San José State University
 Math 261A: Regression Theory \& Methods

Multiple Linear Regression

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Chapter 3: 3.1-3.5, 3.8-3.10

Outline of this presentation:

- The multiple linear regression problem
- Least-square estimation
- Inference
- Some issues

Multiple Linear Regression

The multiple linear regression problem

Consider the body data again. To construct a more accurate model for predicting the weight of an individual (y), we may want to add other body measurements, such as head and waist circumferences, as additional predictors besides height $\left(x_{1}\right)$, leading to multiple linear regression:

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}+\epsilon \tag{1}
\end{equation*}
$$

where

- y : response, x_{1}, \ldots, x_{k} : predictors
- $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$: coefficients
- ϵ : error term

Multiple Linear Regression

An example of a regression model with $k=2$ predictors

Figure 3.1 (a) The regression plane for the model $E(y)=50+10 x_{1}+7 x_{2}$. (b) The contour plot.

Multiple Linear Regression

Remark. Some of the new predictors in the model could be powers of the original ones

$$
y=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\cdots+\beta_{k} x^{k}+\epsilon
$$

or interactions of them,

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{12} x_{1} x_{2}+\epsilon
$$

or even a mixture of powers and interactions of them

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{11} x_{1}^{2}+\beta_{22} x_{2}^{2}+\beta_{12} x_{1} x_{2}+\epsilon
$$

These are still linear models (in terms of the regression coefficients).

Multiple Linear Regression

An example of a full quadratic model

Figure 3.3 (a) Three-dimensional plot of the regression model $E(y)=800+10 x_{1}+7 x_{2}-$ $8.5 x_{1}^{2}-5 x_{2}^{2}+4 x_{1} x_{2},(b)$ The contour plot.

Multiple Linear Regression

The sample version of (1) is

$$
\begin{equation*}
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}+\epsilon_{i}, \quad 1 \leq i \leq n \tag{2}
\end{equation*}
$$

where the ϵ_{i} are assumed for now to be uncorrelated:

$$
\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0, \quad i \neq j
$$

and have the same mean zero and variance σ^{2} :

$$
\mathrm{E}\left(\epsilon_{i}\right)=0, \quad \operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}, \quad \text { for all } i
$$

(Like in simple linear regression, we will add the normality and independence assumptions when we get to the inference part)

Multiple Linear Regression

Letting
$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccccc}1 & x_{11} & x_{12} & \cdots & x_{1 k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2 k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}\beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{k}\end{array}\right], \quad \boldsymbol{\epsilon}=\left[\begin{array}{c}\epsilon_{1} \\ \epsilon_{2} \\ \vdots \\ \epsilon_{n}\end{array}\right]$.
we can rewrite the sample regression model in matrix form

$$
\begin{equation*}
\underbrace{\mathbf{y}}_{n \times 1}=\underbrace{\mathbf{X}}_{n \times p} \cdot \underbrace{\boldsymbol{\beta}}_{p \times 1}+\underbrace{\boldsymbol{\epsilon}}_{n \times 1} \tag{3}
\end{equation*}
$$

where $p=k+1$ represents the number of regression parameters (note that k is the number of predictors in the model).

Multiple Linear Regression

Least squares (LS) estimation

The LS criterion can still be used to fit a multiple regression model

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{k} x_{k}
$$

to the data as follows:

$$
\min _{\hat{\boldsymbol{\beta}}} S(\hat{\boldsymbol{\beta}})=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n} e_{i}^{2}
$$

where for each $1 \leq i \leq n$,

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i 1}+\cdots+\hat{\beta}_{k} x_{i k}
$$

Multiple Linear Regression

Let $\mathbf{e}=\left(e_{i}\right) \in \mathbb{R}^{n}$ and $\hat{\mathbf{y}}=\left(\hat{y}_{i}\right)=\mathbf{X} \hat{\boldsymbol{\beta}} \in \mathbb{R}^{n}$. Then $\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}$.
Correspondingly the above problem becomes

$$
\min _{\hat{\boldsymbol{\beta}}} S(\hat{\boldsymbol{\beta}})=\|\mathbf{e}\|^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}
$$

Theorem 0.1. If $\mathbf{X}^{\prime} \mathbf{X}$ is nonsingular, then the LS estimator of $\boldsymbol{\beta}$ is

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
$$

Remark. The nonsingular condition holds true if and only if all the columns of \mathbf{X} are linearly independent (i.e. \mathbf{X} is of full column rank).

Multiple Linear Regression

Remark. This is the same formula for $\hat{\boldsymbol{\beta}}=\left(\hat{\beta}_{0}, \hat{\beta}_{1}\right)^{\prime}$ in simple linear regression. To demonstrate it, consider the toy data set of 3 points: $(0,1),(1,0),(2,2)$ used before. The new formula gives that

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& =\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]\right)^{-1}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]^{-1}\left[\begin{array}{l}
3 \\
4
\end{array}\right] \\
& =\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]
\end{aligned}
$$

Multiple Linear Regression

Proof. We first need to derive some formulas about the gradient of a function of multiple variables:

