San José State University Math 261A: Regression Theory & Methods

Multiple Linear Regression

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

• Chapter 3: 3.1 - 3.5, 3.8 - 3.10

Outline of this presentation:

- The multiple linear regression problem
- Least-square estimation
- Inference
- Some issues

The multiple linear regression problem

Consider the body data again. To construct a more accurate model for predicting the weight of an individual (y), we may want to add other body measurements, such as head and waist circumferences, as additional predictors besides height (x_1) , leading to multiple linear regression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon \tag{1}$$

where

- y: response, x_1, \ldots, x_k : predictors
- $\beta_0, \beta_1, \ldots, \beta_k$: coefficients
- ϵ : error term

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 3/61

An example of a regression model with k = 2 predictors

Figure 3.1 (a) The regression plane for the model $E(y) = 50 + 10x_1 + 7x_2$. (b) The contour plot.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

Remark. Some of the new predictors in the model could be powers of the original ones

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \dots + \beta_k x^k + \epsilon$$

or interactions of them,

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \epsilon$$

or even a mixture of powers and interactions of them

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon$$

These are still linear models (in terms of the regression coefficients).

An example of a full quadratic model

Figure 3.3 (a) Three-dimensional plot of the regression model $E(y) = 800 + 10x_1 + 7x_2 - 8.5x_1^2 - 5x_2^2 + 4x_1x_2$, (b) The contour plot.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

The sample version of (1) is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_k x_{ik} + \epsilon_i, \quad 1 \le i \le n$$
(2)

where the ϵ_i are assumed for now to be uncorrelated:

$$\operatorname{Cov}(\epsilon_i, \epsilon_j) = 0, \quad i \neq j$$

and have the same mean zero and variance σ^2 :

$$E(\epsilon_i) = 0$$
, $Var(\epsilon_i) = \sigma^2$, for all i

(Like in simple linear regression, we will add the normality and independence assumptions when we get to the inference part)

7/61

Multiple Linear Regression

Letting

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}, \quad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}, \quad \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}$$

we can rewrite the sample regression model in matrix form

$$\underbrace{\mathbf{y}}_{n\times 1} = \underbrace{\mathbf{X}}_{n\times p} \cdot \underbrace{\boldsymbol{\beta}}_{p\times 1} + \underbrace{\boldsymbol{\epsilon}}_{n\times 1}$$
(3)

where p = k + 1 represents the number of regression parameters (note that k is the number of predictors in the model).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/61

Least squares (LS) estimation

The LS criterion can still be used to fit a multiple regression model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_k x_k$$

to the data as follows:

$$\min_{\hat{\beta}} S(\hat{\beta}) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

where for each $1 \leq i \leq n$,

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \dots + \hat{\beta}_k x_{ik}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

9/61

Let $\mathbf{e} = (e_i) \in \mathbb{R}^n$ and $\hat{\mathbf{y}} = (\hat{y}_i) = \mathbf{X}\hat{\boldsymbol{\beta}} \in \mathbb{R}^n$. Then $\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$. Correspondingly the above problem becomes

$$\min_{\hat{\boldsymbol{\beta}}} S(\hat{\boldsymbol{\beta}}) = \|\mathbf{e}\|^2 = \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$$

Theorem 0.1. If $\mathbf{X}'\mathbf{X}$ is nonsingular, then the LS estimator of $\boldsymbol{\beta}$ is

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

Remark. The nonsingular condition holds true if and only if all the columns of \mathbf{X} are linearly independent (i.e. \mathbf{X} is of full column rank).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/61

Remark. This is the same formula for $\hat{\beta} = (\hat{\beta}_0, \hat{\beta}_1)'$ in simple linear regression. To demonstrate it, consider the toy data set of 3 points: (0,1), (1,0), (2,2) used before. The new formula gives that

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/61

Proof. We first need to derive some formulas about the gradient of a function of multiple variables:

$$\begin{aligned} \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}' \mathbf{a} \right) &= \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{a}' \mathbf{x} \right) = \mathbf{a} \\ \frac{\partial}{\partial \mathbf{x}} \left(\|\mathbf{x}\|^2 \right) &= \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}' \mathbf{x} \right) = 2\mathbf{x} \\ \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}' \mathbf{A} \mathbf{x} \right) &= 2\mathbf{A} \mathbf{x} \\ \frac{\partial}{\partial \mathbf{x}} \left(\|\mathbf{B} \mathbf{x}\|^2 \right) &= \frac{\partial}{\partial \mathbf{x}} \left(\mathbf{x}' \mathbf{B}' \mathbf{B} \mathbf{x} \right) = 2\mathbf{B}' \mathbf{B} \mathbf{x} \end{aligned}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 12/61

