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This lecture is based on the following textbook sections:

• Chapter 3: 3.1 - 3.5, 3.8 - 3.10

Outline of this presentation:

• The multiple linear regression problem

• Least-square estimation

• Inference

• Some issues



Multiple Linear Regression

The multiple linear regression problem
Consider the body data again. To construct a more accurate model for
predicting the weight of an individual (y), we may want to add other
body measurements, such as head and waist circumferences, as additional
predictors besides height (x1), leading to multiple linear regression:

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (1)

where

• y: response, x1, . . . , xk: predictors

• β0, β1, . . . , βk: coefficients

• ε: error term
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Multiple Linear Regression

An example of a regression model with k = 2 predictors
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Multiple Linear Regression

Remark. Some of the new predictors in the model could be powers of the
original ones

y = β0 + β1x+ β2x
2 + · · ·+ βkx

k + ε

or interactions of them,

y = β0 + β1x1 + β2x2 + β12x1x2 + ε

or even a mixture of powers and interactions of them

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

These are still linear models (in terms of the regression coefficients).
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Multiple Linear Regression

An example of a full quadratic model
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Multiple Linear Regression

The sample version of (1) is

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi, 1 ≤ i ≤ n (2)

where the εi are assumed for now to be uncorrelated:

Cov(εi, εj) = 0, i 6= j

and have the same mean zero and variance σ2:

E(εi) = 0, Var(εi) = σ2, for all i

(Like in simple linear regression, we will add the normality and independence
assumptions when we get to the inference part)
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Multiple Linear Regression

Letting

y =


y1
y2
...
yn

 , X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
... . . . ...

1 xn1 xn2 · · · xnk

 , β =


β0
β1
...
βk

 , ε =


ε1
ε2
...
εn

 .

we can rewrite the sample regression model in matrix form

y︸︷︷︸
n×1

= X︸︷︷︸
n×p

· β︸︷︷︸
p×1

+ ε︸︷︷︸
n×1

(3)

where p = k + 1 represents the number of regression parameters (note
that k is the number of predictors in the model).
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Multiple Linear Regression

Least squares (LS) estimation

The LS criterion can still be used to
fit a multiple regression model

ŷ = β̂0 + β̂1x1 + · · ·+ β̂kxk

to the data as follows:

min
β̂
S(β̂) =

n∑
i=1

(yi − ŷi)2 =
n∑
i=1

e2
i

where for each 1 ≤ i ≤ n,

ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik
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Multiple Linear Regression

Let e = (ei) ∈ Rn and ŷ = (ŷi) = Xβ̂ ∈ Rn. Then e = y − ŷ.
Correspondingly the above problem becomes

min
β̂
S(β̂) = ‖e‖2 = ‖y−Xβ̂‖2

Theorem 0.1. If X′X is nonsingular, then the LS estimator of β is

β̂ = (X′X)−1X′y

Remark. The nonsingular condition holds true if and only if all the columns
of X are linearly independent (i.e. X is of full column rank).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 10/61



Multiple Linear Regression

Remark. This is the same formula for β̂ = (β̂0, β̂1)′ in simple linear
regression. To demonstrate it, consider the toy data set of 3 points:
(0, 1), (1, 0), (2, 2) used before. The new formula gives that

β̂ = (X′X)−1X′y

=

[1 1 1
0 1 2

]1 0
1 1
1 2



−1 [

1 1 1
0 1 2

]1
0
2


=
[
3 3
3 5

]−1 [3
4

]

=
[
0.5
0.5

]
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Multiple Linear Regression

Proof. We first need to derive some formulas about the gradient of a
function of multiple variables:

∂

∂x
(
x′a

)
= ∂

∂x
(
a′x

)
= a

∂

∂x

(
‖x‖2

)
= ∂

∂x
(
x′x

)
= 2x

∂

∂x
(
x′Ax

)
= 2Ax

∂

∂x

(
‖Bx‖2

)
= ∂

∂x
(
x′B′Bx

)
= 2B′Bx
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Multiple Linear Regression

Using the identity ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2u′v, we write

