San José State University
 Math 263: Stochastic Processes

Probability review

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Sections 3.2-3.5
- Section 5.2

Outline of the presentation

- Poisson, Exponential and Gamma distributions
- Conditional distribution and expectation

Hw1: Assigned in Canvas

Math 263, probability review

The Poisson distribution

Recall that the Poisson distribution has the following pmf

$$
f(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}, \quad x=0,1,2, \ldots
$$

It can be used to model the number of occurrences of a rare event over a time/space interval of fixed length with rate λ.

Theorem 0.1. If $X \sim \operatorname{Pois}(\lambda)$, then $\mathrm{E}(X)=\lambda$ and $\operatorname{Var}(X)=\lambda$.

Math 263, probability review

The Exponential distribution

Recall also that a random variable X is said to have an exponential distribution with parameter λ if it has the following pdf:

$$
f(x)=\lambda e^{-\lambda x}, \quad x>0
$$

It is useful for modeling waiting time for one occurrence of a rare event.
Theorem 0.2. If $X \sim \operatorname{Exp}(\lambda)$, then

$$
\begin{aligned}
F(x) & =1-e^{-\lambda x}, & \bar{F}(x) & =e^{-\lambda x}, \\
\mathrm{E}(X) & =\frac{1}{\lambda}, & \operatorname{Var}(X) & =\frac{1}{\lambda^{2}} .
\end{aligned}
$$

Math 263, probability review

An important fact about this distribution is the memoryless property:

$$
P(X>s+t \mid X>s)=P(X>t), \quad \forall s, t>0
$$

To see this (again),

$$
\begin{aligned}
P(X>s+t \mid X>s) & =\frac{P(X>s+t, \nmid|>| \beta)}{P(X>s)} \\
& =\frac{\bar{F}(s+t)}{\bar{F}(s)}=\frac{e^{-(s+t)}}{e^{-s}} \\
& =e^{-t}=\bar{F}(t) \\
& =P(X>t) .
\end{aligned}
$$

Math 263, probability review

Theorem 0.3. If $X_{1} \sim \operatorname{Exp}\left(\lambda_{1}\right)$ and $X_{2} \sim \operatorname{Exp}\left(\lambda_{2}\right)$ are independent, then

$$
P\left(X_{1}<X_{2}\right)=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Proof.

$$
\begin{aligned}
P\left(X_{1}<X_{2}\right) & =\int_{0}^{\infty} \int_{0}^{x_{2}} \lambda_{1} e^{-\lambda_{1} x_{1}} \lambda_{2} e^{-\lambda_{2} x_{2}} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
& =\int_{0}^{\infty}\left(1-e^{-\lambda_{1} x_{2}}\right) \lambda_{2} e^{-\lambda_{2} x_{2}} \mathrm{~d} x_{2} \\
& =\int_{0}^{\infty} \lambda_{2} e^{-\lambda_{2} x_{2}} \mathrm{~d} x_{2}-\int_{0}^{\infty} \lambda_{2} e^{-\left(\lambda_{1}+\lambda_{2}\right) x_{2}} \mathrm{~d} x_{2} \\
& =1-\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}} .
\end{aligned}
$$

Math 263, probability review

Theorem 0.4. If $X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$ are independent, then

$$
\min _{1 \leq i \leq n} X_{i} \sim \operatorname{Exp}\left(\sum_{i=1}^{n} \lambda_{i}\right) .
$$

Proof. For any $x>0$,

$$
\begin{aligned}
P\left(\min _{1 \leq i \leq n} X_{i}>x\right) & =P\left(X_{1}>x, \ldots, X_{n}>x\right) \\
& =\prod_{i=1}^{n} P\left(X_{i}>x\right) \\
& =\prod_{i=1}^{n} e^{-\lambda_{i} x}=e^{-\left(\sum \lambda_{i}\right) x}
\end{aligned}
$$

Math 263, probability review

Consider a positive (continuous) random variable X with pdf $f(x)$ and cdf $F(x)$. The hazard rate function of X is defined as follows:

Def 0.1 (Hazard rate function).