Using the identity $\|\mathbf{u}-\mathbf{v}\|^2=\|\mathbf{u}\|^2+\|\mathbf{v}\|^2-2\mathbf{u}'\mathbf{v},$ we write

$$S(\hat{\boldsymbol{\beta}}) = \|\mathbf{y}\|^2 + \|\mathbf{X}\hat{\boldsymbol{\beta}}\|^2 - 2(\mathbf{X}\hat{\boldsymbol{\beta}})'\mathbf{y}$$
$$= \mathbf{y}'\mathbf{y} + \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} - 2\hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$$

Applying the formulas on the preceding slide, we obtain

$$\frac{\partial S}{\partial \hat{\boldsymbol{\beta}}} = 0 + 2\mathbf{X}'\mathbf{X}\hat{\boldsymbol{\beta}} - 2\mathbf{X}'\mathbf{y}$$

Setting the gradient equal to zero

$$\mathbf{X}'\mathbf{X}\hat{oldsymbol{eta}} = \mathbf{X}'\mathbf{y} \; \longleftarrow$$
 least squares normal equations

and solving for $\hat{\beta}$ will complete the proof.

Remark. The very first normal equation in the system

$$\mathbf{X}'\mathbf{X}\hat{oldsymbol{eta}} = \mathbf{X}'\mathbf{y}$$

is

$$n\hat{\beta}_0 + \hat{\beta}_1 \sum x_{i1} + \hat{\beta}_2 \sum x_{i2} + \dots + \hat{\beta}_k \sum x_{ik} = \sum y_i$$

which simplifies to

$$\hat{\beta}_0 + \hat{\beta}_1 \bar{x}_1 + \hat{\beta}_2 \bar{x}_2 + \dots + \hat{\beta}_k \bar{x}_k = \bar{y}$$

This indicates that the centroid of the data, i.e., $(\bar{x}_1, \ldots, \bar{x}_k, \bar{y})$, is on the least squares regression plane.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 14/61

Remark. The fitted values of the least squares model are

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \underbrace{\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'}_{\mathbf{H}}\mathbf{y} = \mathbf{H}\mathbf{y}$$

and the residuals are

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}} = (\mathbf{I} - \mathbf{H})\mathbf{y}.$$

The matrix $\mathbf{H} \in \mathbb{R}^{n \times n}$ is called **the hat matrix**, satisfying

 $\mathbf{H}' = \mathbf{H}$ (symmetric), $\mathbf{H}^2 = \mathbf{H}$ (idempotent), $\mathbf{H}(\mathbf{I} - \mathbf{H}) = \mathbf{O}$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 15/61

Geometrically, it is the orthogonal projection matrix onto the column space of X (subspace spanned by the columns of X):

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{y} = \mathbf{X}\underbrace{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}}_{\hat{\beta}} \in \operatorname{Col}(\mathbf{X})$$
$$\hat{\mathbf{y}}'(\mathbf{y} - \hat{\mathbf{y}}) = (\mathbf{H}\mathbf{y})'(\mathbf{I} - \mathbf{H})\mathbf{y} = \mathbf{y}'\underbrace{\mathbf{H}(\mathbf{I} - \mathbf{H})}_{=\mathbf{O}}\mathbf{y} = 0.$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/61

Example 0.1 (body dimensions data¹). Besides the predictor *Height*, we include *Waist Girth* as a second predictor to preform multiple linear regression for predicting *Weight*.

(R demonstration in class).

¹http://jse.amstat.org/v11n2/datasets.heinz.html

Inference in multiple linear regression

- Model parameters: $\beta = (\beta_0, \beta_1, \dots, \beta_k)'$ (intercept and slopes), σ^2 (noise variance)
- Inference tasks (for the parameters above): point estimation, interval estimation*, hypothesis testing*
- Inference of the mean response at $\mathbf{x}_0 = (1, x_{01}, \dots, x_{0k})'$:

$$\mathbf{E}(y \mid \mathbf{x}_0) = \beta_0 + \beta_1 x_{01} + \dots + \beta_k x_{0k} = \mathbf{x}'_0 \boldsymbol{\beta}$$

*To perform these two inference tasks, we will additionally assume that the model errors ϵ_i are normally and independently distributed with mean 0 and variance σ^2 , i.e., $\epsilon_1, \ldots, \epsilon_n \stackrel{iid}{\sim} N(0, \sigma^2)$.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 18/61

Expectation and variance of a vector-valued random variable

Let $\vec{X} = (X_1, \ldots, X_n)' \in \mathbb{R}^n$ be a vector-valued random variable. Define

- Expectation: $E(\vec{X}) = (E(X_1, \dots, E(X_n))'$
- Variance (also called covariance matrix):

$$\operatorname{Var}(\vec{X}) = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \cdots & \operatorname{Var}(X_n) \end{bmatrix}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/61

Point estimation in multiple linear regression

First, like in simple linear regression, the least squares estimator $\hat{\beta}$ is an unbiased linear estimator for β .