S(β̂) = ‖y‖2 + ‖Xβ̂‖2 − 2(Xβ̂)′y
= y′y + β̂′X′Xβ̂ − 2β̂′X′y

Applying the formulas on the preceding slide, we obtain

∂S

∂β̂
= 0 + 2X′Xβ̂ − 2X′y

Setting the gradient equal to zero

X′Xβ̂ = X′y ←− least squares normal equations

and solving for β̂ will complete the proof.
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Multiple Linear Regression

Remark. The very first normal equation in the system

X′Xβ̂ = X′y

is
nβ̂0 + β̂1

∑
xi1 + β̂2

∑
xi2 + · · ·+ β̂k

∑
xik =

∑
yi

which simplifies to

β̂0 + β̂1x̄1 + β̂2x̄2 + · · ·+ β̂kx̄k = ȳ

This indicates that the centroid of the data, i.e., (x̄1, . . . , x̄k, ȳ), is on the
least squares regression plane.
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Multiple Linear Regression

Remark. The fitted values of the least squares model are

ŷ = Xβ̂ = X(X′X)−1X′︸ ︷︷ ︸
H

y = Hy

and the residuals are

e = y− ŷ = (I−H)y.

The matrix H ∈ Rn×n is called the hat matrix, satisfying

H′ = H (symmetric), H2 = H (idempotent), H(I−H) = O
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Multiple Linear Regression

Geometrically, it is the orthogonal projection matrix onto the column space
of X (subspace spanned by the columns of X):

ŷ = Hy = X (X′X)−1X′y︸ ︷︷ ︸
β̂

∈ Col(X)

ŷ′(y− ŷ) = (Hy)′(I−H)y = y′H(I−H)︸ ︷︷ ︸
=O

y = 0.

b y

ŷ = Hy
b

Col(X)

b
0

e = (I−H)y
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Multiple Linear Regression

Example 0.1 (body dimensions data1). Besides the predictor Height,
we include Waist Girth as a second predictor to preform multiple linear
regression for predicting Weight.

(R demonstration in class).

1http://jse.amstat.org/v11n2/datasets.heinz.html
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Multiple Linear Regression

Inference in multiple linear regression
• Model parameters: β = (β0, β1, . . . , βk)′ (intercept and slopes),
σ2 (noise variance)

• Inference tasks (for the parameters above): point estimation, in-
terval estimation*, hypothesis testing*

• Inference of the mean response at x0 = (1, x01, . . . , x0k)′:

E(y | x0) = β0 + β1x01 + · · ·+ βkx0k = x′0β

*To perform these two inference tasks, we will additionally assume that
the model errors εi are normally and independently distributed with mean
0 and variance σ2, i.e., ε1, . . . , εn

iid∼ N(0, σ2).
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Multiple Linear Regression

Expectation and variance of a vector-valued random variable

Let ~X = (X1, . . . , Xn)′ ∈ Rn be a vector-valued random variable. Define

• Expectation: E( ~X) = (E(X1, . . . ,E(Xn))′

• Variance (also called covariance matrix):

Var( ~X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xn)
...

... . . . ...
Cov(Xn, X1) Cov(Xn, X2) · · · Var(Xn)
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Multiple Linear Regression

Point estimation in multiple linear regression

First, like in simple linear regression, the least squares estimator β̂ is an
unbiased linear estimator for β.

Theorem 0.2. Under the assumptions of multiple linear regression,

E(β̂) = β.

That is, β̂ is a (componentwise) unbiased estimator for β:

E(β̂i) = βi, for all i = 0, 1, . . . , k

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 20/61



Multiple Linear Regression

Proof. We have

β̂ = (X′X)−1X′y
= (X′X)−1X′(Xβ + ε)
= (X′X)−1X′ ·Xβ + (X′X)−1X′ · ε
= β + (X′X)−1X′ε.

It follows that
E(β̂) = β + (X′X)−1X′ E(ε)︸︷︷︸

=0

= β
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Multiple Linear Regression

Next, we derive the variance of β̂:

Var(β̂) = (Cov(β̂i, β̂j))0≤i,j≤k.

Theorem 0.3. Let C = (X′X)−1 = (Cij)0≤i,j≤k. Then

Var(β̂) = σ2C.

