Stationary distributions and limiting probabilities

Dr. Guangliang Chen
This lecture is based on the following textbook sections:

- Section 4.4

and also the following lecture: https://www.stat.uchicago.edu/~yibi/teaching/stat317/2013/Lectures/Lecture5_4up.pdf

Outline of the presentation

- Stationary distributions
- Limiting probabilities
- Long-run proportions
Assume a Markov chain \(\{X_n : n = 0, 1, 2, \ldots \} \) with state space \(S \) and transition matrix \(P \).

Let \(\pi = (\pi_i)_{i \in S} \) be a row vector denoting a probability distribution on \(S \), i.e.,

\[
\pi_i \geq 0, \quad \sum_{i \in S} \pi_i = 1.
\]

Def 0.1. \(\pi \) is called a **stationary** (or equilibrium) distribution of the Markov chain if it satisfies

\[
\pi = \pi P, \quad (\pi \text{ is a left eigenvector corresponding to 1})
\]

or in entrywise form,

\[
\pi_j = \sum_{i \in S} \pi_i p_{ij}, \quad \text{for all } j \in S.
\]
Remark. π^T is a (right) eigenvector of P^T corresponding to the same eigenvalue 1:

$$P^T \pi^T = \pi^T.$$

Note that 1 is a (right) eigenvector of P corresponding to eigenvalue 1:

$$P1 = 1.$$

In general, a square matrix A and its transpose have the same eigenvalues

$$\text{det}(\lambda I - A^T) = \text{det}(\lambda I - A)$$

but they do not have the same eigenvectors.
Theorem 0.1. Let \(\{X_n : n = 0, 1, 2, \ldots\} \) be a Markov chain with a stationary distribution \(\pi \). If \(X_n \sim \pi \) for some integer \(n \geq 0 \), then \(X_{n+1} \sim \pi \).

Remark. This implies that for the same \(n \), the future states \(X_{n+2}, X_{n+3}, \ldots \) all have the same distribution \(\pi \).

Proof. For any \(j \in S \),

\[
P(X_{n+1} = j) = \sum_{i \in S} P(X_{n+1} = j \mid X_n = i)P(X_n = i)
\]

\[= \sum_{i \in S} p_{ij} \pi_i = \pi_j. \quad \square\]
Example 0.1. Find the stationary distribution of the Markov chain below:

\[P = \begin{pmatrix}
 0 & .9 & .1 & 0 \\
 .8 & .1 & 0 & .1 \\
 0 & .5 & .3 & .2 \\
 .1 & 0 & 0 & .9 \\
\end{pmatrix} \]

Answer: \(\pi = (.2788, .3009, .0398, .3805) \) by software. Alternatively, we can solve \(\pi P = \pi \) (along with the requirement \(\sum \pi_i = 1 \)) directly by hand:

\[
\begin{align*}
\pi_1 &= 0.8\pi_2 + 0.1\pi_4 \\
\pi_2 &= 0.9\pi_1 + 0.1\pi_2 + 0.5\pi_3 \\
\pi_3 &= 0.1\pi_1 + 0.3\pi_3 \\
\pi_4 &= 0.1\pi_2 + 0.2\pi_3 + 0.9\pi_4 \\
\end{align*}
\]

\[\begin{align*}
\pi_1 &= 63/226 \\
\pi_2 &= 68/226 \\
\pi_3 &= 9/226 \\
\pi_4 &= 86/226 \\
\end{align*} \]
Existence (and uniqueness) of stationary distributions

Theorem 0.2. For any irreducible Markov chain with state space S and transition matrix P, it has a stationary distribution $\pi = (\pi_j)$:

$$ \forall j \in S: \pi_j \geq 0, \quad \sum_{i \in S} \pi_i = 1, \quad \pi = \pi P. $$

if and only if the chain is positive recurrent.

Furthermore, if a solution exists, then it will be unique and for state j,

$$ \pi_j = \begin{cases} \lim_{n \to \infty} p_{ij}^{(n)}, & \text{if the chain is aperiodic} \\ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)}, & \text{if the chain is periodic} \end{cases} $$
Remark. In the aperiodic case, π_j is also the limiting probability that the chain is in state j, i.e.,

$$\pi_j = \lim_{n \to \infty} P(X_n = j).$$

To prove this, let $\alpha = (\alpha_i)_{i \in S}$ be the initial distribution of the chain. Then

$$P(X_n = j) = \sum_{i \in S} P(X_n = j \mid X_0 = i) P(X_0 = i)$$

$$= \sum_{i \in S} p_{ij}^{(n)} \alpha_i \quad \xrightarrow{n \to \infty} \quad \pi_j \sum_{i \in S} \alpha_i = \pi_j.$$
Example 0.2 (Social mobility). Let X_n be a family’s social class: 1 (lower), 2 (middle), 3 (upper) in the nth generation. This was modeled as a Markov chain with transition matrix

$$
\mathbf{P} = \begin{pmatrix}
.8 & .1 & .1 \\
.2 & .6 & .2 \\
.3 & .3 & .4
\end{pmatrix}
$$