Theorem 0.2. Under the assumptions of multiple linear regression,

$$\mathrm{E}(\hat{\boldsymbol{eta}}) = \boldsymbol{eta}.$$

That is, $\hat{\beta}$ is a (componentwise) unbiased estimator for β :

$$\mathbf{E}(\hat{\beta}_i) = \beta_i, \text{ for all } i = 0, 1, \dots, k$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 20/61

Proof. We have

$$\begin{split} \hat{\boldsymbol{\beta}} &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}) \\ &= (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \cdot \mathbf{X}\boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' \cdot \boldsymbol{\epsilon} \\ &= \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\boldsymbol{\epsilon}. \end{split}$$

It follows that

$$\mathbf{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta} + (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\underbrace{\mathbf{E}(\boldsymbol{\epsilon})}_{=\mathbf{0}} = \boldsymbol{\beta}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/61

Next, we derive the variance of $\hat{\beta}$:

$$\operatorname{Var}(\hat{oldsymbol{eta}}) = (\operatorname{Cov}(\hat{eta}_i, \hat{eta}_j))_{0 \leq i,j \leq k}.$$

Theorem 0.3. Let $\mathbf{C} = (\mathbf{X}'\mathbf{X})^{-1} = (C_{ij})_{0 \leq i,j \leq k}.$ Then
 $\operatorname{Var}(\hat{oldsymbol{eta}}) = \sigma^2 \mathbf{C}.$

That is,

-

$$\operatorname{Var}(\hat{\beta}_i) = \sigma^2 C_{ii}$$
 and $\operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 C_{ij}$.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/61

Proof. Using the formula:

$$\operatorname{Var}(\mathbf{A}\mathbf{y}) = \mathbf{A} \cdot \operatorname{Var}(\mathbf{y}) \cdot \mathbf{A}',$$

we have

$$\operatorname{Var}(\hat{\boldsymbol{\beta}}) = \operatorname{Var}(\underbrace{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'}_{\mathbf{A}}\mathbf{y})$$
$$= \underbrace{(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'}_{\mathbf{A}} \cdot \underbrace{\operatorname{Var}(\mathbf{y})}_{=\sigma^{2}\mathbf{I}} \cdot \underbrace{\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}}_{\mathbf{A}'}$$
$$= \sigma^{2}(\mathbf{X}'\mathbf{X})^{-1}.$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 23/61

Lastly, we can derive an estimator of σ^2 from the residual sum of squares

$$SS_{Res} = \sum e_i^2 = \|\mathbf{e}\|^2 = \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$$

Theorem 0.4. We have

$$\mathbf{E}(SS_{Res}) = (n-p)\sigma^2.$$

This implies that

$$MS_{Res} = \frac{SS_{Res}}{n-p}$$

is an unbiased estimator of σ^2 .

Remark. The total and regression sums of squares are defined in the same way as before:

$$SS_R = \sum (\hat{y}_i - \bar{y})^2 = \sum \hat{y}_i^2 - n\bar{y}^2 = \|\hat{\mathbf{y}}\|^2 - n\bar{y}^2$$
$$SS_T = \sum (y_i - \bar{y})^2 = \sum y_i^2 - n\bar{y}^2 = \|\mathbf{y}\|^2 - n\bar{y}^2$$

They can be used to assess the adequacy of the model through the coefficient of determination

$$R^2 = \frac{SS_R}{SS_T} = 1 - \frac{SS_{Res}}{SS_T}$$

The larger R^2 (i.e., the smaller SS_{Res}), the better the model.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

25/61

 $\label{eq:constraint} \begin{array}{l} \mbox{Example 0.2 (Weight} \sim \mbox{Height} + \\ \mbox{Waist Girth). For this model,} \end{array}$

 $MS_{Res} = 4.529^2 = 20.512$

In contrast, for the simple linear regression model (Weight \sim Height),

 $MS_{Res} = 9.308^2 = 86.639.$

Therefore, the multiple linear regression model has a smaller total fitting error $SS_{Res} = (n - p)MS_{Res}$.

> mymodel2<-lm(weight~height+waist_girth, data=mydata)</pre> > summary(mymodel2) Call: lm(formula = weight ~ height + waist_girth, data = mydata) Residuals: Min 10 Median 30 Max -14.8643 -2.8947 -0.1823 2.5674 20.6156 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -75.07047 3.74259 -20.06 <2e-16 *** height 0.44432 0.02569 17.30 <2e-16 *** waist_girth 0.88563 0.02194 40.36 <2e-16 *** Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' Residual standard error: 4.529 on 504 degrees of freedom Multiple R-squared: 0.8853. Adjusted R-squared: 0.8848 F-statistic: 1945 on 2 and 504 DF, p-value: < 2.2e-16 The coefficient of determination of this model is $R^2 = 0.8853$, which is much higher than that of the smaller model.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 26/61

Adjusted R^2

 R^2 measures the goodness of fit of a single model and is not a fair criterion for comparing models with different sizes k (e.g., nested models)

The adjusted R^2 criterion is more suitable for such comparisons:

$$R_{\rm Adj}^2 = 1 - \frac{SS_{Res}/(n-p)}{SS_T/(n-1)}$$

The larger the $R^2_{\rm Adj}{}_{\rm \! J}$ the better the model.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 27/61

Remark.