That is,

Var(β̂i) = σ2Cii and Cov(β̂i, β̂j) = σ2Cij .
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Multiple Linear Regression

Proof. Using the formula:

Var(Ay) = A · Var(y) ·A′,

we have

Var(β̂) = Var((X′X)−1X′︸ ︷︷ ︸
A

y)

= (X′X)−1X′︸ ︷︷ ︸
A

·Var(y)︸ ︷︷ ︸
=σ2I

·X(X′X)−1︸ ︷︷ ︸
A′

= σ2(X′X)−1.
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Multiple Linear Regression

Lastly, we can derive an estimator of σ2 from the residual sum of squares

SSRes =
∑

e2
i = ‖e‖2 = ‖y−Xβ̂‖2

Theorem 0.4. We have

E(SSRes) = (n− p)σ2.

This implies that
MSRes = SSRes

n− p

is an unbiased estimator of σ2.
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Multiple Linear Regression

Remark. The total and regression sums of squares are defined in the same
way as before:

SSR =
∑

(ŷi − ȳ)2 =
∑

ŷ2
i − nȳ2 = ‖ŷ‖2 − nȳ2

SST =
∑

(yi − ȳ)2 =
∑

y2
i − nȳ2 = ‖y‖2 − nȳ2

They can be used to assess the adequacy of the model through the
coefficient of determination

R2 = SSR
SST

= 1− SSRes
SST

The larger R2 (i.e., the smaller SSRes), the better the model.
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Multiple Linear Regression

Example 0.2 (Weight ∼ Height +
Waist Girth). For this model,

MSRes = 4.5292 = 20.512

In contrast, for the simple linear re-
gression model (Weight ∼ Height),

MSRes = 9.3082 = 86.639.

Therefore, the multiple linear regres-
sion model has a smaller total fitting
error SSRes = (n− p)MSRes.

The coefficient of determination of this
model is R2 = 0.8853, which is much
higher than that of the smaller model.
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Multiple Linear Regression

Adjusted R2

R2 measures the goodness of fit of a single model and is not a fair criterion
for comparing models with different sizes k (e.g., nested models)

The adjusted R2 criterion is more
suitable for such comparisons:

R2
Adj = 1− SSRes/(n− p)

SST /(n− 1)

The larger the R2
Adj, the better the

model.
| | | | | | | |

b

b

b

b
b

b b b

u

u

u

u u
u

u

u

k (#predictors)

R2
Adj

R2
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Multiple Linear Regression

Remark.

• As p (i.e., k) increases, SSRes will either decrease or stay the same:

– If SSRes does not change (or decreases by very little), then
R2

Adj will decrease. ←− The smaller model is better

– If SSRes decreases relatively more than n− p does, then R2
Adj

would increase. ←− The larger model is better

• We can write instead

R2
Adj = 1− n− 1

n− p
(1−R2)

This implies that R2
Adj < R2.
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Multiple Linear Regression

Summary: Point estimation in multiple linear regression
Model Point Properties
parameters estimators Bias Variance
β β̂ = (X′X)−1X′y unbiased σ2(X′X)−1

σ2 MSRes = SSRes
n−p unbiased

Remark. For the mean response at x0 = (1, x01, . . . , x0k)′:

E(y | x0) = β0 + β1x01 + · · ·+ βkx0k = x′0β

an unbiased point estimator is

β̂0 + β̂1x01 + · · ·+ β̂kx0k = x′0β̂
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Multiple Linear Regression

Next

We consider the following inference tasks in multiple linear regression:

• Hypothesis testing

• Interval estimation

For both tasks, we need to additionally assume that the model errors εi
are iid N(0, σ2).
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Multiple Linear Regression

Hypothesis testing in multiple linear regression

Depending on how many regression coefficients are being tested together,
we have

• ANOVA F Tests for Significance of Regression on All Regression
Coefficients

• Partial F Tests on Subsets of Regression Coefficients

• Marginal t Tests on Individual Regression Coefficients
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Multiple Linear Regression

ANOVA for Testing Significance of Regression
In multiple linear regression, the significance of regression test is

H0 : β1 = · · · = βk = 0
H1 : βj 6= 0 for at least one j

The ANOVA test works very similarly: The test statistic is

F0 = MSR
MSRes

= SSR/k

SSRes/(n− p)
H0∼ Fk,n−p

and we reject H0 if
F0 > Fα,k,n−p
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Multiple Linear Regression

Example 0.3 (Weight ∼ Height +
Waist Girth). For this multiple lin-
ear regression model, regression is
significant because the ANOVA F

statistic is

F0 = 1945

and the p-value is less than 2.2e-16.