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\prime} \mathbf{a}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{a}^{\prime} \mathbf{x}\right) & =\mathbf{a} \\
\frac{\partial}{\partial \mathbf{x}}\left(\|\mathbf{x}\|^{2}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\prime} \mathbf{x}\right) & =2 \mathbf{x} \\
\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}\right) & =2 \mathbf{A} \mathbf{x} \\
\frac{\partial}{\partial \mathbf{x}}\left(\|\mathbf{B} \mathbf{x}\|^{2}\right)=\frac{\partial}{\partial \mathbf{x}}\left(\mathbf{x}^{\prime} \mathbf{B}^{\prime} \mathbf{B} \mathbf{x}\right) & =2 \mathbf{B}^{\prime} \mathbf{B} \mathbf{x}
\end{aligned}
$$

Multiple Linear Regression

Using the identity $\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u}^{\prime} \mathbf{v}$, we write

$$
\begin{aligned}
S(\hat{\boldsymbol{\beta}}) & =\|\mathbf{y}\|^{2}+\|\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}-2(\mathbf{X} \hat{\boldsymbol{\beta}})^{\prime} \mathbf{y} \\
& =\mathbf{y}^{\prime} \mathbf{y}+\hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}-2 \hat{\boldsymbol{\beta}}^{\prime} \mathbf{X}^{\prime} \mathbf{y}
\end{aligned}
$$

Applying the formulas on the preceding slide, we obtain

$$
\frac{\partial S}{\partial \hat{\boldsymbol{\beta}}}=0+2 \mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}-2 \mathbf{X}^{\prime} \mathbf{y}
$$

Setting the gradient equal to zero

$$
\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y} \longleftarrow \text { least squares normal equations }
$$

and solving for $\hat{\boldsymbol{\beta}}$ will complete the proof.

Multiple Linear Regression

Remark. The very first normal equation in the system

$$
\mathbf{X}^{\prime} \mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}
$$

is

$$
n \hat{\beta}_{0}+\hat{\beta}_{1} \sum x_{i 1}+\hat{\beta}_{2} \sum x_{i 2}+\cdots+\hat{\beta}_{k} \sum x_{i k}=\sum y_{i}
$$

which simplifies to

$$
\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}_{1}+\hat{\beta}_{2} \bar{x}_{2}+\cdots+\hat{\beta}_{k} \bar{x}_{k}=\bar{y}
$$

This indicates that the centroid of the data, i.e., $\left(\bar{x}_{1}, \ldots, \bar{x}_{k}, \bar{y}\right)$, is on the least squares regression plane.

Multiple Linear Regression

Remark. The fitted values of the least squares model are

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\underbrace{\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}}_{\mathbf{H}} \mathbf{y}=\mathbf{H} \mathbf{y}
$$

and the residuals are

$$
\mathbf{e}=\mathbf{y}-\hat{\mathbf{y}}=(\mathbf{I}-\mathbf{H}) \mathbf{y}
$$

The matrix $\mathbf{H} \in \mathbb{R}^{n \times n}$ is called the hat matrix, satisfying

$$
\mathbf{H}^{\prime}=\mathbf{H}(\text { symmetric }), \quad \mathbf{H}^{2}=\mathbf{H} \text { (idempotent) }, \quad \mathbf{H}(\mathbf{I}-\mathbf{H})=\mathbf{O}
$$

Multiple Linear Regression

Geometrically, it is the orthogonal projection matrix onto the column space of \mathbf{X} (subspace spanned by the columns of \mathbf{X}):

$$
\begin{gathered}
\hat{\mathbf{y}}=\mathbf{H y}=\mathbf{X} \underbrace{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}}_{\hat{\boldsymbol{\beta}}} \in \operatorname{Col}(\mathbf{X}) \\
\hat{\mathbf{y}}^{\prime}(\mathbf{y}-\hat{\mathbf{y}})=(\mathbf{H y})^{\prime}(\mathbf{I}-\mathbf{H}) \mathbf{y}=\mathbf{y}^{\prime} \underbrace{\mathbf{H}(\mathbf{I}-\mathbf{H})}_{=\mathbf{O}} \mathbf{y}=0 .
\end{gathered}
$$

Multiple Linear Regression

Example 0.1 (body dimensions data ${ }^{1}$). Besides the predictor Height, we include Waist Girth as a second predictor to preform multiple linear regression for predicting Weight.
(R demonstration in class).

[^0]
Multiple Linear Regression

Inference in multiple linear regression

- Model parameters: $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{k}\right)^{\prime}$ (intercept and slopes), σ^{2} (noise variance)
- Inference tasks (for the parameters above): point estimation, interval estimation*, hypothesis testing*
- Inference of the mean response at $\mathbf{x}_{0}=\left(1, x_{01}, \ldots, x_{0 k}\right)^{\prime}$:

$$
\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{k} x_{0 k}=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}
$$

*To perform these two inference tasks, we will additionally assume that the model errors ϵ_{i} are normally and independently distributed with mean 0 and variance σ^{2}, i.e., $\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$.

Multiple Linear Regression

Expectation and variance of a vector-valued random variable

Let $\vec{X}=\left(X_{1}, \ldots, X_{n}\right)^{\prime} \in \mathbb{R}^{n}$ be a vector-valued random variable. Define

- Expectation: $\mathrm{E}(\vec{X})=\left(\mathrm{E}\left(X_{1}, \ldots, \mathrm{E}\left(X_{n}\right)\right)^{\prime}\right.$
- Variance (also called covariance matrix):

$$
\operatorname{Var}(\vec{X})=\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \cdots & \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \operatorname{Cov}\left(X_{n}, X_{2}\right) & \cdots & \operatorname{Var}\left(X_{n}\right)
\end{array}\right]
$$

Multiple Linear Regression

Point estimation in multiple linear regression

First, like in simple linear regression, the least squares estimator $\hat{\boldsymbol{\beta}}$ is an unbiased linear estimator for $\boldsymbol{\beta}$.

