San José State University<br>Math 263: Stochastic Processes

## Stationary distributions and limiting probabilities <br> Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Section 4.4
and also the following lecture: https://www.stat.uchicago.edu/~yibi/
teaching/stat317/2013/Lectures/Lecture5_4up.pdf


## Outline of the presentation

- Stationary distributions
- Limiting probabilities
- Long-run proportions


## Math 263, Stationary distributions and limiting probabilities

Assume a Markov chain $\left\{X_{n}: n=0,1,2, \ldots\right\}$ with state space $S$ and transition matrix $\mathbf{P}$.

Let $\boldsymbol{\pi}=\left(\pi_{i}\right)_{i \in S}$ be a row vector denoting a probability distribution on $S$, i.e.,

$$
\pi_{i} \geq 0, \quad \sum_{i \in S} \pi_{i}=1 .
$$

Def 0.1. $\boldsymbol{\pi}$ is called a stationary (or equilibrium) distribution of the Markov chain if it satisfies

$$
\boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P}, \quad(\boldsymbol{\pi} \text { is a left eigenvector corresponding to } 1)
$$

or in entrywise form,

$$
\pi_{j}=\sum_{i \in S} \pi_{i} p_{i j}, \quad \text { for all } j \in S
$$

## Math 263, Stationary distributions and limiting probabilities

Remark. $\boldsymbol{\pi}^{T}$ is a (right) eigenvector of $\mathbf{P}^{T}$ corresponding to the same eigenvalue 1 :

$$
\mathbf{P}^{T} \boldsymbol{\pi}^{T}=\boldsymbol{\pi}^{T} .
$$

Note that $\mathbb{1}$ is a (right) eigenvector of $\mathbf{P}$ corresponding to eigenvalue 1 :

$$
\mathbf{P} \mathbf{1}=\mathbf{1} .
$$

In general, a square matrix $\mathbf{A}$ and its transpose have the same eigenvalues

$$
\operatorname{det}\left(\boldsymbol{\lambda} \mathbf{I}-\mathbf{A}^{T}\right)=\operatorname{det}(\boldsymbol{\lambda} \mathbf{I}-\mathbf{A})
$$

but they do not have the same eigenvectors.

## Math 263, Stationary distributions and limiting probabilities

Theorem 0.1. Let $\left\{X_{n}: n=0,1,2, \ldots\right\}$ be a Markov chain with a stationary distribution $\boldsymbol{\pi}$. If $X_{n} \sim \boldsymbol{\pi}$ for some integer $n \geq 0$, then $X_{n+1} \sim \boldsymbol{\pi}$.

Remark. This implies that for the same $n$, the future states $X_{n+2}, X_{n+3}, \ldots$ all have the same distribution $\boldsymbol{\pi}$.

Proof. For any $j \in S$,

$$
\begin{aligned}
P\left(X_{n+1}=j\right) & =\sum_{i \in S} P\left(X_{n+1}=j \mid X_{n}=i\right) P\left(X_{n}=i\right) \\
& =\sum_{i \in S} p_{i j} \pi_{i}=\pi_{j} .
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

Example 0.1. Find the stationary distribution of the Markov chain below:

$$
\mathbf{P}=\left(\begin{array}{cccc}
0 & .9 & .1 & 0 \\
.8 & .1 & 0 & .1 \\
0 & .5 & .3 & .2 \\
.1 & 0 & 0 & .9
\end{array}\right)
$$

Answer: $\boldsymbol{\pi}=(.2788, .3009, .0398, .3805)$ by software. Alternatively, we can solve $\boldsymbol{\pi} \mathbf{P}=\boldsymbol{\pi}$ (along with the requirement $\sum \pi_{i}=1$ ) directly by hand:

$$
\left\{\begin{array} { l } 
{ \pi _ { 1 } = 0 . 8 \pi _ { 2 } + 0 . 1 \pi _ { 4 } } \\
{ \pi _ { 2 } = 0 . 9 \pi _ { 1 } + 0 . 1 \pi _ { 2 } + 0 . 5 \pi _ { 3 } } \\
{ \pi _ { 3 } = 0 . 1 \pi _ { 1 } + 0 . 3 \pi _ { 3 } } \\
{ \pi _ { 4 } = 0 . 1 \pi _ { 2 } + 0 . 2 \pi _ { 3 } + 0 . 9 \pi _ { 4 } }
\end{array} \quad \longrightarrow \left\{\begin{array}{l}
\pi_{1}=63 / 226 \\
\pi_{2}=68 / 226 \\
\pi_{3}=9 / 226 \\
\pi_{4}=86 / 226
\end{array}\right.\right.
$$