Note that the p-values of the indi-
vidual coefficients can no longer be
used for conducting the significance
of regression test.
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Multiple Linear Regression

Marginal Tests on Individual Regression Coefficients

The hypothesis for testing the significance of any individual predictor xj ,
given all the other predictors, to the model is

H0 : βj = 0 vs H1 : βj 6= 0

If H0 is not rejected, then the regressor xj is insignificant and can be
deleted from the model (while preserving all other regressors).

To conduct the test, we need to use the point estimator β̂j (which is linear,
unbiased) and determine its distribution when H0 is true:

β̂j ∼ N(βj , σ2Cjj), j = 0, 1, . . . , k
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Multiple Linear Regression

The test statistic is

t0 = β̂j − 0
se(β̂j)

= β̂j√
σ̂2Cjj

H0∼ tn−p (σ̂2 = MSRes)

and we reject H0 if
|t0| > tα/2, n−p

Example 0.4 (Weight ∼ Height + Waist Girth). Based on the previous R
output, both predictors are significant when the other is already included
in the model:

• Height: t0 = 17.30, p-value < 2e-16

• Waist Girth: t0 = 40.36, p-value < 2e-16
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Multiple Linear Regression

Partial F Tests on Subsets of Regression Coefficients

Consider the full regression model with k regressors

y = Xβ + ε

Suppose there is a partition of the regression coefficients in β into two
groups (the last r and the preceding ones):

β =
[
β1
β2

]
∈ Rp, β1 =


β0
β1
...

βk−r

 ∈ Rp−r, β2 =


βk−r+1

...
βk

 ∈ Rr
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Multiple Linear Regression

We wish to test

H0 : β2 = 0 (βk−r+1 = · · · = βk = 0) vs H1 : β2 6= 0

to determine if the last r predictors may be deleted from the model.

Corresponding to the partition of β we partition X in a conformal way:

X = [X1 X2], X1 ∈ Rn×(p−r), X2 ∈ Rn×r,

such that

y = Xβ + ε = [X1 X2]
[
β1
β2

]
= X1β1 + X2β2 + ε

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 37/61



Multiple Linear Regression

We compare two contrasting models:

(Full model) y = Xβ + ε

(Reduced model) y = X1β1 + ε

The corresponding regression sums of squares are

(df = k) SSR(β) = ‖Xβ̂‖2 − nȳ2, β̂ = (X′X)−1X′y
(df = k − r) SSR(β1) = ‖X1β̂1‖2 − nȳ2, β̂1 = (X′1X1)−1X′1y

Thus, the regression sum of squares due to β2 given that β1 is already in
the model, called extra sum of squares, is

(df = r) SSR(β2 | β1) = SSR(β)− SSR(β1)
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Multiple Linear Regression

Note that with the residual sums of squares

SSRes(β) = ‖y−Xβ̂‖2, β̂ = (X′X)−1X′y
SSRes(β1) = ‖y−X1β̂1‖2, β̂1 = (X′1X1)−1X′1y

we also have

SSR(β2 | β1) = SSRes(β1)− SSRes(β)

Finally, the (partial F ) test statistic is

F0 = SSR(β2 | β1)/r
SSRes(β)/(n− p)

H0∼ Fr,n−p

and we reject H0 if
F0 > Fα,r,n−p
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Multiple Linear Regression

Example 0.5 (Weight ∼ Height + Waist Girth). We use the extra sum of
squares method to compare it with the reduced model (Weight ∼ Height):
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Multiple Linear Regression

Remark. The partial F test on a
single predictor xj , β = [β(j);βj ]
based on the extra sum of squares
SSR(βj | β(j)) = SSR(β)−SSR(β(j))

can be shown to be equivalent to
the marginal t test for βj .