Theorem 0.2. Under the assumptions of multiple linear regression,

$$
\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}
$$

That is, $\hat{\boldsymbol{\beta}}$ is a (componentwise) unbiased estimator for $\boldsymbol{\beta}$:

$$
\mathrm{E}\left(\hat{\beta}_{i}\right)=\beta_{i}, \quad \text { for all } i=0,1, \ldots, k
$$

Multiple Linear Regression

Proof. We have

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \cdot \mathbf{X} \boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \cdot \boldsymbol{\epsilon} \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \boldsymbol{\epsilon} .
\end{aligned}
$$

It follows that

$$
\mathrm{E}(\hat{\boldsymbol{\beta}})=\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \underbrace{\mathrm{E}(\boldsymbol{\epsilon})}_{=\mathbf{0}}=\boldsymbol{\beta}
$$

Multiple Linear Regression

Next, we derive the variance of $\hat{\boldsymbol{\beta}}$:

$$
\operatorname{Var}(\hat{\boldsymbol{\beta}})=\left(\operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)\right)_{0 \leq i, j \leq k}
$$

Theorem 0.3. Let $\mathbf{C}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\left(C_{i j}\right)_{0 \leq i, j \leq k}$. Then

$$
\operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2} \mathbf{C}
$$

That is,

$$
\operatorname{Var}\left(\hat{\beta}_{i}\right)=\sigma^{2} C_{i i} \quad \text { and } \quad \operatorname{Cov}\left(\hat{\beta}_{i}, \hat{\beta}_{j}\right)=\sigma^{2} C_{i j}
$$

Multiple Linear Regression

Proof. Using the formula:

$$
\operatorname{Var}(\mathbf{A y})=\mathbf{A} \cdot \operatorname{Var}(\mathbf{y}) \cdot \mathbf{A}^{\prime}
$$

we have

$$
\begin{aligned}
\operatorname{Var}(\hat{\boldsymbol{\beta}}) & =\operatorname{Var}(\underbrace{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}}_{\mathbf{A}} \mathbf{y}) \\
& =\underbrace{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}}_{\mathbf{A}} \cdot \underbrace{\operatorname{Var}(\mathbf{y})}_{=\sigma^{2} \mathbf{I}} \cdot \underbrace{\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}}_{\mathbf{A}^{\prime}} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} .
\end{aligned}
$$

Multiple Linear Regression

Lastly, we can derive an estimator of σ^{2} from the residual sum of squares

$$
S S_{R e s}=\sum e_{i}^{2}=\|\mathbf{e}\|^{2}=\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}
$$

Theorem 0.4. We have

$$
\mathrm{E}\left(S S_{R e s}\right)=(n-p) \sigma^{2}
$$

This implies that

$$
M S_{R e s}=\frac{S S_{R e s}}{n-p}
$$

is an unbiased estimator of σ^{2}.

Multiple Linear Regression

Remark. The total and regression sums of squares are defined in the same way as before:

$$
\begin{aligned}
& S S_{R}=\sum\left(\hat{y}_{i}-\bar{y}\right)^{2}=\sum \hat{y}_{i}^{2}-n \bar{y}^{2}=\|\hat{\mathbf{y}}\|^{2}-n \bar{y}^{2} \\
& S S_{T}=\sum\left(y_{i}-\bar{y}\right)^{2}=\sum y_{i}^{2}-n \bar{y}^{2}=\|\mathbf{y}\|^{2}-n \bar{y}^{2}
\end{aligned}
$$

They can be used to assess the adequacy of the model through the coefficient of determination

$$
R^{2}=\frac{S S_{R}}{S S_{T}}=1-\frac{S S_{R e s}}{S S_{T}}
$$

The larger R^{2} (i.e., the smaller $S S_{R e s}$), the better the model.

Multiple Linear Regression

Example 0.2 (Weight ~ Height + Waist Girth). For this model,

$$
M S_{R e s}=4.529^{2}=20.512
$$

In contrast, for the simple linear regression model (Weight ~ Height),

$$
M S_{\text {Res }}=9.308^{2}=86.639
$$

Therefore, the multiple linear regression model has a smaller total fitting error $S S_{\text {Res }}=(n-p) M S_{\text {Res }}$.
> mymodel2<-lm(weight~height+waist_girth, data=mydata)
> summary(mymodel2)
Call:
lm (formula $=$ weight \sim height + waist_girth, data $=$ mydata)
Residuals:

Min	$1 Q$	Median	3Q	Max
-14.8643	-2.8947	-0.1823	2.5674	20.6156

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-75.07047	3.74259	-20.06	$<2 \mathrm{e}-16^{* * *}$
height	0.44432	0.02569	17.30	$<2 \mathrm{e}-16^{* * *}$
waist_girth	0.88563	0.02194	40.36	$<2 \mathrm{e}-16^{* * *}$

Signif. codes: 0 '***' 0.001 ‘**' 0.01 '*' 0.05^{\prime}. 0.1
Residual standard error: 4.529 on 504 degrees of freedom Multiple R-squared: 0.8853, Adjusted R-squared: 0.8848 F-statistic: 1945 on 2 and 504 DF, p-value: < 2.2e-16

The coefficient of determination of this model is $R^{2}=0.8853$, which is much higher than that of the smaller model.

