San José State University
 Math 263: Stochastic Processes

Branching processes

Dr. Guangliang Chen

This lecture is based on the following textbook sections:

- Section 4.7

Outline of the presentation

- What is a branching process?
- Expectation and variance of X_{n}
- Probability of the population dying out

Math 263, Branching processes

Consider a population consisting of individuals able to produce offspring of the same kind.

Suppose that each individual will, by the end of its lifetime, have produced j new offspring with probability p_{j} independently of the numbers produced by other individuals:

0	1	2	\ldots	j	\ldots
p_{0}	p_{1}	p_{2}	\ldots	p_{j}	\ldots

In the above, $0 \leq p_{j}<1$ for all j and $\sum_{j \geq 0} p_{j}=1$

Math 263, Branching processes

The number of individuals initially present, denoted by X_{0}, is called the size of the zeroth generation.

All offspring of the zeroth generation constitute the first generation and their number is denoted by X_{1}.

In general, let X_{n} denote the size of the nth generation.
It follows that $\left\{X_{n}, n=0,1, \ldots\right\}$ is a Markov chain with state space $S=Z_{0}^{+}$, the set of nonnegative integers.

Math 263, Branching processes

Let's sketch the chain below:

Math 263, Branching processes

This Markov chain is not irreducible:

- State 0 is recurrent, since it is absorbing.
- If $p_{0}>0$, then $p_{i 0}=p_{0}^{i}>0$ for all $i>0$, implying that all other states are transient.

Since any finite set of transient states $\{1,2, \ldots, n\}$ will be visited only finitely often, this leads to the important conclusion that, if $p_{0}>0$, then the population will either die out or its size will converge to infinity.

Math 263, Branching processes

Let $Y_{n, i}$ be the number of offspring of a single individual i in the nth generation: $P\left(Y_{n, i}=j\right)=p_{j}$ for all $j \geq 0$.

Then for any fixed $n \geq 1$,

$$
X_{n+1}=\sum_{i=1}^{X_{n}} Y_{n, i}
$$

and $\left\{Y_{n, i}\right\}_{i}$ are iid with the same expected value and variance

$$
\mu=\sum_{j=0}^{\infty} j p_{j}, \quad \sigma^{2}=\sum_{j=0}^{\infty}(j-\mu)^{2} p_{j}
$$

Math 263, Branching processes

Theorem 0.1. Suppose that $X_{0}=1$. Then, for any $n \geq 1$,

$$
\mathrm{E}\left(X_{n}\right)=\mu^{n}, \quad \operatorname{Var}\left(X_{n}\right)= \begin{cases}n \sigma^{2}, & \mu=1 \\ \frac{\mu^{n-1}\left(1-\mu^{n}\right)}{1-\mu} \sigma^{2}, & \mu \geq 1\end{cases}
$$

Proof. We condition on X_{n-1} to obtain

$$
\mathrm{E}\left(X_{n}\right)=\mathrm{E}\left(\mathrm{E}\left(X_{n} \mid X_{n-1}\right)\right)=\mathrm{E}\left(\mu X_{n-1}\right)=\mu \mathrm{E}\left(X_{n-1}\right), \quad n \geq 1 .
$$

Combining with $\mathrm{E}\left(X_{0}\right)=1$ we obtain that $\mathrm{E}\left(X_{n}\right)=\mu^{n}$ for all $n \geq 1$.

Math 263, Branching processes

Similarly, we condition on X_{n-1} to calculate the variance of X_{n} :

$$
\begin{aligned}
\operatorname{Var}\left(X_{n}\right) & =\mathrm{E}\left(\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)\right)+\operatorname{Var}\left(\mathrm{E}\left(X_{n} \mid X_{n-1}\right)\right) \\
& =\mathrm{E}\left(\sigma^{2} X_{n-1}\right)+\operatorname{Var}\left(\mu X_{n-1}\right) \\
& =\sigma^{2} \mu^{n-1}+\mu^{2} \operatorname{Var}\left(X_{n-1}\right)
\end{aligned}
$$

