \text{Cov}(\bar{y}, \hat{\beta}_1)$$

$$= \frac{1}{n^2} n\sigma^2 + \bar{x}^2 \frac{\sigma^2}{S_{xx}} = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right).$$
Simple Linear Regression

To estimate the noise variance σ^2, we need to define

- **Total Sum of Squares**

$$SS_T = \sum_{i=1}^{n} (y_i - \bar{y})^2$$

- **Regression Sum of Squares**

$$SS_R = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

- **Residual Sum of Squares**

$$SS_{Res} = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
Simple Linear Regression

\[y = \hat{\beta}_0 + \hat{\beta}_1 x \]
Simple Linear Regression

It can be shown that

\[SS_T = SS_R + SS_{Res} \]

Proof:

\[
SS_T = \sum (y_i - \bar{y})^2 \\
= \sum (y_i - \hat{y}_i + \hat{y}_i - \bar{y})^2 \\
= \sum (y_i - \hat{y}_i)^2 + \sum (\hat{y}_i - \bar{y})^2 + 2 \sum (y_i - \hat{y}_i)(\hat{y}_i - \bar{y}) \\
= SS_{Res} + SS_R + 2 \sum e_i\hat{y}_i \\
= \sum e_i\hat{y}_i = 0
\]
Another useful result is

\[SS_R = \hat{\beta}_1^2 S_{xx} \]

Proof.

\[
SS_R = \sum (\hat{y}_i - \bar{y})^2 \\
= \sum \left(\left(\hat{\beta}_0 + \hat{\beta}_1 x_i\right) - \left(\hat{\beta}_0 + \hat{\beta}_1 \bar{x}\right)\right)^2 \\
= \sum \hat{\beta}_1^2 (x_i - \bar{x})^2 \\
= \hat{\beta}_1^2 S_{xx}.
\]
The following theorem indicates how to use the residual sum of squares to estimate the error variance σ^2 when it is unknown.

Theorem 0.3. We have

$$E(SS_{Res}) = (n - 2)\sigma^2$$

This implies that the residual mean square

$$MS_{Res} = \frac{SS_{Res}}{n - 2}$$

is an unbiased estimator for σ^2.

Proof. Write

\[SS_{Res} = SS_T - SS_R = \left(\sum y_i^2 - ny^2 \right) - \hat{\beta}_1^2 S_{xx} \]

Using the formula \(E(X^2) = E(X)^2 + \text{Var}(X) \), we have

\[
E(SS_{Res}) = \sum E\left(y_i^2\right) - n E\left(\bar{y}^2\right) - E\left(\hat{\beta}_1^2\right) S_{xx}
\]

\[
= \sum \left[(\beta_0 + \beta_1 x_i)^2 + \sigma^2 \right] - n \left[(\beta_0 + \beta_1 \bar{x})^2 + \frac{\sigma^2}{n} \right] - \left(\beta_1^2 + \frac{\sigma^2}{S_{xx}} \right) S_{xx}
\]

\[
= (n - 2) \sigma^2.
\]

This implies that \(E(MS_{Res}) = E(SS_{Res})/(n - 2) = \sigma^2. \) \(\square \)
Another way to use the sums of squares is to define a measure of the \textbf{goodness of fit} of the regression line.

\textbf{Def 0.1} (Coefficient of determination).

\[R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T} \]

\textbf{Remark.} The quantity \(0 \leq R^2 \leq 1 \) indicates the proportion of variation of the response that is explained by the regression line.
Example 0.3 (Toy data). Consider again the toy data set that consists of 3 points: $(0, 1), (1, 0), (2, 2)$. We have fitted the LS regression line earlier.

It is straightforward to obtain that

$$SS_{Res} = \sum e_i^2 = \left(\frac{1}{2}\right)^2 + (-1)^2 + \left(\frac{1}{2}\right)^2 = \frac{3}{2}. \quad (1)$$

Accordingly, a point estimate of \(\sigma^2\) is

$$MS_{Res} = SS_{Res}/(n - 2) = 1.5 \quad (2)$$

To compute the coefficient of determination, we also need to compute

$$SS_T = \sum (y_i - \bar{y})^2 = 2. \quad (3)$$

It follows that

$$R^2 = 1 - \frac{SS_{Res}}{SS_T} = 1 - \frac{1.5}{2} = 0.25 \quad (4)$$
Example 0.4 (weight-height).