$$
r(t)=\frac{f(t)}{1-F(t)}, \quad t>0
$$

To understand the meaning of $r(t)$, suppose X represents the operation time of a machine (in hours). The probability that the machine will break down during a tiny time period right after it has lasted for t hours is

$$
P(X \in(t, t+\Delta t) \mid X>t)=\frac{P(t<X<t+\Delta t, \nmid|>| \nmid t)}{P(X>t)} \approx \frac{f(t) \Delta t}{1-F(t)}=r(t) \Delta t .
$$

Math 263, probability review

If $X \sim \operatorname{Exp}(\lambda)$, then

$$
r(t)=\frac{\lambda e^{-\lambda t}}{1-\left(1-e^{-\lambda t}\right)}=\lambda \quad \text { (constant failure rate) }
$$

Given a hazard rate function $r(t)$, we may uniquely reconstruct the cdf of the random variable X. First, rewrite

$$
r(t)=\frac{\frac{\mathrm{d}}{\mathrm{~d} t} F(t)}{1-F(t)}=\frac{\mathrm{d}}{\mathrm{~d} t}[-\log (1-F(t))]
$$

Integrating both sides from 0 to t gives that

$$
\int_{0}^{t} r(s) \mathrm{d} s=-\log (1-F(t))
$$

From this we obtain that

$$
F(t)=1-e^{-\int_{0}^{t} r(s) \mathrm{d} s} .
$$

Math 263, probability review

The Gamma distribution

Def 0.2. A random variable X is said to have a Gamma distribution, with parameters α and λ, if its pdf has the following form

$$
f_{X}(x)=\frac{\lambda(\lambda x)^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)}, \quad x>0
$$

where

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} \mathrm{~d} x, \quad \alpha>0
$$

Remark. If $\alpha=n$ is an integer, then $\Gamma(n)=(n-1)$!. So it is a generalization of the factorial function from positive integers to positive real numbers.

The Poisson-Exponential-Gamma scheme

Suppose a rare event occurs with rate λ over time.

- For any $t>0$, let $N(t)$ be the total number of occurrences of this event by time t. Then $N(t) \sim \operatorname{Pois}(\lambda t)$.
- For any positive integer n, let $X_{i}, 1 \leq i \leq n$ represent the waiting time for the i th occurrence of the event (after the last occurrence). Then $X_{1}, \ldots, X_{n} \stackrel{i i d}{\sim} \operatorname{Exp}(\lambda)$.

Math 263, probability review

Let T be the total amount of waiting time for n occurrences of the event:

$$
T=\sum_{i=1}^{n} X_{i}
$$

Then

$$
T \sim \operatorname{Gamma}(n, \lambda)
$$

Proof. For any fixed $t>0$, the cdf of T is

$$
F_{T}(t)=P(T<t)=P(N(t) \geq n)=\sum_{k=n}^{\infty} \frac{(\lambda t)^{k}}{k!} e^{-\lambda t}
$$

Math 263, probability review

Differentiating $F_{T}(t)$ with respect to t gives that

$$
f_{T}(t)=\frac{\lambda(\lambda t)^{n-1} e^{-\lambda t}}{(n-1)!}
$$

This shows that $T \sim \operatorname{Gamma}(n, \lambda)$.

Math 263, probability review

Conditional distributions

For two events $A, B \subset S$ with $P(A)>$ 0 , the conditional probability of B given A is defined as

$$
P(B \mid A)=\frac{P(B \cap A)}{P(A)}
$$

For two random variables X, Y that have a joint distribution, their conditional distributions can be defined similarly.

Math 263, probability review

Two discrete random variables

The conditional pmf of X given $Y=y$ is defined as

$$
p_{X \mid Y}(x \mid \underbrace{y}_{\text {fixed }})=\frac{p_{X, Y}(x, y)}{p_{Y}(y)}=\frac{P(X=x, Y=y)}{P(Y=y)}
$$

from which one can compute the conditional cdf, expectation and variance.
Example 0.1. Let $X \sim \operatorname{Pois}\left(\lambda_{1}\right), Y \sim \operatorname{Pois}\left(\lambda_{2}\right)$ be independent random variables. Find $\mathrm{E}(X \mid X+Y=n)$.