Multiple Linear Regression

Adjusted R^{2}

R^{2} measures the goodness of fit of a single model and is not a fair criterion for comparing models with different sizes k (e.g., nested models)

The adjusted R^{2} criterion is more suitable for such comparisons:

$$
R_{\text {Adj }}^{2}=1-\frac{S S_{R e s} /(n-p)}{S S_{T} /(n-1)}
$$

The larger the $R_{\text {Adj, }}^{2}$, the better the model.

Multiple Linear Regression

Remark.

- As p (i.e., k) increases, $S S_{\text {Res }}$ will either decrease or stay the same:
- If $S S_{\text {Res }}$ does not change (or decreases by very little), then $R_{\text {Adj }}^{2}$ will decrease. \longleftarrow The smaller model is better
- If $S S_{\text {Res }}$ decreases relatively more than $n-p$ does, then $R_{\text {Adj }}^{2}$ would increase. \longleftarrow The larger model is better
- We can write instead

$$
R_{\text {Adj }}^{2}=1-\frac{n-1}{n-p}\left(1-R^{2}\right)
$$

This implies that $R_{\text {Adj }}^{2}<R^{2}$.

Multiple Linear Regression

Summary: Point estimation in multiple linear regression

Model parameters	Point estimators	Properties	
		Bias	Variance
$\boldsymbol{\beta}$	$\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}$	unbiased	$\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$
σ^{2}	$M S_{\text {Res }}=\frac{S S_{\text {Res }}}{n-p}$	unbiased	

Remark. For the mean response at $\mathbf{x}_{0}=\left(1, x_{01}, \ldots, x_{0 k}\right)^{\prime}$:

$$
\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{k} x_{0 k}=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}
$$

an unbiased point estimator is

$$
\hat{\beta}_{0}+\hat{\beta}_{1} x_{01}+\cdots+\hat{\beta}_{k} x_{0 k}=\mathbf{x}_{0}^{\prime} \hat{\boldsymbol{\beta}}
$$

Multiple Linear Regression

Next

We consider the following inference tasks in multiple linear regression:

- Hypothesis testing
- Interval estimation

For both tasks, we need to additionally assume that the model errors ϵ_{i} are iid $N\left(0, \sigma^{2}\right)$.

Multiple Linear Regression

Hypothesis testing in multiple linear regression

Depending on how many regression coefficients are being tested together, we have

- ANOVA F Tests for Significance of Regression on All Regression Coefficients
- Partial F Tests on Subsets of Regression Coefficients
- Marginal t Tests on Individual Regression Coefficients

Multiple Linear Regression

ANOVA for Testing Significance of Regression

In multiple linear regression, the significance of regression test is

$$
\begin{aligned}
& H_{0}: \beta_{1}=\cdots=\beta_{k}=0 \\
& H_{1}: \beta_{j} \neq 0 \text { for at least one } j
\end{aligned}
$$

The ANOVA test works very similarly: The test statistic is

$$
F_{0}=\frac{M S_{R}}{M S_{\text {Res }}}=\frac{S S_{R} / k}{S S_{\text {Res }} /(n-p)} \stackrel{H_{0}}{\sim} F_{k, n-p}
$$

and we reject H_{0} if

$$
F_{0}>F_{\alpha, k, n-p}
$$

Multiple Linear Regression

Example 0.3 (Weight ~ Height +

 Waist Girth). For this multiple linear regression model, regression is significant because the ANOVA F statistic is$$
F_{0}=1945
$$

and the p-value is less than $2.2 \mathrm{e}-16$. Note that the p-values of the individual coefficients can no longer be used for conducting the significance of regression test.

```
> mymodel2<-lm(weight~height+waist_girth, data=mydata)
```

$>$ summary(mymodel2)

```
Call:
```

lm(formula $=$ weight \sim height + waist_girth, data $=$ mydata)
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-14.8643	-2.8947	-0.1823	2.5674	20.6156

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	-75.07047	3.74259	-20.06	$<2 \mathrm{e}-16^{* * *}$
height	0.44432	0.02569	17.30	$<2 \mathrm{e}-16^{* * *}$
waist_girth	0.88563	0.02194	40.36	$<2 \mathrm{e}-16^{* * *}$

Signif. codes: 0 '***' $0.001^{6 * *, ~} 0.01$ '*’ 0.05 '.’ 0.1
Residual standard error: 4.529 on 504 degrees of freedom
Multiple R-squared: 0.8853, Adjusted R-squared: 0.8848
F-statistic: 1945 on 2 and 504 DF, p-value: < 2.2e-16

Multiple Linear Regression

Marginal Tests on Individual Regression Coefficients

The hypothesis for testing the significance of any individual predictor x_{j}, given all the other predictors, to the model is

$$
H_{0}: \beta_{j}=0 \quad \text { vs } \quad H_{1}: \beta_{j} \neq 0
$$

If H_{0} is not rejected, then the regressor x_{j} is insignificant and can be deleted from the model (while preserving all other regressors).