From the R output:

- The residual standard error is $\hat{\sigma} = 9.308$;

- The residual mean square is $MS_{Res} = 9.308^2 = 86.639$.

- The coefficient of determination is $R^2 = 0.5145$ (meaning that the LS regression line only captures 51.45% of the total variation).

```r
# linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
lm(formula = weight ~ height, data = mydata)

Residuals:
       Min        1Q     Median        3Q       Max
-18.743   -6.402    -1.231     5.059   41.103

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -105.01125    7.53941  -13.93  <2e-16 ***
height        1.01762     0.04399   23.14  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared:  0.5145 ,  Adjusted R-squared:  0.5136
F-statistic: 535.2 on 1 and 505 DF,  p-value: < 2.2e-16
```

```r
> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,
+     xlab="Height (cm)", ylab="Weight (kg)",
+     pch=16, col="blue",
+     main="y=-105.01125+1.01762x")
> abline(mymodel, col="red", lwd=3)
```
Summary: Point estimation in simple linear regression

<table>
<thead>
<tr>
<th>Model parameters</th>
<th>Point estimators</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$</td>
<td>unbiased, $\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)$</td>
</tr>
<tr>
<td>β_1</td>
<td>$\hat{\beta}1 = \frac{S{xy}}{S_{xx}}$</td>
<td>unbiased, $\frac{\sigma^2}{S_{xx}}$</td>
</tr>
<tr>
<td>σ^2</td>
<td>$MS_{Res} = \frac{SS_{Res}}{n-2}$</td>
<td>unbiased</td>
</tr>
</tbody>
</table>

Remark. For the mean response at x_0:

\[
E(y \mid x_0) = \beta_0 + \beta_1 x_0,
\]

it is easy to see that $\hat{\beta}_0 + \hat{\beta}_1 x_0$ is an unbiased point estimator.
Next

We consider the following inference tasks in regression:

- Hypothesis testing
- Interval estimation
The χ^2, t and F distributions

First, we need to review/introduce the following distributions:

- χ^2
- t
- F
The χ^2 distribution

χ^2 is a special instance of Gamma: $\chi^2_k = \text{Gamma}(\alpha = \frac{k}{2}, \lambda = \frac{1}{2})$, where k is a positive integer and commonly referred to as the degree of freedom of the distribution. It can be shown that χ^2_k is the distribution of $X = Z_1^2 + \cdots + Z_k^2$ for $Z_1, \ldots, Z_k \overset{iid}{\sim} \mathcal{N}(0, 1)$.

Below are some known results about $X \sim \chi^2_k$ (inferred from Gamma):

- Density: $f(x) = \frac{1}{2^{k/2} \Gamma(k/2)} \left(\frac{x}{2} \right)^{k/2-1} e^{-x/2}, \ x > 0$

- Properties: $\mathbb{E}(X) = k$, $\text{Var}(X) = 2k$
Simple Linear Regression

\[\chi^2_k \]

- \(k=1 \)
- \(k=2 \)
- \(k=3 \)
- \(k=4 \)
- \(k=6 \)
- \(k=9 \)
Student’s \(t \) distribution

This is the distribution of a random variable of the form

\[
T = \frac{Z}{\sqrt{X/\nu}}, \quad \text{where } Z \sim N(0, 1), X \sim \chi^2_\nu \text{ are independent.}
\]

Similarly, \(\nu \) is referred to as the *degree of freedom* of the \(t \) distribution.

Density curves of the \(t \)-family are all unimodal, symmetric and bell-shaped, like those of the normal distributions. Below are some results about \(T \sim t(\nu) \):

- **Density:** \(f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi} \Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < x < \infty\)

- **Properties:** \(\text{E}(T) = 0, \ Var(T) = \frac{\nu}{\nu-2} \) (when \(\nu > 2 \)).
Simple Linear Regression
Snedecor’s F distribution

This is the distribution of a random variable of the form

$$X = \frac{X_1/d_1}{X_2/d_2}, \quad \text{where } X_1 \sim \chi^2_{d_1}, X_2 \sim \chi^2_{d_2} \text{ are independent.}$$

What we know about $X \sim F(d_1, d_2)$:

- **Density:** $f_X(x) = \frac{1}{B\left(\frac{d_1}{2}, \frac{d_2}{2}\right)} \left(\frac{d_1}{d_2}\right)^{\frac{d_1}{2}} x^{\frac{d_1}{2}-1} \left(1 + \frac{d_1}{d_2} x\right)^{-\frac{d_1+d_2}{2}}, \quad x > 0$