Math 263, probability review

Solution. We start by computing the conditional pmf of X given $X+Y=n$:
For each $x=0,1, \ldots, n$,

$$
\begin{aligned}
P(X=x \mid X+Y=n) & =\frac{P(X=x, X+Y=n)}{P(X+Y=n)}=\frac{P(X=x, Y=n-x)}{P(X+Y=n)} \\
& =\frac{P(X=x) P(Y=n-x)}{P(X+Y=n)}=\binom{n}{x}\left(\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)^{x}\left(\frac{\lambda_{2}}{\lambda_{1}+\lambda_{2}}\right)^{n-x}
\end{aligned}
$$

This shows that

$$
X \left\lvert\, X+Y=n \quad \sim B\left(n, p=\frac{\lambda_{1}}{\lambda_{1}+\lambda_{2}}\right)\right.
$$

Therefore,

$$
\mathrm{E}[X \mid X+Y=n]=\frac{n \lambda_{1}}{\lambda_{1}+\lambda_{2}}
$$

Math 263, probability review

Two continuous random variables

The conditional pdf of X given $Y=y$ is defined as

$$
f_{X \mid Y}(x \mid y)=\frac{f_{X, Y}(x, y)}{f_{Y}(y)}
$$

from which one can compute the conditional cdf, expectation and variance.
Example 0.2. Consider the following joint distribution

$$
f(x, y)=\frac{1}{2} x y, \quad 0<x<y<2
$$

Find $\mathrm{E}(X \mid Y=y)$.

Math 263, probability review

Solution. By direct calculation,

$$
\begin{aligned}
f_{Y}(y) & =\int_{0}^{y} \frac{1}{2} x y \mathrm{~d} x=\frac{1}{4} y^{3}, \quad 0<y<2 \\
f_{X \mid Y}(x \mid y) & =\frac{\frac{1}{2} x y}{\frac{1}{4} y^{3}}=\frac{2}{y^{2}} x, \quad 0<x<y \\
\mathrm{E}(X \mid Y=y) & =\int_{0}^{y} x \cdot \frac{2}{y^{2}} x \mathrm{~d} x=\frac{2}{3} y .
\end{aligned}
$$

Let $\mathrm{E}(X \mid Y)$ be the expression of $\mathrm{E}(X \mid Y=y)$ with each y replaced by Y. In the above example,

$$
\mathrm{E}(X \mid Y)=\frac{2}{3} Y
$$

Note that $\mathrm{E}(X \mid Y)$ is a random variable (dependent on Y).

Math 263, probability review

Theorem 0.5. For any two random variables X, Y with a joint distribution,

$$
\mathrm{E}(X)=\mathrm{E}(\mathrm{E}(X \mid Y)) .
$$

Proof. We prove this result for the case of two discrete random variables:

$$
\begin{aligned}
\mathrm{E}(\mathrm{E}(X \mid Y)) & =\sum_{y} \mathrm{E}(X \mid Y=y) P(Y=y) \\
& =\sum_{y} \sum_{x} x P(X=x \mid Y=y) P(Y=y) \\
& =\sum_{x} x \sum_{y} P(X=x \mid Y=y) P(Y=y) \\
& =\sum_{x} x P(X=x)=\mathrm{E}(X) .
\end{aligned}
$$

Math 263, probability review

Remark. When Y is discrete, this formula can be interpreted as follows:

Math 263, probability review

Example 0.3 (cont'd).

$$
\mathrm{E}(X)=\mathrm{E}(\mathrm{E}(X \mid Y))=\mathrm{E}\left(\frac{2}{3} Y\right)=\frac{2}{3} \int_{0}^{2} y \cdot \frac{1}{4} y^{3} \mathrm{~d} y=\frac{2}{3} \cdot \frac{8}{5}=\frac{16}{15} .
$$

Verify this result by using the marginal pdf of X instead.