To conduct the test, we need to use the point estimator $\hat{\beta}_{j}$ (which is linear, unbiased) and determine its distribution when H_{0} is true:

$$
\hat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} C_{j j}\right), \quad j=0,1, \ldots, k
$$

Multiple Linear Regression

The test statistic is

$$
t_{0}=\frac{\hat{\beta}_{j}-0}{\operatorname{se}\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2} C_{j j}}} \stackrel{H_{0}}{\sim} t_{n-p} \quad\left(\hat{\sigma}^{2}=M S_{R e s}\right)
$$

and we reject H_{0} if

$$
\left|t_{0}\right|>t_{\alpha / 2, n-p}
$$

Example 0.4 (Weight ~ Height + Waist Girth). Based on the previous R output, both predictors are significant when the other is already included in the model:

- Height: $t_{0}=17.30, p$-value $<2 \mathrm{e}-16$
- Waist Girth: $t_{0}=40.36, p$-value $<2 \mathrm{e}-16$

Multiple Linear Regression

Partial F Tests on Subsets of Regression Coefficients

Consider the full regression model with k regressors

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

Suppose there is a partition of the regression coefficients in β into two groups (the last r and the preceding ones):

$$
\boldsymbol{\beta}=\left[\begin{array}{l}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{2}
\end{array}\right] \in \mathbb{R}^{p}, \quad \boldsymbol{\beta}_{1}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k-r}
\end{array}\right] \in \mathbb{R}^{p-r}, \boldsymbol{\beta}_{2}=\left[\begin{array}{c}
\beta_{k-r+1} \\
\vdots \\
\beta_{k}
\end{array}\right] \in \mathbb{R}^{r}
$$

Multiple Linear Regression

We wish to test

$$
H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}\left(\beta_{k-r+1}=\cdots=\beta_{k}=0\right) \quad \text { vs } \quad H_{1}: \boldsymbol{\beta}_{2} \neq \mathbf{0}
$$

to determine if the last r predictors may be deleted from the model.
Corresponding to the partition of β we partition \mathbf{X} in a conformal way:

$$
\mathbf{X}=\left[\mathbf{X}_{1} \mathbf{X}_{2}\right], \quad \mathbf{X}_{1} \in \mathbb{R}^{n \times(p-r)}, \quad \mathbf{X}_{2} \in \mathbb{R}^{n \times r}
$$

such that

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}=\left[\begin{array}{ll}
\mathbf{X}_{1} & \mathbf{X}_{2}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{\beta}_{1} \\
\boldsymbol{\beta}_{2}
\end{array}\right]=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\boldsymbol{\epsilon}
$$

Multiple Linear Regression

We compare two contrasting models:

$$
\begin{aligned}
\text { (Full model) } & \mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \\
\text { (Reduced model) } & \mathbf{y}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\boldsymbol{\epsilon}
\end{aligned}
$$

The corresponding regression sums of squares are

$$
\begin{aligned}
(d f=k) & S S_{R}(\boldsymbol{\beta})=\|\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}-n \bar{y}^{2}, \quad \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
(d f=k-r) & S S_{R}\left(\boldsymbol{\beta}_{1}\right)=\left\|\mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1}\right\|^{2}-n \bar{y}^{2}, \quad \hat{\boldsymbol{\beta}}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}
\end{aligned}
$$

Thus, the regression sum of squares due to $\boldsymbol{\beta}_{2}$ given that $\boldsymbol{\beta}_{1}$ is already in the model, called extra sum of squares, is

$$
(d f=r) \quad S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{1}\right)
$$

Multiple Linear Regression

Note that with the residual sums of squares

$$
\begin{aligned}
S S_{R e s}(\boldsymbol{\beta}) & =\|\mathbf{y}-\mathbf{X} \hat{\boldsymbol{\beta}}\|^{2}, \quad \hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y} \\
S S_{R e s}\left(\boldsymbol{\beta}_{1}\right) & =\left\|\mathbf{y}-\mathbf{X}_{1} \hat{\boldsymbol{\beta}}_{1}\right\|^{2}, \quad \hat{\boldsymbol{\beta}}_{1}=\left(\mathbf{X}_{1}^{\prime} \mathbf{X}_{1}\right)^{-1} \mathbf{X}_{1}^{\prime} \mathbf{y}
\end{aligned}
$$

we also have

$$
S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right)=S S_{R e s}\left(\boldsymbol{\beta}_{1}\right)-S S_{R e s}(\boldsymbol{\beta})
$$

Finally, the (partial F) test statistic is

$$
F_{0}=\frac{S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right) / r}{S S_{R e s}(\boldsymbol{\beta}) /(n-p)} \stackrel{H_{0}}{\sim} F_{r, n-p}
$$

and we reject H_{0} if

$$
F_{0}>F_{\alpha, r, n-p}
$$

Multiple Linear Regression

Example 0.5 (Weight ~ Height + Waist Girth). We use the extra sum of squares method to compare it with the reduced model (Weight \sim Height):
> mymodel1<-lm(weight~height, data=mydata)
> mymodel2<-lm(weight~height+waist_girth, data=mydata)
$>$ anova(mymodel1, mymodel2)
Analysis of Variance Table
Model 1: weight ~ height
Model 2: weight ~ height + waist_girth
Res.Df RSS Df Sum of Sq F $\operatorname{Pr}(>F)$
150543753
2504103371334161629.2 < $2.2 \mathrm{e}-16^{* * *}$

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 '*’ 0.05 '. 0.1 ' ' 1

Multiple Linear Regression

Remark. The partial F test on a single predictor $x_{j}, \boldsymbol{\beta}=\left[\boldsymbol{\beta}_{(j)} ; \beta_{j}\right]$ based on the extra sum of squares
$S S_{R}\left(\beta_{j} \mid \boldsymbol{\beta}_{(j)}\right)=S S_{R}(\boldsymbol{\beta})-S S_{R}\left(\boldsymbol{\beta}_{(j)}\right)$
can be shown to be equivalent to the marginal t test for β_{j}.