- **$E(X)$** = $\frac{d_2}{d_2-2}$ (if $d_2 > 2$), and $\text{Var}(X) = \frac{2d_2^2(d_1+d_2-2)}{d_1(d_2-2)^2(d_2-4)}$ (if $d_2 > 4$)
Simple Linear Regression

\begin{align*}
d1=1, \ d2=1 & \quad \text{red} \\
d1=2, \ d2=1 & \quad \text{black} \\
d1=5, \ d2=2 & \quad \text{blue} \\
d1=10, \ d2=1 & \quad \text{green} \\
d1=100, \ d2=100 & \quad \text{gray}
\end{align*}
Additional normality assumption on the errors

To perform the hypothesis testing and interval estimation tasks in regression, we need to assume additionally that the errors ϵ_i are iid $N(0, \sigma^2)$. This implies that

$$y_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2), \ i = 1, \ldots, n$$

and they are independent (but not identically distributed).

Since $\hat{\beta}_1$ is a linear combination of the random variables y_i, under the additional assumption we have

$$\hat{\beta}_1 \sim N\left(\beta_1, \frac{\sigma^2}{S_{xx}} \right).$$
Hypothesis testing in regression

Consider first the following hypothesis test about the slope parameter:

\[
H_0 : \beta_1 = \beta_{10}, \quad \text{vs} \quad H_1 : \beta_1 \neq \beta_{10}
\]

where \(\beta_{10}\) represents a particular value (e.g., 0) that \(\beta_1\) might take.

Under the normality assumption on the errors, we have the following result.

Theorem 0.4. At level \(\alpha\), a rejection region of the above test is

\[
\begin{cases}
|\hat{\beta}_1 - \beta_{10}| > z_{\alpha/2}, & \text{if } \sigma^2 \text{ known; } \\
\frac{|\hat{\beta}_1 - \beta_{10}|}{\sqrt{\sigma^2/S_{xx}}} > t_{\alpha/2, n-2}, & \text{if } \sigma^2 \text{ unknown. }
\end{cases}
\]
Proof. When H_0 is true, the distribution of $\hat{\beta}_1$ is

$$\hat{\beta}_1 \sim N\left(\beta_{10}, \frac{\sigma^2}{S_{xx}}\right).$$

Therefore, we can write down the following decision rule (at level α):

$$\left|\frac{\hat{\beta}_1 - \beta_{10}}{\sqrt{\sigma^2/S_{xx}}}
ight| > \frac{z_{\alpha/2}}{\sqrt{\sigma^2/S_{xx}}}$$

When σ^2 is unknown, we need to use its estimator MS_{Res} instead. This leads to a t test:

$$\left|\frac{\hat{\beta}_1 - \beta_{10}}{\sqrt{MS_{Res}/S_{xx}}}
ight| > \frac{t_{\alpha/2,n-2}}{\sqrt{MS_{Res}/S_{xx}}}$$
Remark. \(\sqrt{\sigma^2/S_{xx}} \) is the standard deviation of \(\hat{\beta}_1 \), while \(\sqrt{MS_{Res}/S_{xx}} \) is called the standard error of \(\hat{\beta}_1 \):

\[
\text{Std}(\hat{\beta}_1) = \sqrt{\sigma^2/S_{xx}}, \quad se(\hat{\beta}_1) = \sqrt{MS_{Res}/S_{xx}}.
\]

Depending on whether \(\sigma^2 \) is given, the test statistic needed is

\[
Z_0 = \frac{\hat{\beta}_1 - \beta_{10}}{\text{Std}(\hat{\beta}_1)} \quad (\sigma^2 \text{ known}), \quad t_0 = \frac{\hat{\beta}_1 - \beta_{10}}{se(\hat{\beta}_1)} \quad (\sigma^2 \text{ unknown})
\]

with corresponding decision rule:

\[
|Z_0| > z_{\alpha/2} \quad (\sigma^2 \text{ known}), \quad |t_0| > t_{\alpha/2,n-2} \quad (\sigma^2 \text{ unknown})
\]
Remark. An important special case of the above hypothesis test is when $\beta_{10} = 0$, which concerns the **significance of regression**:

- $H_0 : \beta_1 = 0$ (There is no linear relationship between y and x)
- $H_1 : \beta_1 \neq 0$ (There is a linear relationship between y and x)
Example 0.5 (weight-height).