For example, for Waist Girth,

• marginal t test: t0 = 40.36

• partial F test: F0 = 1629.2

Note that F0 = t20 (thus same test).
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Multiple Linear Regression

Remark. There is a decomposition
of the regression sum of squares

SSR ← SSR(β1, . . . , βk | β0)
into a sequence of marginal extra
sums of squares, each corresponding
to a single predictor:

SSR(β1, . . . , βk | β0)
=SSR(β1 | β0)

+ SSR(β2 | β1, β0)
+ · · ·
+ SSR(βk | βk−1, . . . , β1, β0)

From the above output:
– SSR(β1 | β0) = 46370, the predictor
height is significant
– SSR(β2 | β1, β0) = 33416, waist
girth is significant given that height is
already in the model
– SSR(β1, β2 | β0) = 79786
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Multiple Linear Regression

Summary: hypothesis testing in regression

• ANOVA F test: H0 : β1 = · · · = βk = 0. Reject H0 if

F0 = MSR
MSRes

= SSR/k

SSRes/(n− p)
> Fα,k,n−p

• Marginal t-tests: H0 : βj = 0. Reject H0 if

|t0| > tα/2, n−p, t0 = β̂j − 0
se(β̂j)

= β̂j√
σ̂2Cjj

• Partial F test: H0 : β2 = 0. Reject H0 if

SSR(β2 | β1)/r
SSRes(β)/(n− p) > Fα,r,n−p
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Multiple Linear Regression

Interval estimation in multiple linear regression

We construct the following

• Confidence intervals for individual regression coefficients β̂j

• Confidence interval for the mean response

• Prediction interval

under the additional assumption that the errors εi are independently and
normally distributed with zero mean and constant variance σ2.
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Multiple Linear Regression

Confidence intervals for individual regression coefficients

Theorem 0.5. Under the normality assumption, a 1−α confidence interval
for the regression coefficient βj , 0 ≤ j ≤ k is

β̂j ± tα/2,n−p

√
σ̂2Cjj
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Multiple Linear Regression

Confidence interval for the mean response

In the setting of multiple linear regression, the mean response at a given
point x0 = (1, x01, . . . , x0k)′ is

E(y | x0) = x′0β = β0 + β1x01 + · · ·+ βkx0k

A natural point estimator for E(y | x0) is the following:

ŷ0 = x′0β̂ = β̂0 + β̂1x01 + · · ·+ β̂kx0k.

Furthermore, we can construct a confidence interval for E(y | x0).
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Multiple Linear Regression

Since ŷ0 is a linear combination of the responses, it is normally distributed
with

E(ŷ0) = x′0E(β̂) = x′0β

and
Var(ŷ0) = x′0Var(β̂)x0 = σ2x′0(X′X)−1x0

We can thus obtain the following result.

Theorem 0.6. Under the normality assumption on the model errors, a
1− α confidence interval on the mean response E(y | x0) is

ŷ0 ± tα/2, n−p

√
σ̂2 x′0(X′X)−1x0
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Multiple Linear Regression

Prediction intervals for new observations
Given a new location x0, we would like to form a prediction interval on
the future observation of the response at that location

y0 = x′0β + ε0

where ε0 ∼ N(0, σ2) is the error.

We have the following result.

Theorem 0.7. Under the normality assumption on the model errors, a
1− α prediction interval for the future observation y0 at the point x′0 is

ŷ0 ± tα/2, n−p

√
σ̂2 (1 + x′0(X′X)−1x0)
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Multiple Linear Regression

Proof. First, note that the mean of the response y0 at x0, i.e., x′0β, is
estimated by ŷ0 = x′0β̂.