By applying the formula recursively with $n=1,2, \ldots$, we obtain that

$$
\operatorname{Var}\left(X_{n}\right)=\sigma^{2}\left(\mu^{n-1}+\mu^{n}+\cdots+\mu^{2 n-2}\right)= \begin{cases}n \sigma^{2}, & \mu=1 \\ \frac{\mu^{n-1}\left(1-\mu^{n}\right)}{1-\mu} \sigma^{2}, & \mu \geq 1\end{cases}
$$

Math 263, Branching processes

Lastly, we study the probability that the population will eventually die out (under the assumption that $X_{0}=1$):

$$
\pi_{0}=\lim _{n \rightarrow \infty} P\left(X_{n}=0 \mid X_{0}=1\right)=\lim _{n \rightarrow \infty} p_{10}^{(n)}
$$

Theorem 0.2. If $\mu \leq 1$, then $\pi_{0}=1$; otherwise (i.e., $\mu>1$), $\pi_{0}<1$ is the smallest positive root of

$$
x=\sum_{j=0}^{\infty} p_{j} x^{j}
$$

Math 263, Branching processes

Proof We condition on the number of offspring of the initial individual:

$$
\begin{aligned}
\pi_{0} & =P\left(\text { population dies out } \mid X_{0}=1\right) \\
& =\sum_{j \geq 0} P\left(\text { population dies out }\left|X_{1}=j, \not \nmid \phi\right| \nmid / \nmid\right) P\left(X_{1}=j \mid X_{0}=1\right) \\
& =\sum_{j \geq 0} \pi_{0}^{j} \cdot p_{j}
\end{aligned}
$$

This shows that π_{0} is a root of the following equation:

$$
x=\sum_{j=0}^{\infty} p_{j} x^{j}
$$

Math 263, Branching processes

Let

$$
g(x)=x-\sum_{j=0}^{\infty} p_{j} x^{j}, \quad 0 \leq x \leq 1
$$

Then

$$
g(0)=-p_{0}<0, \quad g(1)=0
$$

Additionally,

$$
g^{\prime}(x)=1-\sum_{j=1}^{\infty} j p_{j} x^{j-1}, \quad g^{\prime \prime}(x)=-\sum_{j=2}^{\infty} j(j-1) p_{j} x^{j-2}<0
$$

and in particular,

$$
g^{\prime}(0)=1-p_{1}>0, \quad g^{\prime}(1)=1-\mu .
$$

Math 263, Branching processes

If $\mu \leq 1$, then

$$
g^{\prime}(1) \geq 0, \quad g^{\prime}(x)>g^{\prime}(1) \geq 0 \quad \text { for all } 0<x<1
$$

Thus, $x=1$ must be the only zero of $g(x)$ on $[0,1]$, implying that $\pi_{0}=1$.

Math 263, Branching processes

On the other hand, if $\mu>1$, then $g^{\prime}(1)=1-\mu<0$.
It follows that there exists some $0<c<1$ such that $g^{\prime}(c)=0$ and thus $g(c)$ is the absolute maximum of $g(x)$ on $[0,1]$. In particular, $g(c)>g(1)=0$.

Since $g(0)<0$, by continuity, there exist a number $0<r<c<1$ such that $g(r)=0$. This indicates that $g(x)=0$ has a root $r \in(0,1)$

We conclude that $\pi_{0}=r<1$ because $\mathrm{E}\left(X_{n}\right)=\mu^{n} \rightarrow \infty$ (which requires that $\pi_{0}<1$).

Math 263, Branching processes

Remark. It can also be shown that π_{0} must be the smallest positive number satisfying

$$
x=\sum_{j=0}^{\infty} p_{j} x^{j}
$$

See Chapter 4 Problem 65 (page 287).

Math 263, Branching processes

Example 0.1. Determine π_{0} in each case below:

- $p_{0}=\frac{1}{3}, p_{1}=\frac{1}{2}, p_{2}=0, p_{3}=\frac{1}{6}$ (answer: $\left.\pi_{0}=1\right)$
- $p_{0}=\frac{1}{4}, p_{1}=\frac{1}{4}, p_{2}=\frac{1}{2}$ (answer: $\pi_{0}=\frac{1}{2}$)

Math 263, Branching processes

Example 0.2. For each branching process in the preceding example, what is the probability that the population will die out if it initially consists of n individuals?