- As p (i.e., k) increases, SS_{Res} will either decrease or stay the same:
 - If SS_{Res} does not change (or decreases by very little), then R^2_{Adj} will decrease. \leftarrow The smaller model is better
 - If SS_{Res} decreases relatively more than n p does, then R^2_{Adj} would increase. \leftarrow The larger model is better
- We can write instead

$$R_{\rm Adj}^2 = 1 - \frac{n-1}{n-p}(1-R^2)$$

This implies that $R_{\text{Adj}}^2 < R^2$.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 28/61

Summary: Point estimation in multiple linear regression

Model	Point	Properties	
parameters	estimators	Bias	Variance
β	$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$	unbiased	$\sigma^2 (\mathbf{X}' \mathbf{X})^{-1}$
σ^2	$MS_{Res} = \frac{SS_{Res}}{n-p}$	unbiased	

Remark. For the mean response at $\mathbf{x}_0 = (1, x_{01}, \dots, x_{0k})'$:

$$\mathbf{E}(y \mid \mathbf{x}_0) = \beta_0 + \beta_1 x_{01} + \dots + \beta_k x_{0k} = \mathbf{x}'_0 \boldsymbol{\beta}$$

an unbiased point estimator is

$$\hat{\beta}_0 + \hat{\beta}_1 x_{01} + \dots + \hat{\beta}_k x_{0k} = \mathbf{x}_0' \hat{\boldsymbol{\beta}}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 29/61

Next

We consider the following inference tasks in multiple linear regression:

- Hypothesis testing
- Interval estimation

For both tasks, we need to additionally assume that the model errors ϵ_i are iid $N(0,\sigma^2).$

Hypothesis testing in multiple linear regression

Depending on how many regression coefficients are being tested together, we have

- Partial *F* Tests on Subsets of Regression Coefficients
- Marginal t Tests on Individual Regression Coefficients

ANOVA for Testing Significance of Regression

In multiple linear regression, the significance of regression test is

$$H_0: \beta_1 = \dots = \beta_k = 0$$

 $H_1: \beta_j \neq 0$ for at least one j

The ANOVA test works very similarly: The test statistic is

$$F_0 = \frac{MS_R}{MS_{Res}} = \frac{SS_R/k}{SS_{Res}/(n-p)} \stackrel{H_0}{\sim} F_{k,n-p}$$

and we reject H_0 if

$$F_0 > F_{\alpha,k,n-p}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/61

Example 0.3 (Weight \sim Height + Waist Girth). For this multiple linear regression model, regression is significant because the ANOVA Fstatistic is

 $F_0 = 1945$

and the *p*-value is less than 2.2e-16. Note that the *p*-values of the individual coefficients can no longer be used for conducting the significance of regression test.

```
> mymodel2<-lm(weight~height+waist_girth, data=mydata )</pre>
> summarv(mvmodel2)
Call:
lm(formula = weight ~ height + waist_airth, data = mvdata)
Residuals:
    Min
              10
                   Median
                                30
                                        Max
-14.8643 -2.8947 -0.1823
                            2 5674 20 6156
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -75.07047
                        3.74259 -20.06
                                          <2e-16 ***
height
            0.44432
                        0.02569 17.30
                                         <2e-16 ***
                        0.02194 40.36 <2e-16 ***
waist_airth 0.88563
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Residual standard error: 4,529 on 504 dearees of freedom
Multiple R-squared: 0.8853.
                               Adjusted R-squared: 0.8848
F-statistic: 1945 on 2 and 504 DF, p-value: < 2.2e-16
```

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 33/61

Marginal Tests on Individual Regression Coefficients

The hypothesis for testing the significance of any individual predictor x_j , given all the other predictors, to the model is

$$H_0: \beta_j = 0$$
 vs $H_1: \beta_j \neq 0$

If H_0 is not rejected, then the regressor x_j is insignificant and can be deleted from the model (while preserving all other regressors).