For example, for Waist Girth,

- marginal t test: $t_{0}=40.36$
- partial F test: $F_{0}=1629.2$

Note that $F_{0}=t_{0}^{2}$ (thus same test).

```
> mymodel2<-lm(weight~height+waist_girth, data=mydata )
> summary(mymodel2)
Call:
lm(formula = weight ~ height + waist_girth, data = mydata)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-14.8643 & -2.8947 & -0.1823 & 2.5674 & 20.6156
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(> |t|)
\begin{tabular}{lrrrr} 
(Intercept) & -75.07047 & 3.74259 & -20.06 & \(<2 \mathrm{e}-16^{* * *}\) \\
height & 0.44432 & 0.02569 & 17.30 & \(<2 \mathrm{e}-16^{* * *}\) \\
waist_girth & 0.88563 & 0.02194 & 40.36 & \(<2 \mathrm{e}-16^{* * *}\)
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Residual standard error: 4.529 on 504 degrees of freedom
Multiple R-squared: 0.8853, Adjusted R-squared: 0.8848
F-statistic: }1945\mathrm{ on }2\mathrm{ and 504 DF, p-value: < 2.2e-16
```


Multiple Linear Regression

Remark. There is a decomposition of the regression sum of squares

$$
S S_{R} \leftarrow S S_{R}\left(\beta_{1}, \ldots, \beta_{k} \mid \beta_{0}\right)
$$

into a sequence of marginal extra sums of squares, each corresponding to a single predictor:

$$
\begin{aligned}
& S S_{R}\left(\beta_{1}, \ldots, \beta_{k} \mid \beta_{0}\right) \\
= & S S_{R}\left(\beta_{1} \mid \beta_{0}\right) \\
& +S S_{R}\left(\beta_{2} \mid \beta_{1}, \beta_{0}\right) \\
& +\cdots \\
& +S S_{R}\left(\beta_{k} \mid \beta_{k-1}, \ldots, \beta_{1}, \beta_{0}\right)
\end{aligned}
$$

```
> mymodel2<-lm(weight~height+waist_girth, data=mydata
```

> anova(mymodel2)
Analysis of Variance Table
Response: weight

		Sum Sq	Mean Sq	value	$\operatorname{Pr}(>F)$	
height	1	46370	46370	2260.8	< $2.2 \mathrm{e}-16$	
waist_girth	1	33416	33416	1629.2	< 2.2e-16	***
Residuals	504	10337	21			

Signif. codes: 0 '***’ 0.001 '**’ 0.01 '*’ 0.05						

From the above output:
$-S S_{R}\left(\beta_{1} \mid \beta_{0}\right)=46370$, the predictor height is significant
$-S S_{R}\left(\beta_{2} \mid \beta_{1}, \beta_{0}\right)=33416$, waist girth is significant given that height is already in the model
$-S S_{R}\left(\beta_{1}, \beta_{2} \mid \beta_{0}\right)=79786$

Multiple Linear Regression

Summary: hypothesis testing in regression

- ANOVA F test: $H_{0}: \beta_{1}=\cdots=\beta_{k}=0$. Reject H_{0} if

$$
F_{0}=\frac{M S_{R}}{M S_{R e s}}=\frac{S S_{R} / k}{S S_{R e s} /(n-p)}>F_{\alpha, k, n-p}
$$

- Marginal t-tests: $H_{0}: \beta_{j}=0$. Reject H_{0} if

$$
\left|t_{0}\right|>t_{\alpha / 2, n-p}, \quad t_{0}=\frac{\hat{\beta}_{j}-0}{s e\left(\hat{\beta}_{j}\right)}=\frac{\hat{\beta}_{j}}{\sqrt{\hat{\sigma}^{2} C_{j j}}}
$$

- Partial F test: $H_{0}: \boldsymbol{\beta}_{2}=\mathbf{0}$. Reject H_{0} if

$$
\frac{S S_{R}\left(\boldsymbol{\beta}_{2} \mid \boldsymbol{\beta}_{1}\right) / r}{S S_{R e s}(\boldsymbol{\beta}) /(n-p)}>F_{\alpha, r, n-p}
$$

Multiple Linear Regression

Interval estimation in multiple linear regression

We construct the following

- Confidence intervals for individual regression coefficients $\hat{\beta}_{j}$
- Confidence interval for the mean response
- Prediction interval
under the additional assumption that the errors ϵ_{i} are independently and normally distributed with zero mean and constant variance σ^{2}.

Multiple Linear Regression

Confidence intervals for individual regression coefficients

Theorem 0.5. Under the normality assumption, a $1-\alpha$ confidence interval for the regression coefficient $\beta_{j}, 0 \leq j \leq k$ is

$$
\hat{\beta}_{j} \pm t_{\alpha / 2, n-p} \sqrt{\hat{\sigma}^{2} C_{j j}}
$$

> confint(mymodel2, level=0.95)

	2.5%	97.5%
(Intercept)	-82.4234684	-67.7174691
height	0.3938544	0.4947853
waist_girth	0.8425226	0.9287393

Multiple Linear Regression

Confidence interval for the mean response

In the setting of multiple linear regression, the mean response at a given point $\mathbf{x}_{0}=\left(1, x_{01}, \ldots, x_{0 k}\right)^{\prime}$ is

$$
\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x_{01}+\cdots+\beta_{k} x_{0 k}
$$

A natural point estimator for $\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)$ is the following:

$$
\hat{y}_{0}=\mathbf{x}_{0}^{\prime} \hat{\boldsymbol{\beta}}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{01}+\cdots+\hat{\beta}_{k} x_{0 k}
$$

Furthermore, we can construct a confidence interval for $\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)$.