## Math 263, Stationary distributions and limiting probabilities

## Existence (and uniqueness) of stationary distributions

Theorem 0.2. For any irreducible Markov chain with state space $S$ and transition matrix $\mathbf{P}$, it has a stationary distribution $\boldsymbol{\pi}=\left(\pi_{j}\right)$ :

$$
\forall j \in S: \pi_{j} \geq 0, \quad \sum_{i \in S} \pi_{i}=1, \quad \boldsymbol{\pi}=\boldsymbol{\pi} \mathbf{P} .
$$

if and only if the chain is positive recurrent.
Furthermore, if a solution exists, then it will be unique and for state $j$,

$$
\pi_{j}= \begin{cases}\lim _{n \rightarrow \infty} p_{i j}^{(n)}, & \text { if the chain is aperiodic } \\ \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)}, & \text { if the chain is periodic }\end{cases}
$$

## Math 263, Stationary distributions and limiting probabilities

Remark. In the aperiodic case, $\pi_{j}$ is also the limiting probability that the chain is in state $j$, i.e.,

$$
\pi_{j}=\lim _{n \rightarrow \infty} P\left(X_{n}=j\right)
$$

To prove this, let $\boldsymbol{\alpha}=\left(\alpha_{i}\right)_{i \in S}$ be the initial distribution of the chain.
Then

$$
\begin{aligned}
P\left(X_{n}=j\right) & =\sum_{i \in S} P\left(X_{n}=j \mid X_{0}=i\right) P\left(X_{0}=i\right) \\
& =\sum_{i \in S} p_{i j}^{(n)} \alpha_{i} \xrightarrow{n \rightarrow \infty} \pi_{j} \sum_{i \in S} \alpha_{i}=\pi_{j} .
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

Example 0.2 (Social mobility). Let $X_{n}$ be a family's social class: 1 (lower), 2 (middle), 3 (upper) in the $n$th generation. This was modeled as a Markov chain with transition matrix

$$
\mathbf{P}=\left(\begin{array}{lll}
.8 & .1 & .1 \\
.2 & .6 & .2 \\
.3 & .3 & .4
\end{array}\right)
$$

It is irreducible, positive recurrent and aperiodic (i.e., ergodic). Thus, there is a unique stationary distribution:

$$
\pi=\left(\frac{6}{11}, \frac{3}{11}, \frac{2}{11}\right)=(0.5454,0.2727,0.1818),
$$

and the chain will converge to the stationary distribution.

## Math 263, Stationary distributions and limiting probabilities

$$
\begin{aligned}
\mathbf{P}=\left(\begin{array}{ccc}
.8 & .1 & .1 \\
.2 & .6 & .2 \\
.3 & .3 & .4
\end{array}\right) & \longrightarrow \mathbf{P}^{10}=\left(\begin{array}{lll}
0.5471 & 0.2715 & 0.1814 \\
0.5430 & 0.2745 & 0.1825 \\
0.5441 & 0.2737 & 0.1822
\end{array}\right) \\
& \longrightarrow \mathbf{P}^{20}=\left(\begin{array}{lll}
0.5455 & 0.2727 & 0.1818 \\
0.5454 & 0.2727 & 0.1818 \\
0.5454 & 0.2727 & 0.1818
\end{array}\right)
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

Example 0.3. Consider the following Markov chain:

$$
\mathbf{P}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

It is irreducible and positive recurrent, and thus has a unique stationary distribution:

$$
\pi=\left(\frac{1}{2}, \frac{1}{2}\right) .
$$

The chain does not converge to the stationary distribution because it is periodic with period 2: For any integer $\ell \geq 0$,

$$
\mathbf{P}^{2 \ell}=\mathbf{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{P}^{2 \ell+1}=\mathbf{P}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

## Math 263, Stationary distributions and limiting probabilities

However, the following identity is still true:

$$
\pi_{j}=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} p_{i j}^{(k)}
$$

## Math 263, Stationary distributions and limiting probabilities

Example 0.4 (Gambler's Ruin). The underlying Markov chain has three communicating classes $\{0\},\{1, \ldots, N-1\},\{N\}$, and thus it is not irreducible.


However, the chain has two stationary distributions (corresponding to the two recurrent classes):

$$
\boldsymbol{\pi}_{1}=(1,0, \ldots, 0,0), \quad \boldsymbol{\pi}_{2}=(0,0, \ldots, 0,1)
$$

## Math 263, Stationary distributions and limiting probabilities

When $N=4$ and $=\frac{1}{2}$ (symmetric random walk),

$$
\mathbf{P}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad \mathbf{P}^{30}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
\frac{3}{4} & 0 & 0 & 0 & \frac{1}{4} \\
\frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\
\frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

What does this imply?