To conduct the test, we need to use the point estimator $\hat{\beta}_j$ (which is linear, unbiased) and determine its distribution when H_0 is true:

$$\hat{\beta}_j \sim N(\beta_j, \sigma^2 C_{jj}), \quad j = 0, 1, \dots, k$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 34/61

The test statistic is

$$t_0 = \frac{\hat{\beta}_j - 0}{se(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{jj}}} \stackrel{H_0}{\sim} t_{n-p} \qquad (\hat{\sigma}^2 = MS_{Res})$$

and we reject H_0 if

 $|t_0| > t_{\alpha/2, n-p}$

Example 0.4 (Weight \sim Height + Waist Girth). Based on the previous R output, both predictors are significant when the other is already included in the model:

- Height: $t_0 = 17.30$, *p*-value < 2e-16
- Waist Girth: $t_0 = 40.36$, *p*-value < 2e-16

Partial F Tests on Subsets of Regression Coefficients

Consider the full regression model with k regressors

$$\mathbf{y} = \mathbf{X} \boldsymbol{eta} + \boldsymbol{\epsilon}$$

Suppose there is a partition of the regression coefficients in β into two groups (the last r and the preceding ones):

$$\boldsymbol{\beta} = \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{bmatrix} \in \mathbb{R}^p, \quad \boldsymbol{\beta}_1 = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{k-r} \end{bmatrix} \in \mathbb{R}^{p-r}, \ \boldsymbol{\beta}_2 = \begin{bmatrix} \beta_{k-r+1} \\ \vdots \\ \beta_k \end{bmatrix} \in \mathbb{R}^r$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 36/61

We wish to test

$$H_0: \boldsymbol{\beta}_2 = \mathbf{0} \ (\beta_{k-r+1} = \dots = \beta_k = 0) \quad \text{vs} \quad H_1: \boldsymbol{\beta}_2 \neq \mathbf{0}$$

to determine if the last r predictors may be deleted from the model.

Corresponding to the partition of β we partition X in a conformal way:

$$\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2], \qquad \mathbf{X}_1 \in \mathbb{R}^{n \times (p-r)}, \quad \mathbf{X}_2 \in \mathbb{R}^{n \times r},$$

such that

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon} = [\mathbf{X}_1 \ \mathbf{X}_2] egin{bmatrix} oldsymbol{eta}_1 \ oldsymbol{eta}_2 \end{bmatrix} = \mathbf{X}_1oldsymbol{eta}_1 + \mathbf{X}_2oldsymbol{eta}_2 + oldsymbol{\epsilon}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 37/61

We compare two contrasting models:

$$\begin{array}{ll} (\text{Full model}) \quad \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ (\text{Reduced model}) \quad \mathbf{y} = \mathbf{X}_1\boldsymbol{\beta}_1 + \boldsymbol{\epsilon} \end{array}$$

The corresponding regression sums of squares are

$$(df = k) \quad SS_R(\beta) = \|\mathbf{X}\hat{\beta}\|^2 - n\bar{y}^2, \quad \hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$(df = k - r) \quad SS_R(\beta_1) = \|\mathbf{X}_1\hat{\beta}_1\|^2 - n\bar{y}^2, \quad \hat{\beta}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}$$

Thus, the regression sum of squares due to β_2 given that β_1 is already in the model, called **extra sum of squares**, is

$$(df = r)$$
 $SS_R(\beta_2 \mid \beta_1) = SS_R(\beta) - SS_R(\beta_1)$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 38/61

Note that with the residual sums of squares

$$SS_{Res}(\boldsymbol{\beta}) = \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2, \quad \hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
$$SS_{Res}(\boldsymbol{\beta}_1) = \|\mathbf{y} - \mathbf{X}_1\hat{\boldsymbol{\beta}}_1\|^2, \quad \hat{\boldsymbol{\beta}}_1 = (\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{y}$$

we also have

$$SS_R(\boldsymbol{\beta}_2 \mid \boldsymbol{\beta}_1) = SS_{Res}(\boldsymbol{\beta}_1) - SS_{Res}(\boldsymbol{\beta})$$

Finally, the (partial F) test statistic is

$$F_0 = \frac{SS_R(\boldsymbol{\beta}_2 \mid \boldsymbol{\beta}_1)/r}{SS_{Res}(\boldsymbol{\beta})/(n-p)} \stackrel{H_0}{\sim} F_{r,n-p}$$

and we reject H_0 if

$$F_0 > F_{\alpha,r,n-p}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 39/61

Example 0.5 (Weight \sim Height + Waist Girth). We use the extra sum of squares method to compare it with the reduced model (Weight \sim Height):

```
> mymodel1<-lm(weight~height, data=mydata)</pre>
```

```
> mymodel2<-lm(weight~height+waist_girth, data=mydata )</pre>
```

> anova(mymodel1, mymodel2)

Analysis of Variance Table

```
Model 1: weight ~ height
Model 2: weight ~ height + waist_girth
    Res.Df RSS Df Sum of Sq F Pr(>F)
1    505 43753
2    504 10337 1    33416 1629.2 < 2.2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1</pre>
```

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 40/61

Remark. The partial F test on a single predictor x_j , $\beta = [\beta_{(j)}; \beta_j]$ based on the extra sum of squares $SS_R(\beta_j \mid \beta_{(j)}) = SS_R(\beta) - SS_R(\beta_{(j)})$ can be shown to be equivalent to the marginal t test for β_j .