Multiple Linear Regression

Since \hat{y}_{0} is a linear combination of the responses, it is normally distributed with

$$
\mathrm{E}\left(\hat{y}_{0}\right)=\mathbf{x}_{0}^{\prime} \mathrm{E}(\hat{\boldsymbol{\beta}})=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}
$$

and

$$
\operatorname{Var}\left(\hat{y}_{0}\right)=\mathbf{x}_{0}^{\prime} \operatorname{Var}(\hat{\boldsymbol{\beta}}) \mathbf{x}_{0}=\sigma^{2} \mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}
$$

We can thus obtain the following result.
Theorem 0.6. Under the normality assumption on the model errors, a $1-\alpha$ confidence interval on the mean response $\mathrm{E}\left(y \mid \mathbf{x}_{0}\right)$ is

$$
\hat{y}_{0} \pm t_{\alpha / 2, n-p} \sqrt{\hat{\sigma}^{2} \mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}}
$$

Multiple Linear Regression

Prediction intervals for new observations

Given a new location \mathbf{x}_{0}, we would like to form a prediction interval on the future observation of the response at that location

$$
y_{0}=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}+\epsilon_{0}
$$

where $\epsilon_{0} \sim N\left(0, \sigma^{2}\right)$ is the error.
We have the following result.
Theorem 0.7. Under the normality assumption on the model errors, a $1-\alpha$ prediction interval for the future observation y_{0} at the point \mathbf{x}_{0}^{\prime} is

$$
\hat{y}_{0} \pm t_{\alpha / 2, n-p} \sqrt{\hat{\sigma}^{2}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}
$$

Multiple Linear Regression

Proof. First, note that the mean of the response y_{0} at \mathbf{x}_{0}, i.e., $\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}$, is estimated by $\hat{y}_{0}=\mathbf{x}_{0}^{\prime} \hat{\boldsymbol{\beta}}$.

Let $\Psi=y_{0}-\hat{y}_{0}$ be the difference between the true response and the point estimator for its mean. Then Ψ (as a linear combination of $y_{0}, y_{1}, \ldots, y_{n}$) is normally distributed with mean

$$
\Psi=\mathrm{E}\left(y_{0}\right)-\mathrm{E}\left(\hat{y}_{0}\right)=\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}-\mathbf{x}_{0}^{\prime} \boldsymbol{\beta}=0
$$

and variance

$$
\operatorname{Var}(\Psi)=\operatorname{Var}\left(y_{0}\right)+\operatorname{Var}\left(\hat{y}_{0}\right)=\sigma^{2}+\sigma^{2} \mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}
$$

Multiple Linear Regression

It follows that

$$
\frac{y_{0}-\hat{y}_{0}}{\sqrt{\sigma^{2}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}} \sim N(0,1)
$$

and correspondingly,

$$
\frac{y_{0}-\hat{y}_{0}}{\sqrt{M S_{R e s}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}} \sim t_{n-p}
$$

Accordingly, a $1-\alpha$ prediction interval on a future observation y_{0} at x_{0} is

$$
\hat{y}_{0} \pm t_{\alpha / 2, n-p} \sqrt{M S_{R e s}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}
$$

Multiple Linear Regression

Summary: interval estimation in regression

- β_{j} (for each $\left.0 \leq j \leq k\right): \hat{\beta}_{j} \pm t_{\alpha / 2, n-p} \sqrt{M S_{\text {Res }} C_{j j}}$
- $\sigma^{2}:\left(\frac{(n-p) M S_{R e s}}{\chi_{\frac{\alpha}{2}, n-p}^{2}}, \frac{(n-p) M S_{R e s}}{\chi_{1-\frac{\alpha}{2}, n-p}^{2}}\right)$
- $\mathrm{E}\left(y \mid \mathbf{x}_{0}\right): \hat{y}_{0} \pm t_{\alpha / 2, n-p} \sqrt{M S_{R e s} \mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}}$
- $y_{0}\left(\right.$ at $\left.\mathbf{x}_{0}\right): \hat{y}_{0} \pm t_{\alpha / 2, n-p} \sqrt{M S_{R e s}\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}$

Multiple Linear Regression

Some issues in multiple linear regression

- Hidden extrapolation
- Units of measurements
- Multicollinearity

Multiple Linear Regression

Hidden extrapolation

In multiple linear regression, extrapolation may occur even when all predictor values are within their ranges.

We can use the hat matrix

$$
\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}
$$

to detect hidden extrapolation: Let

$$
h_{\max }=\max h_{i i} .
$$

Then \mathbf{x}_{0} is an extrapolation point if

$$
\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}>h_{\max }
$$

Multiple Linear Regression

Multiple Linear Regression

Units of measurements

The choices of the units of the predictors in a linear model may cause their regression coefficients to have very different magnitudes, e.g.,

$$
y=3-20 x_{1}+0.01 x_{2}
$$

In order to directly compare regression coefficients, we need to scale the regressors and the response to be on the same magnitude.