From the R output, we see that

- The value of the t statistic for testing $H_0: \beta_1 \neq 0$ against $H_0: \beta_1 = 0$ is $t_0 = 23.14$;

- The p-value of the test is less than $2e-16$.

Thus, we can reject H_0 (at level 1%) and correspondingly conclude that there is a significant linear relationship between x and y.

```R
> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
  lm(formula = weight ~ height, data = mydata)

Residuals:
   Min     1Q Median     3Q    Max
-18.743 -6.402 -1.231   5.059 41.103

Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept)  -105.01125   7.53941  -13.93  <2e-16 ***
height         1.01762    0.04399   23.14  <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared:  0.5145,   Adjusted R-squared:  0.5136
F-statistic: 535.2 on 1 and 505 DF,  p-value: < 2.2e-16
```

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,
+ xlab="Height (cm)", ylab="Weight (kg)"
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")
> abline(mymodel, col="red",lwd=3)
Another approach to testing the significance of regression is through the **Analysis of Variance (ANOVA):**

\[SS_T = SS_R + SS_{Res}, \quad \text{with d.o.f.: } n - 1 = 1 + (n - 2) \]

We have previously defined the residual mean square

\[MS_{Res} = \frac{SS_{Res}}{n - 2} \quad \text{with } E(MS_{Res}) = \sigma^2 \]

Define also the regression mean square

\[MS_R = SS_R/1. \]

It can be shown that

\[E(MS_R) = \sigma^2 + \beta_1^2 S_{xx} \]
Observation: MS_R contains information about β_1.

- $E(MS_R) = E(MS_{Res})$ if $\beta_1 = 0$;
- $E(MS_R) > E(MS_{Res})$ if $\beta_1 \neq 0$.

As a result, large values of their ratio

$$F_0 = \frac{MS_R}{MS_{Res}} = \frac{SS_R/1}{SS_{Res}/(n-2)}$$

are evidence against $H_0 : \beta_1 = 0$.

Therefore, we have the following significance of regression test:

\[
\text{Reject } H_0 : \beta_1 = 0 \text{ if and only if } F_0 > F_{\alpha,1,n-2}
\]
The ANOVA procedure is summarized in the following able.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>Sum of squares</th>
<th>Degrees of freedom</th>
<th>Mean square</th>
<th>Test statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>$SS_R = \hat{\beta}1^2 S{xx}$</td>
<td>1</td>
<td>MS_R</td>
<td>$F_0 = \frac{MS_R}{MS_{Res}}$</td>
</tr>
<tr>
<td>Residual</td>
<td>SS_{Res}</td>
<td>$n - 2$</td>
<td>MS_{Res}</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>SS_T</td>
<td>$n - 1$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simple Linear Regression

Example 0.6 (weight-height).

From the R output, we see that

- The F statistic for testing $H_0 : \beta_1 = 0$ against a two-sided alternative is $F_0 = 535.2$ with 1 and 505 degrees of freedom;
- The p-value of the test is less than $2.2e-16$.

Thus, we can conclude that $\beta_1 \neq 0$, i.e., there is a significant linear relationship between x and y.
A more direct way of performing ANOVA in R is to use the `anova` function:

```r
> anova(mymodel)
Analysis of Variance Table

Response: weight

             Df Sum Sq Mean Sq  F value Pr(>F)
height       1 46370  46370 535.21  < 2.2e-16 ***
Residuals 505 43753    87
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
```
Remark. The ANOVA F test is equivalent to the (two-sided) t test regarding whether $\beta_1 = 0$ or not:

$$t_0^2 = \frac{\hat{\beta}_1^2}{MS_{Res}/S_{xx}} = \frac{\hat{\beta}_1^2 S_{xx}}{MS_{Res}} = \frac{SS_R/1}{SS_{Res}/(n-2)} = F_0$$

However, when one-sided alternatives such as

$$H_0 : \beta_1 = 0 \quad \text{vs} \quad H_1 : \beta_1 > 0$$

are used, only the t test can be used:

$$t_0 = \frac{\hat{\beta}_1 - 0}{\sqrt{MS_{Res}/S_{xx}}} > t_{\alpha,n-2} \quad (\sigma^2 \text{ unknown})$$
Simple Linear Regression

For the hypothesis test about the intercept parameter β_0,

$$H_0 : \beta_0 = \beta_{00}, \quad \text{vs} \quad H_1 : \beta_0 \neq \beta_{00}$$

we have the following result.

