San José State University
Math 263: Stochastic Processes

Mean time spent in transient states

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Section 4.6
- Section 4.5.1

Outline of the presentation

- Mean time spend in transient states
- Transition probability between transient states
- The Gambler's Ruin problem

Math 263, Mean time spent in transient states

Mean time spent in transient states

Consider a finite-state Markov chain with transient states numbered as $\mathscr{T}=\{1, \ldots, t\}$ (and recurrent states numbered above t or under 1).

For example, in the Gambler's Ruin problem, let X_{n} denote the gambler's fortune after the nth bet. Then $\left\{X_{n}, n=0,1,2, \ldots\right\}$ is a Markov chain:

The transient states are $1, \ldots, t=N-1$ (and the recurrent states are $0, N$).

Math 263, Mean time spent in transient states

For any two transient states $i, j \in \mathscr{T}$, let $s_{i j}$ denote the expected number of time periods that the Markov chain is in state j, given that it starts in state i :

$$
s_{i j}=\mathrm{E}\left(T_{0} \mid X_{0}=i\right)
$$

where

$$
T_{0}=\sum_{n=0}^{\infty} I_{n}, \quad I_{n}=1_{X_{n}=j}
$$

Math 263, Mean time spent in transient states

The following theorem shows how to compute all the $s_{i j}$ collectively.
Theorem 0.1. Let $\mathbf{P}_{\mathscr{T}}=\left(p_{i j}\right)_{1 \leq i, j \leq t} \in \mathbb{R}^{t \times t}$, the transition matrix restricted to the transient states, and $\mathbf{S}=\left(s_{i j}\right) \in \mathbb{R}^{t \times t}$, the matrix of mean times in transient states (when starting in transient states). Then

$$
\mathbf{S}=\left(\mathbf{I}-\mathbf{P}_{\mathscr{T}}\right)^{-1} .
$$

Math 263, Mean time spent in transient states

Proof. We condition on the initial transition:

$$
\begin{aligned}
s_{i j} & =\mathrm{E}\left(T_{0} \mid X_{0}=i\right) \\
& =\sum_{k} \mathrm{E}\left(T_{0} \mid X_{0}=i, X_{1}=k\right) P\left(X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k}\left(\delta_{i j}+s_{k j}\right) p_{i k}=\delta_{i j}+\sum_{k} p_{i k} s_{k j} \\
& =\delta_{i j}+\sum_{k=1}^{t} p_{i k} s_{k j} \quad\left(s_{k j}=0 \text { for recurrent states } k\right)
\end{aligned}
$$

In matrix notation, this equation is

$$
\mathbf{S}=\mathbf{I}+\mathbf{P}_{\mathscr{T}} \mathbf{S} \quad \longrightarrow \quad\left(\mathbf{I}-\mathbf{P}_{T}\right) \mathbf{S}=\mathbf{I}
$$

From this we obtain that $\mathbf{S}=\left(\mathbf{I}-\mathbf{P}_{T}\right)^{-1}$.

Math 263, Mean time spent in transient states

Example 0.1 (Gamber's Ruin). Suppose $p=\frac{1}{2}, N=5$. Then the transient states are $\mathscr{T}=\{1,2,3,4\}$, and

$$
\mathbf{P}_{\mathscr{T}}=\left(\begin{array}{cccc}
& 0.5 & & \\
0.5 & & 0.5 & \\
& 0.5 & & 0.5 \\
& & 0.5 &
\end{array}\right) \quad \longrightarrow \quad \mathbf{S}=\left(\begin{array}{cccc}
1.6 & 1.2 & 0.8 & 0.4 \\
1.2 & 2.4 & 1.6 & 0.8 \\
0.8 & 1.6 & 2.4 & 1.2 \\
0.4 & 0.8 & 1.2 & 1.6
\end{array}\right)
$$

Transition probability between two states

Def 0.1. For any two states i, j, define by $f_{i j}$ the probability that starting in state i, the process will ever make a transition into state j :

$$
f_{i j}=P\left(\cup_{n=1}^{\infty}\left\{X_{n}=j\right\} \mid X_{0}=i\right)
$$

Remark. Compare with $f_{i i}$ and $f_{i i}^{(n)}$.