## Math 263, Stationary distributions and limiting probabilities

Example 0.5. The 1 -dimensional symmetric random walk over $\mathbb{Z}$ must be null recurrent.

(This is a homework question, \#39. Use proof by contradiction)

## Math 263, Stationary distributions and limiting probabilities

Consider the Markov chain defined on a finite, undirected, weighted graph $\mathscr{G}=\{V, E, \mathbf{W}\}$, with state space $S=V$ and transition matrix

$$
\mathbf{P}=\mathbf{D}^{-1} \mathbf{W}, \quad \mathbf{D}=\operatorname{diag}(\mathbf{d}), \quad \mathbf{d}=\mathbf{W} \cdot \mathbf{1}
$$

The chain is finite, and if the graph is connected, then the Markov chain must be irreducible and also positive recurrent. Accordingly, it possesses a unique stationary distribution.


## Math 263, Stationary distributions and limiting probabilities

Proposition 0.3. For any finite, connected graph, the induced Markov chain possesses the following unique stationary distribution

$$
\boldsymbol{\pi}=\frac{1}{\operatorname{Vol}(V)} \cdot \mathbf{d}, \quad \text { where } \quad \operatorname{Vol}(V)=\sum_{i \in V} d_{i} .
$$

If the graph is also non-bipartite, then the chain always converges to the above stationary distribution.

Proof. First, we show that

$$
\mathbf{d P}=\mathbf{d D}^{-1} \mathbf{W}=\mathbf{1}^{T} \mathbf{W}=\mathbf{d} \quad \longrightarrow \quad \boldsymbol{\pi} \mathbf{P}=\boldsymbol{\pi} .
$$

Thus, $\boldsymbol{\pi}$ is a stationary distribution of the chain and it is also unique.

## Math 263, Stationary distributions and limiting probabilities

For the convergence part, we consider the following two cases:
(1) Bipartite graphs (no convergence, because $d=2$ )
(2) Non-bipartite graphs (convergence)


## Math 263, Stationary distributions and limiting probabilities

## Long-run proportion of visits to a state

Theorem 0.4. For an irreducible, positive recurrent Markov chain with stationary distribution $\boldsymbol{\pi}=\left(\pi_{j}\right), \pi_{j}$ is also the long-run proportion of time that the chain is in state $j$ (regardless of initial state $i$ ).

$$
\left.\overline{X_{1}} \frac{j}{X_{2}}--\frac{j}{-}-\frac{j}{-}-j\right)
$$

## Math 263, Stationary distributions and limiting probabilities

Proof. To see this, let

$$
I_{n}=1_{X_{n}=j}, \quad \text { for all } n \geq 1
$$

and define

$$
T=\sum_{n=1}^{\ell} I_{n}
$$

which represents the total number of visits to state $j$ in $\ell$ steps.
The proportion of visits to state $j$ in $\ell$ steps is

$$
\frac{T}{\ell}=\frac{1}{\ell} \sum_{n=1}^{\ell} I_{n}
$$

## Math 263, Stationary distributions and limiting probabilities

and we would like to show that it converges to $\pi_{j}$ on average:

$$
\begin{aligned}
\mathrm{E}\left[\left.\frac{T}{\ell} \right\rvert\, X_{0}=i\right] & =\frac{1}{\ell} \sum_{n=1}^{\ell} \mathrm{E}\left[I_{n} \mid X_{0}=i\right] \\
& =\frac{1}{\ell} \sum_{n=1}^{\ell} 1 \cdot P\left(I_{n}=1 \mid X_{0}=j\right)+0 \cdot P\left(I_{n}=0 \mid X_{0}=j\right) \\
& =\frac{1}{\ell} \sum_{n=1}^{\ell} P\left(X_{n}=j \mid X_{0}=j\right) \\
& =\frac{1}{\ell} \sum_{n=1}^{\ell} p_{i j}^{(n)} \xrightarrow{\ell \rightarrow \infty} \pi_{j} .
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

Example 0.6. Three out of every four trucks on the road are followed by a car, while only one out of every five cars is followed by a truck. What fraction of vehicles on the road are trucks?

$$
\begin{array}{cccccccccccccccc}
C & C & T & C & C & C & T & T & C & C & C & C & T & C & C & C
\end{array}
$$