Theorem 0.5. At level α, a rejection region of the test is

$$\left\{ \frac{|\hat{\beta}_0 - \beta_{00}|}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)}} > z_{\alpha/2}, \quad \text{if } \sigma^2 \text{ known; } \right\}$$

$$\left\{ \frac{|\hat{\beta}_0 - \beta_{00}|}{\sqrt{MS_{Res} \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)}} > t_{\alpha/2, n-2}, \quad \text{if } \sigma^2 \text{ unknown; } \right\}$$
Remark. The previous R output also contains the results of the corresponding t-test for

\[H_0 : \beta_0 = 0 \] (The regression line passes through the origin)

\[H_1 : \beta_0 \neq 0 \] (The regression line does not pass through the origin)
Summary: hypothesis testing in regression

We covered the following tests with corresponding decision rules:

- $H_0 : \beta_1 = \beta_{10}$ vs $H_1 : \beta_1 \neq \beta_{10}$:
 \[
 \frac{|\hat{\beta}_1 - \beta_{10}|}{\sqrt{MS_{Res}/S_{xx}}} > t_{\alpha/2,n-2}
 \]

- Significance of regression test ($H_0 : \beta_1 = 0$ vs $H_1 : \beta_1 \neq 0$)

 - t-test:
 \[
 \frac{|\hat{\beta}_1|}{\sqrt{MS_{Res}/S_{xx}}} > t_{\alpha/2,n-2}
 \]

 - ANOVA F-test:
 \[
 \frac{MS_R}{MS_{Res}} > F_{\alpha,1,n-2}
 \]

- $H_0 : \beta_0 = \beta_{00}$ vs $H_1 : \beta_0 \neq \beta_{00}$:
 \[
 \frac{|\hat{\beta}_0 - \beta_{00}|}{\sqrt{MS_{Res}(\frac{1}{n} + \bar{x}^2/S_{xx})}} > t_{\alpha/2,n-2}
 \]
Interval estimation in regression

Under the normality assumptions, the $1 - \alpha$ CIs for β_0, β_1 are

$$\hat{\beta}_0 \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)}$$

$$\hat{\beta}_1 \pm t_{\alpha/2, n-2} \sqrt{MS_{Res}/S_{xx}}$$

This is implemented in R through the \texttt{confint} function:

```
> confint(mymodel, level=0.95)
          2.5 %     97.5 %
(Intercept) -119.8237251 -90.198783
height        0.9311971  1.104036
```

We next construct a $1 - \alpha$ confidence interval for the noise variance σ^2.
Theorem 0.6. Under the normality assumptions, a level $1 - \alpha$ confidence interval for σ^2 is

$$
\left(\frac{(n - 2)MS_{Res}}{\chi^2_{\alpha/2, n-2}}, \frac{(n - 2)MS_{Res}}{\chi^2_{1-\alpha/2, n-2}} \right)
$$

Proof. It can be shown that

$$
\frac{SS_{Res}}{\sigma^2} = \frac{(n - 2)MS_{Res}}{\sigma^2} \sim \chi^2_{n-2}.
$$

Thus,

$$
1 - \alpha = P\left(\frac{\chi^2_{1-\alpha/2, n-2}}{\chi^2_{\alpha/2, n-2}} \right) < \frac{(n - 2)MS_{Res}}{\sigma^2} < \frac{\chi^2_{\alpha/2, n-2}}{\chi^2_{1-\alpha/2, n-2}}.
$$

Solving the inequalities for σ^2 yields the desired result.
Example 0.7 (weight-height). A 95% confidence interval for σ^2 is

\[
\left(\frac{505 \cdot MS_{Res}}{\chi^2_{.025, 505}}, \frac{505 \cdot MS_{Res}}{\chi^2_{.975, 505}} \right) = \left(\frac{505 \cdot 9.308^2}{569.1608}, \frac{505 \cdot 9.308^2}{444.6268} \right) = (76.87, 98.40)
\]

R commands:

```r
> qchisq(.975, 505)
[1] 569.1608
> pchisq(569.1608, 505)
[1] 0.9750001
> qchisq(.025, 505)
[1] 444.6268
```
The mean response

A major use of a regression model is to estimate the mean response at a particular location \(x = x_0 \)

\[
E(y \mid x_0) = \beta_0 + \beta_1 x_0
\]

Under the normality assumption, we obtain the following result.