For example, for Waist Girth,

- marginal t test: $t_0 = 40.36$
- partial *F* test: $F_0 = 1629.2$

Note that $F_0 = t_0^2$ (thus same test).

Multiple R-squared: 0.8853, Adjusted R-squared: 0.8848 F-statistic: 1945 on 2 and 504 DF, p-value: < 2.2e-16 *Remark*. There is a decomposition of the regression sum of squares

 $SS_R \leftarrow SS_R(\beta_1, \ldots, \beta_k \mid \beta_0)$

into a sequence of marginal extra sums of squares, each corresponding to a single predictor:

$$SS_{R}(\beta_{1}, \dots, \beta_{k} \mid \beta_{0})$$

$$= SS_{R}(\beta_{1} \mid \beta_{0})$$

$$+ SS_{R}(\beta_{2} \mid \beta_{1}, \beta_{0})$$

$$+ \cdots$$

$$+ SS_{R}(\beta_{k} \mid \beta_{k-1}, \dots, \beta_{1}, \beta_{0})$$

> mymodel2<-lm(weight-height+waist_girth, data=mydata
> anova(mymodel2)
Analysis of Variance Table

```
Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

height 1 46370 46370 2260.8 < 2.2e-16 ***

waist_girth 1 33416 1629.2 < 2.2e-16 ***

Residuals 504 10337 21

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0
```

From the above output:

– $SS_R(\beta_1 \mid \beta_0) = 46370,$ the predictor height is significant

- $SS_R(\beta_2 \mid \beta_1, \beta_0) = 33416$, waist girth is significant given that height is already in the model

 $-SS_R(\beta_1,\beta_2 \mid \beta_0) = 79786$

Summary: hypothesis testing in regression

• ANOVA F test: $H_0: \beta_1 = \cdots = \beta_k = 0$. Reject H_0 if

$$F_0 = \frac{MS_R}{MS_{Res}} = \frac{SS_R/k}{SS_{Res}/(n-p)} > F_{\alpha,k,n-p}$$

• Marginal *t*-tests: $H_0: \beta_j = 0$. Reject H_0 if

$$|t_0| > t_{\alpha/2, n-p}, \quad t_0 = \frac{\hat{\beta}_j - 0}{se(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{\sqrt{\hat{\sigma}^2 C_{jj}}}$$

• Partial F test: $H_0: \beta_2 = 0$. Reject H_0 if

$$\frac{SS_R(\boldsymbol{\beta}_2\mid\boldsymbol{\beta}_1)/r}{SS_{Res}(\boldsymbol{\beta})/(n-p)} > F_{\alpha,r,n-p}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 43/61

Interval estimation in multiple linear regression

We construct the following

- Confidence intervals for individual regression coefficients $\hat{\beta}_j$
- Confidence interval for the mean response
- Prediction interval

under the additional assumption that the errors ϵ_i are independently and normally distributed with zero mean and constant variance σ^2 .

Confidence intervals for individual regression coefficients

Theorem 0.5. Under the normality assumption, a $1-\alpha$ confidence interval for the regression coefficient $\beta_j, \ 0 \le j \le k$ is

$$\hat{\beta}_j \pm t_{\alpha/2,n-p} \sqrt{\hat{\sigma}^2 \, C_{jj}}$$

<pre>> confint(mymodel2, level=0.95)</pre>		
	2.5 %	97.5 %
(Intercept)	-82.4234684	-67.7174691
height	0.3938544	0.4947853
waist_girth	0.8425226	0.9287393

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 45/61

Confidence interval for the mean response

In the setting of multiple linear regression, the mean response at a given point $\mathbf{x}_0=(1,x_{01},\ldots,x_{0k})'$ is

$$\mathsf{E}(y \mid \mathbf{x}_0) = \mathbf{x}_0' \boldsymbol{\beta} = \beta_0 + \beta_1 x_{01} + \dots + \beta_k x_{0k}$$

A natural point estimator for $E(y \mid x_0)$ is the following:

$$\hat{y}_0 = \mathbf{x}'_0 \hat{\boldsymbol{\beta}} = \hat{\beta}_0 + \hat{\beta}_1 x_{01} + \dots + \hat{\beta}_k x_{0k}.$$

Furthermore, we can construct a confidence interval for $E(y | x_0)$.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

46/61

Since \hat{y}_0 is a linear combination of the responses, it is normally distributed with

$$\mathbf{E}(\hat{y}_0) = \mathbf{x}_0' \mathbf{E}(\hat{\boldsymbol{\beta}}) = \mathbf{x}_0' \boldsymbol{\beta}$$

and

$$\operatorname{Var}(\hat{y}_0) = \mathbf{x}_0' \operatorname{Var}(\hat{\boldsymbol{\beta}}) \mathbf{x}_0 = \sigma^2 \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0$$

We can thus obtain the following result.