## Math 263, Stationary distributions and limiting probabilities

Solution. Let $X_{n}$ be the type of the $n$th vehicle, T (for truck) or C (for car), when counting from one end of the road to the other end. Then $\left\{X_{n}, n \geq 1\right\}$ is a Markov chain with state space $S=\{T, C\}$ and corresponding transition matrix

$$
\mathbf{P}=\left[\begin{array}{ll}
\frac{1}{4} & \frac{3}{4} \\
\frac{1}{5} & \frac{4}{5}
\end{array}\right]
$$

Since the chain is irreducible and positive recurrent, it has a unique stationary distribution $\pi=\left(\pi_{T}, \pi_{C}\right)$ given by

$$
\pi_{T}=\pi_{T} \cdot \frac{1}{4}+\pi_{C} \cdot \frac{1}{5}, \quad \pi_{T}+\pi_{C}=1 \quad \longrightarrow \quad \pi_{T}=\frac{4}{19}, \pi_{C}=\frac{15}{19}
$$

The fraction of trucks on the road is the long-run proportion $\pi_{T}=\frac{4}{19}$.

## Math 263, Stationary distributions and limiting probabilities

Theorem 0.5. For any irreducible, positive recurrent Markov chain, with stationary distribution $\boldsymbol{\pi}=\left(\pi_{j}\right)$, we must have

$$
\pi_{j}=\frac{1}{m_{j j}} \quad \text { for all } j \in S
$$

where $m_{j j}$ represents the mean recurrence time of state $j$ :

$$
m_{j j}=\mathrm{E}\left(N_{j} \mid X_{0}=j\right)
$$

Remark. This theorem implies that $\pi_{j}>0$ for all positive recurrent states $j$ in an irreducible chain (as $m_{j j}<\infty$ for all $j$ ). Note that $\pi_{j}$ can also be interpreted as the long-run proportion of the chain being in state $j$ here.

## Math 263, Stationary distributions and limiting probabilities

Proof. To see this, consider

$$
T=\sum_{n=1}^{\ell} I_{n}, \quad I_{n}=1_{X_{n}=j}
$$

which represents the total number of visits to state $j$ in $\ell$ time steps.
Denote by $N_{j}^{1}, \ldots, N_{j}^{T}$ the individual recurrence times in the $\ell$ time steps:

## Math 263, Stationary distributions and limiting probabilities

Then

$$
N_{j}^{1}+\cdots+N_{j}^{T} \leq \ell<N_{j}^{1}+\cdots+N_{j}^{T}+N_{j}^{T+1}
$$

where $N_{j}^{T+1}$ represents the additional number of time steps that will be needed by the chain to enter state $j$ again (after the first $T$ visits).

Taking conditional expectation $\mathrm{E}\left[\cdot \mid X_{0}=j\right]$ of left-hand side gives that

$$
\begin{aligned}
\mathrm{E}\left(N_{j}^{1}+\cdots+N_{j}^{T} \mid X_{0}=j\right) & =\mathrm{E}\left[\mathrm{E}\left(N_{j}^{1}+\cdots+N_{j}^{T} \mid X_{0}=j, T\right) \mid X_{0}=j\right] \\
& =\mathrm{E}\left[T \cdot \mathrm{E}\left(N_{j}^{1} \mid X_{0}=j\right) \mid X_{0}=j\right] \\
& =\mathrm{E}\left[T \cdot m_{j j} \mid X_{0}=j\right] \\
& =m_{j j} \cdot \mathrm{E}\left[T \mid X_{0}=j\right]
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

Similarly,

$$
\begin{aligned}
\mathrm{E}\left(N_{j}^{1}+\cdots+N_{j}^{T}+N_{j}^{T+1} \mid X_{0}=j\right) & =m_{j j} \cdot \mathrm{E}\left[T+1 \mid X_{0}=j\right] \\
& =m_{j j}+m_{j j} \cdot \mathrm{E}\left[T \mid X_{0}=j\right]
\end{aligned}
$$

Combining them together, we have

$$
m_{j j} \cdot \mathrm{E}\left[T \mid X_{0}=j\right] \leq \ell<m_{j j}+m_{j j} \cdot \mathrm{E}\left[T \mid X_{0}=j\right]
$$

or

$$
m_{j j} \cdot \frac{1}{\ell} \mathrm{E}\left[T \mid X_{0}=j\right] \leq 1<m_{j j}\left(\frac{1}{\ell}+\frac{1}{\ell} \mathrm{E}\left[T \mid X_{0}=j\right]\right)
$$