Math 263, Mean time spent in transient states

Theorem 0.2. For any two transient states i, j,

$$
f_{i j}=\frac{s_{i j}-\delta_{i j}}{s_{j j}}
$$

Proof. It follows from the following equation:

$$
s_{i j}=\delta_{i j}+f_{i j} \cdot s_{j j}+\left(1-f_{i j}\right) \cdot 0
$$

Math 263, Mean time spent in transient states

Example 0.2 (Cont'd). Starting the dollar amounts 1,2,3,4, the probabilities of the gambler ever reaching each of those amounts (again) are given by
$\mathbf{S}=\left(\begin{array}{cccc}1.6 & 1.2 & 0.8 & 0.4 \\ 1.2 & 2.4 & 1.6 & 0.8 \\ 0.8 & 1.6 & 2.4 & 1.2 \\ 0.4 & 0.8 & 1.2 & 1.6\end{array}\right) \quad \longrightarrow \mathbf{F}_{\mathscr{T}}=\left(\begin{array}{cccc}0.3750 & 0.5000 & 0.3333 & 0.2500 \\ 0.7500 & 0.5833 & 0.6667 & 0.5000 \\ 0.5000 & 0.6667 & 0.5833 & 0.7500 \\ 0.2500 & 0.3333 & 0.5000 & 0.3750\end{array}\right)$

From transient to recurrent

Example 0.3. Consider a gambler who at each play of the game has probability p of winning one unit and probability $q=1-p$ of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the gambler's fortune will reach N before reaching 0 ?

Math 263, Mean time spent in transient states

Solution. Let $p_{i}=f_{i N}$ for $i=1, \ldots, N-1$ and $q=1-p$ for convenience.
By conditioning on X_{1} we get that

$$
p_{i}=p \cdot p_{i+1}+q \cdot p_{i-1}, \quad i=1, \ldots, N-1
$$

where we have defined $p_{0}=0, p_{N}=1$.
Write $p_{i}=(p+q) \cdot p_{i}$ and substitute it into the above recursive relation to get that

$$
q\left(p_{i}-p_{i-1}\right)=p\left(p_{i+1}-p_{i}\right) \quad \longrightarrow \frac{p_{i+1}-p_{i}}{p_{i}-p_{i-1}}=\frac{q}{p}
$$

Math 263, Mean time spent in transient states

It follows that

$$
p_{i}-p_{i-1}=\left(p_{1}-\not p \nmid\right)\left(\frac{q}{p}\right)^{i-1}, \quad i=1, \ldots, N
$$

and by telescoping,

$$
\begin{aligned}
p_{i} & =\left(p_{i}-p_{i-1}\right)+\left(p_{i-1}-p_{i-2}\right)+\cdots+\left(p_{2}-p_{1}\right)+\left(p_{1}-p_{0}\right) \\
& =p_{1}\left(\frac{q}{p}\right)^{i-1}+p_{1}\left(\frac{q}{p}\right)^{i-2}+\cdots+p_{1}\left(\frac{q}{p}\right)+p_{1} \\
& = \begin{cases}p_{1} \cdot \frac{1-(q / p)^{i}}{1-(q / p)}, & p \neq q \\
p_{1} \cdot i, & p=q\end{cases}
\end{aligned}
$$

Math 263, Mean time spent in transient states

To determine p_{1}, use $p_{N}=1$:

$$
p_{1}= \begin{cases}\frac{1-(q / p)}{1-(q / p)^{N}}, & p \neq q \\ \frac{1}{N}, & p=q\end{cases}
$$

Consequently,

$$
p_{i}= \begin{cases}\frac{1-(q / p)^{i}}{1-(q / p)^{N}}, & p \neq q \\ \frac{i}{N}, & p=q\end{cases}
$$

Math 263, Mean time spent in transient states

Example 0.4 (Gambler's Ruin, cont'd). , Assume the same setting as before. If the player quits gambling once he either reaches a fortune of N or goes broke (whatever comes first), how long on average will that take?

Solution. Let

$$
T_{i}=\min \left\{n \geq 0: X_{n}=0 \text { or } X_{n}=N \mid X_{0}=i\right\}, \quad i=1, \ldots, N-1
$$

We would like to find $m_{i}=\mathrm{E}\left(T_{i}\right)$.

Math 263, Mean time spent in transient states

By conditioning on X_{1} we get that

$$
\begin{aligned}
m_{i}= & \mathrm{E}\left(T_{i} \mid X_{1}=i+1\right) P\left(X_{1}=i+1 \mid X_{0}=i\right) \\
& +\mathrm{E}\left(T_{i} \mid X_{1}=i-1\right) P\left(X_{1}=i-1 \mid X_{0}=i\right) \\
= & \left(1+\mathrm{E}\left(T_{i+1}\right)\right) \cdot p+\left(1+\mathrm{E}\left(T_{i-1}\right)\right) \cdot q \\
= & 1+p \cdot m_{i+1}+q \cdot m_{i-1}, \quad i=1, \ldots, N-1
\end{aligned}
$$

We solve the above recursive relations, along with boundary conditions $T_{0}=T_{N}=0$, only for the case of $p=q=1 / 2$:

$$
m_{i}=i \cdot(N-i), \quad i=0,1, \ldots, N
$$

Math 263, Mean time spent in transient states

Remark. When $p \neq q$, it can be shown that

$$
m_{i}=\frac{N}{p-q} \cdot\left[\frac{1-(q / p)^{i}}{1-(q / p)^{N}}-\frac{i}{N}\right], \quad i=0,1, \ldots, N
$$