Two common scaling methods:

- Unit Normal Scaling
- Unit Length Scaling

Multiple Linear Regression

Unit Normal Scaling: For each regressor x_{j} (and the response), rescale the observations of x_{j} (or \mathbf{y}) to have zero mean and unit variance.

Let
$\bar{x}_{j}=\frac{1}{n} \sum_{i} x_{i j}, \quad s_{j}^{2}=\frac{1}{n-1} \underbrace{\sum_{i}\left(x_{i j}-\bar{x}_{j}\right)^{2}}_{S_{j j}}, \quad s_{y}^{2}=\frac{1}{n-1} \underbrace{\sum_{i}\left(y_{i}-\bar{y}\right)^{2}}_{=S S_{T}}$.
Then the normalized predictors and response are

$$
z_{i j}=\frac{x_{i j}-\bar{x}_{j}}{s_{j}}, \quad y_{i}^{*}=\frac{y_{i}-\bar{y}}{s_{y}}
$$

This leads to a linear regression model without intercept: $\mathbf{y}^{*}=\mathbf{Z} \hat{\mathbf{b}}$.

Multiple Linear Regression

```
> # unit normal scaling
> mydata_std <- data.frame(scale(mydata))
> mynewmodel2 <- lm(weight~height+waist_girth, data=mydata_std)
> summary(mynewmodel2)
Call:
lm(formula = weight ~ height + waist_girth, data = mydata_std)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & \(3 Q\) & Max \\
-1.11378 & -0.21690 & -0.01366 & 0.19238 & 1.54473
\end{tabular}
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.281e-16 1.507e-02 0.00 1
height 3.132e-01 1.811e-02 17.30 <2e-16
waist_girth 7.308e-01 1.811e-02 40.36 <2e-16 ***
--
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3393 on 504 degrees of freedom Multiple R-squared: 0.8853, Adjusted R-squared: 0.8848
F-statistic: 1945 on 2 and 504 DF, \(p\)-value: < 2.2e-16
```


Multiple Linear Regression

Unit Length Scaling: For each regressor x_{j} (and the response), rescale the observations of $x_{j}(\mathrm{or} \mathbf{y})$ to have zero mean and unit length.

$$
w_{i j}=\frac{x_{i j}-\bar{x}_{j}}{\sqrt{S_{j j}}}=\frac{z_{i j}}{\sqrt{n-1}}, \quad y_{i}^{0}=\frac{y_{i}-\bar{y}}{\sqrt{S S_{T}}}=\frac{y_{i}^{*}}{\sqrt{n-1}}
$$

This also leads to a linear regression model without intercept: $\mathbf{y}^{0}=\mathbf{W} \hat{\mathbf{b}}$.
Remark.

- $\mathbf{W}=\frac{1}{\sqrt{n-1}} \mathbf{Z}$ and $\mathbf{y}^{0}=\frac{1}{\sqrt{n-1}} \mathbf{y}^{*}$. Thus, the two scaling methods will yield the same standardized regression coefficients $\hat{\mathbf{b}}$.
- Entries of $\mathbf{W}^{\prime} \mathbf{W}$ are correlations between the regressors.

Multiple Linear Regression

Proof: We examine the (j, ℓ)-entry of $\mathbf{W}^{\prime} \mathbf{W}$:

$$
\begin{aligned}
\left(\mathbf{W}^{\prime} \mathbf{W}\right)_{j \ell} & =\sum_{i=1}^{n} w_{i j} w_{i \ell} \\
& =\sum \frac{x_{i j}-\bar{x}_{j}}{\sqrt{S_{j j}}} \frac{x_{i \ell}-\bar{x}_{\ell}}{\sqrt{S_{\ell \ell}}} \\
& =\frac{\sum\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i \ell}-\bar{x}_{\ell}\right)}{\sqrt{S_{j j}} \sqrt{S_{\ell \ell}}} \\
& =\frac{\frac{1}{n-1} \sum\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i \ell}-\bar{x}_{\ell}\right)}{\sqrt{\frac{1}{n-1} \sum\left(x_{i j}-\bar{x}_{j}\right)^{2}} \sqrt{\frac{1}{n-1} \sum\left(x_{i \ell}-\bar{x}_{\ell}\right)^{2}}} \\
& =\operatorname{Corr}\left(x_{j}, x_{\ell}\right)
\end{aligned}
$$

Multiple Linear Regression

Multicollinearity

A serious issue in multiple linear regression is multicolinearity, or near-linear dependence among the regression variables, e.g., $x_{3} \approx 2 x_{1}+5 x_{2}$.

- \mathbf{X} won't be of full rank, leading to a singular $\mathbf{X}^{\prime} \mathbf{X}$.
- The redundant predictors contribute no new information about the response .
- The estimated slopes in the regression model will be arbitrary.

We will discuss in more detail how to diagnose (and fix) the issue of multicollinearity in Chapter 9.

Multiple Linear Regression

Further learning

3.3.3 The Case of Orthogonal Columns in \mathbf{X}
3.3.4 Testing the General Linear Hypothesis $H_{0}: \mathbf{T} \boldsymbol{\beta}=\mathbf{0}$

- Projection matrices
- Concepts
- Computing via SVD

[^0]: ${ }^{1}$ http://jse.amstat.org/v11n2/datasets.heinz.html