It is irreducible, positive recurrent and aperiodic (i.e., ergodic). Thus, there is a unique stationary distribution:

$$
\pi = \left(\frac{6}{11}, \frac{3}{11}, \frac{2}{11} \right) = (0.5454, 0.2727, 0.1818),
$$

and the chain will converge to the stationary distribution.
Math 263, Stationary distributions and limiting probabilities

\[P = \begin{pmatrix} .8 & .1 & .1 \\ .2 & .6 & .2 \\ .3 & .3 & .4 \end{pmatrix} \quad \rightarrow \quad P^{10} = \begin{pmatrix} 0.5471 & 0.2715 & 0.1814 \\ 0.5430 & 0.2745 & 0.1825 \\ 0.5441 & 0.2737 & 0.1822 \end{pmatrix} \]

\[\rightarrow \quad P^{20} = \begin{pmatrix} 0.5455 & 0.2727 & 0.1818 \\ 0.5454 & 0.2727 & 0.1818 \\ 0.5454 & 0.2727 & 0.1818 \end{pmatrix} \]
Example 0.3. Consider the following Markov chain:

\[P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \]

It is irreducible and positive recurrent, and thus has a unique stationary distribution:

\[\pi = \left(\frac{1}{2}, \frac{1}{2} \right) \]

The chain does not converge to the stationary distribution because it is periodic with period 2: For any integer \(\ell \geq 0 \),

\[P^{2\ell} = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad P^{2\ell+1} = P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \]
However, the following identity is still true:

\[\pi_j = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} p^{(k)}_{ij} \]
Example 0.4 (Gambler’s Ruin). The underlying Markov chain has three communicating classes \(\{0\}, \{1, \ldots, N-1\}, \{N\} \), and thus it is not irreducible.

However, the chain has two stationary distributions (corresponding to the two recurrent classes):

\[\pi_1 = (1, 0, \ldots, 0, 0), \quad \pi_2 = (0, 0, \ldots, 0, 1) \]
When \(N = 4 \) and \(\omega = \frac{1}{2} \) (symmetric random walk),

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\quad \longrightarrow \quad
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
\frac{3}{4} & 0 & 0 & 0 & \frac{1}{4} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

What does this imply?
Example 0.5. The 1-dimensional symmetric random walk over \mathbb{Z} must be null recurrent.

\[
\begin{array}{c}
\cdots \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \cdots \\
\end{array}
\]

\[
\begin{array}{c}
\text{1} - p \quad p
\end{array}
\]

(This is a homework question, #39. Use proof by contradiction)
Consider the Markov chain defined on a finite, undirected, weighted graph \(G = \{V, E, W\} \), with state space \(S = V \) and transition matrix

\[
P = D^{-1}W, \quad D = \text{diag}(d), \quad d = W \cdot 1
\]

The chain is finite, and if the graph is connected, then the Markov chain must be irreducible and also positive recurrent. Accordingly, it possesses a unique stationary distribution.
Proposition 0.3. For any finite, connected graph, the induced Markov chain possesses the following unique stationary distribution

\[\pi = \frac{1}{\text{Vol}(V)} \cdot d, \quad \text{where} \quad \text{Vol}(V) = \sum_{i \in V} d_i. \]

If the graph is also non-bipartite, then the chain always converges to the above stationary distribution.

Proof. First, we show that

\[dP = dD^{-1}W = 1^T W = d \quad \rightarrow \quad \pi P = \pi. \]

Thus, \(\pi \) is a stationary distribution of the chain and it is also unique.
For the convergence part, we consider the following two cases:

(1) Bipartite graphs (no convergence, because $d = 2$)

(2) Non-bipartite graphs (convergence)
Long-run proportion of visits to a state

Theorem 0.4. For an irreducible, positive recurrent Markov chain with stationary distribution \(\pi = (\pi_j) \), \(\pi_j \) is also the long-run proportion of time that the chain is in state \(j \) (regardless of initial state \(i \)).
Proof. To see this, let

\[I_n = 1_{X_n = j}, \quad \text{for all } n \geq 1 \]

and define

\[T = \sum_{n=1}^{\ell} I_n \]

which represents the total number of visits to state \(j \) in \(\ell \) steps.