Theorem 0.6. Under the normality assumption on the model errors, a $1 - \alpha$ confidence interval on the mean response $E(y | \mathbf{x}_0)$ is

$$\hat{y}_0 \pm t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 \, \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 47/61

Prediction intervals for new observations

Given a new location \mathbf{x}_0 , we would like to form a prediction interval on the future observation of the response at that location

$$y_0 = \mathbf{x}_0' \boldsymbol{\beta} + \epsilon_0$$

where $\epsilon_0 \sim N(0, \sigma^2)$ is the error.

We have the following result.

Theorem 0.7. Under the normality assumption on the model errors, a $1 - \alpha$ prediction interval for the future observation y_0 at the point \mathbf{x}'_0 is

$$\hat{y}_0 \pm t_{\alpha/2, n-p} \sqrt{\hat{\sigma}^2 \left(1 + \mathbf{x}'_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0\right)}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 48/61

Proof. First, note that the mean of the response y_0 at \mathbf{x}_0 , i.e., $\mathbf{x}'_0\beta$, is estimated by $\hat{y}_0 = \mathbf{x}'_0\hat{\beta}$.

Let $\Psi = y_0 - \hat{y}_0$ be the difference between the true response and the point estimator for its mean. Then Ψ (as a linear combination of y_0, y_1, \ldots, y_n) is normally distributed with mean

$$\Psi = \mathsf{E}(y_0) - \mathsf{E}(\hat{y}_0) = \mathbf{x}_0' \boldsymbol{\beta} - \mathbf{x}_0' \boldsymbol{\beta} = 0$$

and variance

$$\operatorname{Var}(\Psi) = \operatorname{Var}(y_0) + \operatorname{Var}(\hat{y}_0) = \sigma^2 + \sigma^2 \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0$$

49/61

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

It follows that

$$\frac{y_0 - \hat{y}_0}{\sqrt{\sigma^2 \left(1 + \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0\right)}} \sim N(0, 1)$$

and correspondingly,

$$\frac{y_0 - \hat{y}_0}{\sqrt{MS_{Res} \left(1 + \mathbf{x}'_0(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0\right)}} \sim t_{n-p}$$

Accordingly, a $1 - \alpha$ prediction interval on a future observation y_0 at x_0 is

$$\hat{y}_0 \pm t_{\alpha/2, n-p} \sqrt{MS_{Res} \left(1 + \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0\right)}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 50/61

Summary: interval estimation in regression

•
$$\beta_j$$
 (for each $0 \le j \le k$): $\hat{\beta}_j \pm t_{\alpha/2,n-p} \sqrt{MS_{Res} C_{jj}}$

•
$$\sigma^2$$
: $\left(\frac{(n-p)MS_{Res}}{\chi^2_{\frac{\alpha}{2},n-p}},\frac{(n-p)MS_{Res}}{\chi^2_{1-\frac{\alpha}{2},n-p}}\right)$

•
$$\mathbf{E}(y \mid \mathbf{x}_0)$$
: $\hat{y}_0 \pm t_{\alpha/2, n-p} \sqrt{MS_{Res} \mathbf{x}'_0 (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0}$

•
$$y_0$$
 (at \mathbf{x}_0): $\hat{y}_0 \pm t_{\alpha/2, n-p} \sqrt{MS_{Res} (1 + \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0)}$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 51/61

Some issues in multiple linear regression

- Hidden extrapolation
- Units of measurements
- Multicollinearity

Hidden extrapolation

In multiple linear regression, extrapolation may occur even when all predictor values are within their ranges.

We can use the hat matrix

 $\mathbf{H} = \mathbf{X} (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}'$

to detect hidden extrapolation: Let

 $h_{\max} = \max h_{ii}.$

Then \mathbf{x}_0 is an extrapolation point if

$$\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0 > h_{\max}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 53/61

Multiple Linear Regression


```
scatterplot
```

```
> hmax = max(hatvalues(mymodel2))
> hmax
[1] 0.02686508
> plot(mydata$height, mydata$waist_girth,
       xlab="Height (cm)",
       ylab="Waist girth (cm)",
       pch=16, main="scatterplot")
> points(x=190,y=60, pch=16, col="red")
> X <- cbind(as.matrix(rep(1,507)),</pre>
             mydata$height,
+
             mydata$waist_girth)
> G = t(X)\%*\%X
> x0 <- as.matrix(c(1, 190, 60))
> t(x0)%*%solve(G)%*%x0
           Γ.17
[1.] 0.02990657
```

54/61

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

Units of measurements

The choices of the units of the predictors in a linear model may cause their regression coefficients to have very different magnitudes, e.g.,

$$y = 3 - 20x_1 + 0.01x_2$$

In order to directly compare regression coefficients, we need to scale the regressors and the response to be on the same magnitude.