Math 263, probability review

Example 0.4. Let X_{1}, X_{2}, \ldots be a sequence of iid random variables with the same mean $\mu=\mathrm{E}\left(X_{i}\right)$ and variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$. Let N be a positive, integer-valued random variable that is independent of all X_{i}. Define

$$
S=\sum_{i=1}^{N} X_{i}
$$

which is a compound random variable. Prove that

$$
\mathrm{E}(S)=\mu \cdot \mathrm{E}(N)
$$

Proof.

$$
\mathrm{E}(S)=\mathrm{E}(\mathrm{E}(S \mid N))=\mathrm{E}(\mu N)=\mu \cdot \mathrm{E}(N) .
$$

Math 263, probability review

Example 0.5. Let

$$
X_{i} \sim \operatorname{Exp}\left(\lambda_{i}\right), \quad 1 \leq i \leq n
$$

be independent random variables, and N another random variable that is independent of all X_{i} and has the following distribution

$$
P(N=i)=p_{i}, \quad 1 \leq i \leq n .
$$

Let

$$
Y=X_{N},
$$

which is called a hyperexponential random variable. Find $\mathrm{E}(Y)$.

Math 263, probability review

Solution.

$$
\mathrm{E}(Y)=\mathrm{E}\left(\mathrm{E}\left(X_{N} \mid N\right)\right)=\mathrm{E}\left(\frac{1}{\lambda_{N}}\right)=\sum_{i=1}^{n} \frac{1}{\lambda_{i}} \cdot p_{i}=\sum_{i=1}^{n} \frac{p_{i}}{\lambda_{i}}
$$

We can also determine the density of Y : For any $t>0$,

$$
\begin{aligned}
P(Y>t) & =P\left(X_{N}>t\right)=\sum_{i=1}^{n} P\left(X_{N}>t \mid N=i\right) P(N=i) \\
& =\sum_{i=1}^{n} P\left(X_{i}>t| | X|/||t|) P(N=i)\right. \\
& =\sum_{i=1}^{n} e^{-\lambda_{i} t} p_{i} .
\end{aligned}
$$

Math 263, probability review

It follows that

$$
F_{Y}(t)=1-\sum_{i=1}^{n} p_{i} e^{-\lambda_{i} t}
$$

and

$$
f_{Y}(t)=\sum_{i=1}^{n} p_{i} \lambda_{i} e^{-\lambda_{i} t}
$$

The hazard rate function is

$$
r(t)=\frac{f(t)}{1-F(t)}=\frac{\sum p_{i} \lambda_{i} e^{-\lambda_{i} t}}{\sum p_{i} e^{-\lambda_{i} t}} \stackrel{t \rightarrow \infty}{\longrightarrow} \min _{1 \leq i \leq n} \lambda_{i} .
$$

Math 263, probability review

Theorem 0.6. For any random variables X, Y that have a joint distribution,

$$
\operatorname{Var}(X)=\mathrm{E}(\operatorname{Var}(X \mid Y))+\operatorname{Var}(\mathrm{E}(X \mid Y))
$$

Proof.

$$
\begin{aligned}
& \mathrm{E}(\operatorname{Var}(X \mid Y))=\mathrm{E}\left(\mathrm{E}\left(X^{2} \mid Y\right)-\mathrm{E}(X \mid Y)^{2}\right)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}\left(\mathrm{E}(X \mid Y)^{2}\right) \\
& \operatorname{Var}(\mathrm{E}(X \mid Y))=\mathrm{E}\left(\mathrm{E}(X \mid Y)^{2}\right)-(\mathrm{E}(\mathrm{E}(X \mid Y)))^{2}=\mathrm{E}\left(\mathrm{E}(X \mid Y)^{2}\right)-(\mathrm{E}(X))^{2}
\end{aligned}
$$

Math 263, probability review

Remark. When Y is discrete, this formula can be interpreted as a decomposition of the total variance of X into within-group and between-group variances:

Math 263, probability review

Example 0.6 (Compound random variable, cont'd). For

$$
S=\sum_{i=1}^{N} X_{i}
$$

we have

$$
\begin{aligned}
\mathrm{E}(S \mid N) & =\mu N \\
\operatorname{Var}(S \mid N) & =\operatorname{Var}\left[\sum_{i=1}^{N} X_{i} \mid N\right]=\sigma^{2} N
\end{aligned} \quad \longrightarrow \mathrm{Var}(\mathrm{E}(S \mid N))=\mu^{2} \operatorname{Var}(N)
$$

Accordingly,

$$
\operatorname{Var}(S)=\mu^{2} \operatorname{Var}(N)+\sigma^{2} \mathrm{E}(N)
$$