The proportion of visits to state \(j \) in \(\ell \) steps is

\[\frac{T}{\ell} = \frac{1}{\ell} \sum_{n=1}^{\ell} I_n, \]
and we would like to show that it converges to π_j on average:

$$E \left[\frac{T}{\ell} \bigg| X_0 = i \right] = \frac{1}{\ell} \sum_{n=1}^{\ell} E[I_n \mid X_0 = i]$$

$$= \frac{1}{\ell} \sum_{n=1}^{\ell} 1 \cdot P(I_n = 1 \mid X_0 = j) + 0 \cdot P(I_n = 0 \mid X_0 = j)$$

$$= \frac{1}{\ell} \sum_{n=1}^{\ell} P(X_n = j \mid X_0 = j)$$

$$= \frac{1}{\ell} \sum_{n=1}^{\ell} p_{ij}^{(n)} \quad \ell \to \infty \quad \pi_j.$$
Example 0.6. Three out of every four trucks on the road are followed by a car, while only one out of every five cars is followed by a truck. What fraction of vehicles on the road are trucks?

\[
C \quad C \quad T \quad C \quad C \quad C \quad T \quad T \quad C \quad C \quad C \quad C \quad T \quad C \quad C \quad C
\]
Solution. Let X_n be the type of the nth vehicle, T (for truck) or C (for car), when counting from one end of the road to the other end. Then \(\{X_n, n \geq 1\} \) is a Markov chain with state space \(S = \{T, C\} \) and corresponding transition matrix

\[
P = \begin{bmatrix}
\frac{1}{4} & \frac{3}{4} \\
\frac{1}{5} & \frac{4}{5}
\end{bmatrix}
\]

Since the chain is irreducible and positive recurrent, it has a unique stationary distribution \(\pi = (\pi_T, \pi_C) \) given by

\[
\pi_T = \pi_T \cdot \frac{1}{4} + \pi_C \cdot \frac{1}{5}, \quad \pi_T + \pi_C = 1 \quad \rightarrow \quad \pi_T = \frac{4}{19}, \quad \pi_C = \frac{15}{19}
\]

The fraction of trucks on the road is the long-run proportion \(\pi_T = \frac{4}{19} \).
Theorem 0.5. For any irreducible, positive recurrent Markov chain, with stationary distribution \(\pi = (\pi_j) \), we must have

\[
\pi_j = \frac{1}{m_{jj}} \quad \text{for all } j \in S,
\]

where \(m_{jj} \) represents the mean recurrence time of state \(j \):

\[
m_{jj} = E(N_j \mid X_0 = j).
\]

Remark. This theorem implies that \(\pi_j > 0 \) for all positive recurrent states \(j \) in an irreducible chain (as \(m_{jj} < \infty \) for all \(j \)). Note that \(\pi_j \) can also be interpreted as the long-run proportion of the chain being in state \(j \) here.
Proof. To see this, consider

\[T = \sum_{n=1}^{\ell} I_n, \quad I_n = 1_{X_n=j} \]

which represents the total number of visits to state \(j \) in \(\ell \) time steps.

Denote by \(N_j^1, \ldots, N_j^T \) the individual recurrence times in the \(\ell \) time steps:
Then
\[N_j^1 + \cdots + N_j^T \leq \ell < N_j^1 + \cdots + N_j^T + N_j^{T+1}, \]

where \(N_j^{T+1} \) represents the additional number of time steps that will be needed by the chain to enter state \(j \) again (after the first \(T \) visits).

Taking conditional expectation \(\mathbb{E} [\cdot \mid X_0 = j] \) of left-hand side gives that

\[
\mathbb{E} \left(N_j^1 + \cdots + N_j^T \middle| X_0 = j \right) = \mathbb{E} \left[\mathbb{E} \left(N_j^1 + \cdots + N_j^T \middle| X_0 = j, T \right) \middle| X_0 = j \right] \\
= \mathbb{E} \left[T \cdot \mathbb{E} \left(N_j^1 \middle| X_0 = j \right) \middle| X_0 = j \right] \\
= \mathbb{E} \left[T \cdot m_{jj} \middle| X_0 = j \right] \\
= m_{jj} \cdot \mathbb{E} \left[T \middle| X_0 = j \right]
\]
Similarly,

\[
E\left(N_j^1 + \cdots + N_j^T + N_j^{T+1} \mid X_0 = j \right) = m_{jj} \cdot E\left[T + 1 \mid X_0 = j \right]
\]

\[
= m_{jj} + m_{jj} \cdot E\left[T \mid X_0 = j \right]
\]