Two common scaling methods:

- Unit Normal Scaling
- Unit Length Scaling

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 55/61

Unit Normal Scaling: For each regressor x_j (and the response), rescale the observations of x_j (or y) to have zero mean and unit variance.

Let

$$\bar{x}_j = \frac{1}{n} \sum_i x_{ij}, \quad s_j^2 = \frac{1}{n-1} \underbrace{\sum_i (x_{ij} - \bar{x}_j)^2}_{S_{jj}}, \quad s_y^2 = \frac{1}{n-1} \underbrace{\sum_i (y_i - \bar{y})^2}_{=SS_T}.$$

Then the normalized predictors and response are

$$z_{ij} = \frac{x_{ij} - \bar{x}_j}{s_j}, \quad y_i^* = \frac{y_i - \bar{y}}{s_y}$$

This leads to a linear regression model without intercept: $\mathbf{y}^* = \mathbf{Z}\hat{\mathbf{b}}$.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 56/61

```
> # unit normal scalina
> mvdata_std <- data.frame(scale(mvdata))</pre>
> mynewmodel2 <- lm(weight~height+waist_girth, data=mydata_std)</pre>
> summary(mynewmodel2)
Call:
lm(formula = weight ~ height + waist_airth, data = mvdata_std)
Residuals:
    Min
              10 Median
                               30
                                       Max
-1.11378 -0.21690 -0.01366 0.19238 1.54473
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -8.281e-16 1.507e-02 0.00
                                               1
height 3.132e-01 1.811e-02 17.30 <2e-16 ***
waist_airth 7.308e-01 1.811e-02 40.36 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3393 on 504 degrees of freedom
Multiple R-sauared: 0.8853. Adjusted R-sauared: 0.8848
F-statistic: 1945 on 2 and 504 DF. p-value: < 2.2e-16
```

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 57/61

Unit Length Scaling: For each regressor x_j (and the response), rescale the observations of x_j (or y) to have zero mean and unit length.

$$w_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{S_{jj}}} = \frac{z_{ij}}{\sqrt{n-1}}, \quad y_i^0 = \frac{y_i - \bar{y}}{\sqrt{SS_T}} = \frac{y_i^*}{\sqrt{n-1}}$$

This also leads to a linear regression model without intercept: $\mathbf{y}^0 = \mathbf{W}\hat{\mathbf{b}}$. Remark.

- $\mathbf{W} = \frac{1}{\sqrt{n-1}}\mathbf{Z}$ and $\mathbf{y}^0 = \frac{1}{\sqrt{n-1}}\mathbf{y}^*$. Thus, the two scaling methods will yield the same standardized regression coefficients $\hat{\mathbf{b}}$.
- Entries of W'W are correlations between the regressors.

Proof: We examine the (j, ℓ) -entry of $\mathbf{W'W}$:

$$\begin{aligned} (\mathbf{W}'\mathbf{W})_{j\ell} &= \sum_{i=1}^{n} w_{ij} w_{i\ell} \\ &= \sum \frac{x_{ij} - \bar{x}_j}{\sqrt{S_{jj}}} \frac{x_{i\ell} - \bar{x}_\ell}{\sqrt{S_{\ell\ell}}} \\ &= \frac{\sum (x_{ij} - \bar{x}_j)(x_{i\ell} - \bar{x}_\ell)}{\sqrt{S_{jj}}\sqrt{S_{\ell\ell}}} \\ &= \frac{\frac{1}{n-1} \sum (x_{ij} - \bar{x}_j)(x_{i\ell} - \bar{x}_\ell)}{\sqrt{\frac{1}{n-1} \sum (x_{ij} - \bar{x}_j)^2} \sqrt{\frac{1}{n-1} \sum (x_{i\ell} - \bar{x}_\ell)^2}} \\ &= \operatorname{Corr}(x_j, x_\ell) \end{aligned}$$

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 59/61

Multicollinearity

A serious issue in multiple linear regression is multicolinearity, or near-linear dependence among the regression variables, e.g., $x_3 \approx 2x_1 + 5x_2$.

- ${\bf X}$ won't be of full rank, leading to a singular ${\bf X}'{\bf X}.$
- The redundant predictors contribute no new information about the response .
- The estimated slopes in the regression model will be arbitrary.

We will discuss in more detail how to diagnose (and fix) the issue of multicollinearity in Chapter 9.

Further learning

- 3.3.3 The Case of Orthogonal Columns in ${\bf X}$
- 3.3.4 Testing the General Linear Hypothesis $H_0: \mathbf{T}\boldsymbol{\beta} = \mathbf{0}$
 - Projection matrices
 - Concepts
 - Computing via SVD