## Math 263, Stationary distributions and limiting probabilities

We next derive an expression for $\mathrm{E}\left[T \mid X_{0}=j\right]$ :

$$
\begin{aligned}
\mathrm{E}\left[T \mid X_{0}=j\right] & =\sum_{n=1}^{\ell} \mathrm{E}\left(I_{n} \mid X_{0}=j\right) \\
& =\sum_{n=1}^{\ell} 1 \cdot P\left(I_{n}=1 \mid X_{0}=j\right)+0 \cdot P\left(I_{n}=0 \mid X_{0}=j\right) \\
& =\sum_{n=1}^{\ell} P\left(X_{n}=j \mid X_{0}=j\right) \\
& =\sum_{n=1}^{\ell} p_{j j}^{(n)}
\end{aligned}
$$

## Math 263, Stationary distributions and limiting probabilities

It follows that

$$
m_{j j} \cdot \frac{1}{\ell} \sum_{n=1}^{\ell} p_{j j}^{(n)} \leq 1<m_{j j} \cdot\left(\frac{1}{\ell}+\frac{1}{\ell} \sum_{n=1}^{\ell} p_{j j}^{(n)}\right)
$$

Letting $\ell \rightarrow \infty$ yields that

$$
m_{j j} \cdot \pi_{j} \leq 1 \leq m_{j j} \cdot\left(0+\pi_{j}\right)
$$

So we must have

$$
m_{j j} \cdot \pi_{j}=1, \quad \text { and thus } \quad \pi_{j}=\frac{1}{m_{j j}}
$$

## Math 263, Stationary distributions and limiting probabilities

Remark. If the chain is irreducible but null recurrent, then $m_{j j}=\infty$ for all states $j$. Such a Markov chain may have no stationary distribution $\boldsymbol{\pi}$ (e.g., the 1 D symmetric random walk over $\mathbb{Z}$ ).

However, we can still talk about the long-run proportion of the chain being in state $j$ :

$$
\frac{T}{\ell}=\frac{1}{\ell} \sum_{n=1}^{\ell} I_{n}, \quad \text { as } \ell \rightarrow \infty
$$

Starting with the inequality

$$
N_{j}^{1}+\cdots+N_{j}^{T} \leq \ell \quad \text { for all } \ell
$$

## Math 263, Stationary distributions and limiting probabilities

we take conditional expectation $\mathrm{E}\left[\cdot \mid X_{0}=j\right]$ and repeat the same steps to obtain that

$$
m_{j j} \cdot \mathrm{E}\left[T \mid X_{0}=j\right] \leq \ell \quad \text { for all } \ell
$$

or equivalently,

$$
m_{j j} \cdot \mathrm{E}\left[T / \ell \mid X_{0}=j\right] \leq 1 \quad \text { for all } \ell
$$

Because state $j$ is null recurrent ( $m_{j j}=\infty$ ), we must have

$$
\mathrm{E}\left[T / \ell \mid X_{0}=j\right]=0 \quad \text { for all } \ell
$$

This shows that the long run proportion of visits to state $j$ is zero. Thus, if $\pi_{j}$ represents the long-run proportion of state $j$ (instead of a stationary probability), then the formula $\pi_{j}=\frac{1}{m_{i j}}$ is still valid.

## Math 263, Stationary distributions and limiting probabilities

Theorem 0.6. Positive recurrence is a class property. That is, if state $j$ is positive recurrent, and state $j$ communicates with state $k$, then state $k$ is also positive recurrent.

Proof. (We cannot use the stationary distribution as we do not know whether it exists; we'll consider long-run proportions instead)

First, there exists a positive integer $n$ such that

$$
p_{j k}^{(n)}>0
$$

Since state $j$ is positive recurrent, the long-run proportion is

$$
\pi_{j}=1 / m_{j j}>0
$$

## Math 263, Stationary distributions and limiting probabilities

For any positive integer $t$ and state $i$, we have

$$
p_{i k}^{(t+n)} \geq p_{i j}^{(t)} \cdot p_{j k}^{(n)}
$$

and also

$$
\frac{1}{\ell} \sum_{t=1}^{\ell} p_{i k}^{(t+n)} \geq\left(\frac{1}{\ell} \sum_{t=1}^{\ell} p_{i j}^{(t)}\right) \cdot p_{j k}^{(n)}
$$

Letting $\ell \rightarrow \infty$, we obtain that

$$
\pi_{k} \geq \pi_{j} \cdot p_{j k}^{(n)}>0
$$

where $\pi_{k}$ represents the long-run proportion of visits to state $k$. It follows that

$$
m_{k k}=\frac{1}{\pi_{k}}<\infty
$$

and thus state $k$ is also positive recurrent.