Combining them together, we have

\[
\begin{align*}
m_{jj} \cdot E[T \mid X_0 = j] & \leq \ell < m_{jj} + m_{jj} \cdot E[T \mid X_0 = j] \\
m_{jj} \cdot \frac{1}{\ell} E[T \mid X_0 = j] & \leq 1 < m_{jj} \left(\frac{1}{\ell} + \frac{1}{\ell} E[T \mid X_0 = j] \right)
\end{align*}
\]
We next derive an expression for $E[T \mid X_0 = j]$:

$$E[T \mid X_0 = j] = \sum_{n=1}^{\ell} E(I_n \mid X_0 = j)$$

$$= \sum_{n=1}^{\ell} 1 \cdot P(I_n = 1 \mid X_0 = j) + 0 \cdot P(I_n = 0 \mid X_0 = j)$$

$$= \sum_{n=1}^{\ell} P(X_n = j \mid X_0 = j)$$

$$= \sum_{n=1}^{\ell} p^{(n)}_{jj}$$
It follows that

\[m_{jj} \cdot \frac{1}{\ell} \sum_{n=1}^{\ell} p_{jj}^{(n)} \leq 1 < m_{jj} \cdot \left(\frac{1}{\ell} + \frac{1}{\ell} \sum_{n=1}^{\ell} p_{jj}^{(n)} \right) \]

Letting \(\ell \to \infty \) yields that

\[m_{jj} \cdot \pi_j \leq 1 \leq m_{jj} \cdot (0 + \pi_j) \]

So we must have

\[m_{jj} \cdot \pi_j = 1, \quad \text{and thus} \quad \pi_j = \frac{1}{m_{jj}}. \]
Remark. If the chain is irreducible but null recurrent, then $m_{jj} = \infty$ for all states j. Such a Markov chain may have no stationary distribution π (e.g., the 1D symmetric random walk over \mathbb{Z}).

However, we can still talk about the long-run proportion of the chain being in state j:

$$\frac{T}{\ell} = \frac{1}{\ell} \sum_{n=1}^{\ell} I_n, \quad \text{as } \ell \to \infty.$$

Starting with the inequality

$$N_j^1 + \cdots + N_j^T \leq \ell \quad \text{for all } \ell$$
we take conditional expectation \(E[\cdot \mid X_0 = j] \) and repeat the same steps to obtain that

\[
m_{jj} \cdot E[T \mid X_0 = j] \leq \ell \quad \text{for all } \ell
\]

or equivalently,

\[
m_{jj} \cdot E[T/\ell \mid X_0 = j] \leq 1 \quad \text{for all } \ell
\]

Because state \(j \) is null recurrent (\(m_{jj} = \infty \)), we must have

\[
E[T/\ell \mid X_0 = j] = 0 \quad \text{for all } \ell
\]

This shows that the long run proportion of visits to state \(j \) is zero. Thus, if \(\pi_j \) represents the long-run proportion of state \(j \) (instead of a stationary probability), then the formula \(\pi_j = \frac{1}{m_{jj}} \) is still valid.
Theorem 0.6. Positive recurrence is a class property. That is, if state \(j \) is positive recurrent, and state \(j \) communicates with state \(k \), then state \(k \) is also positive recurrent.

Proof. (We cannot use the stationary distribution as we do not know whether it exists; we’ll consider long-run proportions instead)

First, there exists a positive integer \(n \) such that

\[
p_{jk}^{(n)} > 0
\]

Since state \(j \) is positive recurrent, the long-run proportion is

\[
\pi_j = 1/m_{jj} > 0
\]
For any positive integer t and state i, we have

$$p_{ik}^{(t+n)} \geq p_{ij}^{(t)} \cdot p_{jk}^{(n)}$$

and also

$$\frac{1}{\ell} \sum_{t=1}^{\ell} p_{ik}^{(t+n)} \geq \left(\frac{1}{\ell} \sum_{t=1}^{\ell} p_{ij}^{(t)} \right) \cdot p_{jk}^{(n)}$$

Letting $\ell \to \infty$, we obtain that

$$\pi_k \geq \pi_j \cdot p_{jk}^{(n)} > 0$$

where π_k represents the long-run proportion of visits to state k. It follows that

$$m_{kk} = \frac{1}{\pi_k} < \infty$$

and thus state k is also positive recurrent.