Let Ψ = y0− ŷ0 be the difference between the true response and the point
estimator for its mean. Then Ψ (as a linear combination of y0, y1, . . . , yn)
is normally distributed with mean

Ψ = E(y0)− E(ŷ0) = x′0β − x′0β = 0

and variance

Var(Ψ) = Var(y0) + Var(ŷ0) = σ2 + σ2x′0(X′X)−1x0
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Multiple Linear Regression

It follows that
y0 − ŷ0√

σ2 (1 + x′0(X′X)−1x0)
∼ N(0, 1)

and correspondingly,

y0 − ŷ0√
MSRes (1 + x′0(X′X)−1x0)

∼ tn−p

Accordingly, a 1−α prediction interval on a future observation y0 at x0 is

ŷ0 ± tα/2, n−p

√
MSRes (1 + x′0(X′X)−1x0)
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Multiple Linear Regression

Summary: interval estimation in regression

• βj (for each 0 ≤ j ≤ k): β̂j ± tα/2,n−p
√
MSResCjj

• σ2:
(

(n−p)MSRes
χ2
α
2 ,n−p

, (n−p)MSRes
χ2

1−α2 ,n−p

)

• E(y | x0): ŷ0 ± tα/2, n−p

√
MSRes x′0(X′X)−1x0

• y0 (at x0): ŷ0 ± tα/2, n−p

√
MSRes (1 + x′0(X′X)−1x0)
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Multiple Linear Regression

Some issues in multiple linear regression

• Hidden extrapolation

• Units of measurements

• Multicollinearity
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Multiple Linear Regression

Hidden extrapolation

In multiple linear regression, extrap-
olation may occur even when all pre-
dictor values are within their ranges.

We can use the hat matrix

H = X(X′X)−1X′

to detect hidden extrapolation: Let

hmax = max hii.

Then x0 is an extrapolation point if

x′0(X′X)−1x0 > hmax
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Multiple Linear Regression

Units of measurements
The choices of the units of the predictors in a linear model may cause their
regression coefficients to have very different magnitudes, e.g.,

y = 3− 20x1 + 0.01x2

In order to directly compare regression coefficients, we need to scale the
regressors and the response to be on the same magnitude.

Two common scaling methods:

• Unit Normal Scaling

• Unit Length Scaling
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Multiple Linear Regression

Unit Normal Scaling: For each regressor xj (and the response), rescale
the observations of xj (or y) to have zero mean and unit variance.

Let

x̄j = 1
n

∑
i

xij , s2
j = 1

n− 1
∑
i

(xij − x̄j)2

︸ ︷︷ ︸
Sjj

, s2
y = 1

n− 1
∑
i

(yi − ȳ)2

︸ ︷︷ ︸
=SST

.

Then the normalized predictors and response are

zij = xij − x̄j
sj

, y∗i = yi − ȳ
sy

This leads to a linear regression model without intercept: y∗ = Zb̂.
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Multiple Linear Regression

Unit Length Scaling: For each regressor xj (and the response), rescale
the observations of xj (or y) to have zero mean and unit length.

wij = xij − x̄j√
Sjj

= zij√
n− 1

, y0
i = yi − ȳ√

SST
= y∗i√

n− 1

This also leads to a linear regression model without intercept: y0 = Wb̂.

Remark.

• W = 1√
n−1Z and y0 = 1√

n−1y∗. Thus, the two scaling methods
will yield the same standardized regression coefficients b̂.

• Entries of W′W are correlations between the regressors.
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Multiple Linear Regression

Proof: We examine the (j, `)-entry of W′W :

(W′W)j` =
n∑
i=1

wijwi`

=
∑ xij − x̄j√

Sjj

xi` − x̄`√
S``

=
∑

(xij − x̄j)(xi` − x̄`)√
Sjj
√
S``

=
1

n−1
∑

(xij − x̄j)(xi` − x̄`)√
1

n−1
∑

(xij − x̄j)2
√

1
n−1

∑
(xi` − x̄`)2

= Corr(xj , x`)
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Multiple Linear Regression

Multicollinearity

A serious issue in multiple linear regression is multicolinearity, or near-linear
dependence among the regression variables, e.g., x3 ≈ 2x1 + 5x2.

• X won’t be of full rank, leading to a singular X′X.

• The redundant predictors contribute no new information about the
response .

• The estimated slopes in the regression model will be arbitrary.

We will discuss in more detail how to diagnose (and fix) the issue of
multicollinearity in Chapter 9.
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Further learning

3.3.3 The Case of Orthogonal Columns in X

3.3.4 Testing the General Linear Hypothesis H0 : Tβ = 0

• Projection matrices

– Concepts

– Computing via SVD
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