Theorem 0.7. A \(1 - \alpha \) confidence interval for \(E(y \mid x_0) \) is

\[
(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}
\]
Proof. The point estimator of the mean response, $\hat{\beta}_0 + \hat{\beta}_1 x_0$, is a linear combination of the responses y_i, thus having a normal distribution with mean

$$E(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \beta_0 + \beta_1 x_0$$

and variance

$$\text{Var}(\hat{\beta}_0 + \hat{\beta}_1 x_0) = \text{Var} \left(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x}) \right)$$

$$= \text{Var} (\bar{y}) + \text{Var} \left(\hat{\beta}_1 \right) (x_0 - \bar{x})^2$$

$$= \frac{\sigma^2}{n} + \frac{\sigma^2}{S_{xx}} (x_0 - \bar{x})^2$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)$$
Simple Linear Regression

It follows that

\[
\frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}} \sim t_{n-2}
\]

and consequently we can use the following equality

\[
1 - \alpha = P \left(-t_{\frac{\alpha}{2}, n-2} < \frac{(\hat{\beta}_0 + \hat{\beta}_1 x_0) - (\beta_0 + \beta_1 x_0)}{\sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}} < t_{\frac{\alpha}{2}, n-2} \right)
\]

to construct a level $1 - \alpha$ confidence interval for $\beta_0 + \beta_1 x_0$.

\[\square\]
Remark. The confidence interval for the mean response is the shortest at the location $x_0 = \bar{x}$ and becomes wider as x moves away from \bar{x} in either direction.
Prediction of new observations

Another way of using a regression model is to develop a prediction interval for the future observation at some specified location $x = x_0$:

$$y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0, \quad \epsilon_0 \sim N(0, \sigma^2)$$

Theorem 0.8. A $1 - \alpha$ prediction interval for the response y_0 at $x = x_0$ is

$$(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}$$
Simple Linear Regression

Proof. First, note that a point estimator for the fixed component of y_0 (i.e., $\beta_0 + \beta_1 x_0$) is

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

Let $\Psi = y_0 - \hat{y}_0$ be the difference between the true response and the point estimator for its fixed part. Then Ψ (as a linear combination of y_0, y_1, \ldots, y_n) is normally distributed with mean

$$\Psi = E(y_0) - E(\hat{y}_0) = (\beta_0 + \beta_1 x_0) - (\beta_0 + \beta_1 x_0) = 0$$

and variance

$$\text{Var}(\Psi) = \text{Var}(y_0) + \text{Var}(\hat{y}_0) = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)$$
We then have
\[
\frac{y_0 - \hat{y}_0}{\sqrt{\sigma^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}} \sim N(0, 1)
\]
and correspondingly,
\[
\frac{y_0 - \hat{y}_0}{\sqrt{M S_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}} \sim t_{n-2}
\]

Accordingly, a $1 - \alpha$ prediction interval on a future observation y_0 at x_0 is
\[
(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2, n-2} \sqrt{M S_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}
\]
Remark. The prediction interval for the response at all locations has a similar pattern to the confidence interval for the mean response but is much wider.
Summary: interval estimation in regression

- β_0 (intercept): $\hat{\beta}_0 \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}} \right)}$

- β_1 (slope): $\hat{\beta}_1 \pm t_{\alpha/2, n-2} \sqrt{MS_{Res}/S_{xx}}$

- σ^2 (error variance): $\left(\frac{(n-2)MS_{Res}}{\chi^2_{\alpha/2, n-2}}, \frac{(n-2)MS_{Res}}{\chi^2_{1-\alpha/2, n-2}} \right)$

- $E(y \mid x_0)$: $(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}$

- y_0 (response): $(\hat{\beta}_0 + \hat{\beta}_1 x_0) \pm t_{\alpha/2, n-2} \sqrt{MS_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)}$
Some considerations in the use of regression

Read Section 2.9 to understand the following issues (they will be covered in more depth later in this course):

- Extrapolation
- Influential points
- Outliers
- Correlation does not imply causation
Further learning

- 2.10 Regression Through the Origin
- 2.11 Maximum Likelihood Estimation
- 2.12 Case Where the Regressor x Is Random
- Linear regression via gradient descent
- Weighted least squares

\[
S(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} w_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2
\]