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This lecture is based on the following textbook sections:

• Chapter 6 (Sections 6.1 - 6.5)

Outline of the presentation

• Definition of continuous-time Markov chains

• Birth and death processes

• Transition probabilities

• Limiting probabilities
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Math 263, Continuous-time Markov chains

Recall that discrete-time Markov chains {Xn ,n = 0,1,2, . . .} make transitions
only at integer times:

P (Xn+1 = j | Xn = i )

In other words, the chain can only stay in each state for an integer amount
of time before making the next transition.

If we change the integer duration to continuous transition times according
to an exponential distribution, then we can obtain a continuous-time
Markov chain.
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Math 263, Continuous-time Markov chains

Def 0.1. Let {X (t ), t ≥ 0} be a continuous-time stochastic process taking
on values in the set of nonnegative integers. It is called a continuous-time
Markov chain if each time it enters state i ,

• the amount of time it spends in that state before making a transition
into a different state is exponentially distributed with mean, say,
1/vi , i.e., Ti ∼ Exp(vi )

• when the process leaves state i , it next enters state j with some
probability pi j , which collectively satisfies

pi j ≥ 0,
∑

j
pi j = 1
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Example 0.1. Poisson processes are continuous time Markov chains having
states 0,1,2, . . . that always proceed from state i to state i+1, i.e., pi ,i+1 = 1,
where i ≥ 0. The transition rate vector is v = (vi ) with vi =λ.

Such a process is known as a pure birth process since whenever a
transition occurs, the state of the system is always increased by one.
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Math 263, Continuous-time Markov chains

The following is an alternative definition of continuous-time Markov chains.

Def 0.2. The process {X (t ), t ≥ 0} is called a continuous-time Markov
chain if for all s, t ≥ 0 and for all nonnegative integers i , j , x(u),0 ≤ u < s,

P (X (t + s) = j | X (s) = i , X (u) = x(u),0 ≤ u < s) = P (X (t + s) = j | X (s) = i )

That is, the probability that the chain will be in state j after time t depends
only on the current state i (and is independent of the past regarding which
states the chain has visited and how long the chain has been in state i).
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Remark. If, in addition, P (X (t + s) = j | X (s) = i ) is independent of s,
then the continuous-time Markov chain is said to have stationary (or
homogeneous) transition probabilities. In that case, we denote

pi j (t ) = P (X (t + s) = j | X (s) = i )

and will derive its formula later.
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Birth and death processes

Consider a stochastic process {X (t ), t ≥ 0} whose state at any time t is
represented by the number of people in the system (e.g., shop, or country)
at time t .

Suppose that whenever there are i people in the system, then

(i) new arrivals enter the system at an exponential rate λi , and

(ii) people leave the system at an exponential rate µi .
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Def 0.3. The above continuous-time stochastic process {X (t ), t ≥ 0} having
states 0,1,2, . . . is called a birth and death process, with arrival (or birth)
rate {λi }∞i=0 and departure (or death) rates {µi }∞i=0 (with µ0 = 0).
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Theorem 0.1. For any birth and death process, the transition rates are

v0 =λ0, vi =λi +µi , i > 0

and the transition probabilities are

p0,1 = 1, pi ,i+1 = λi

λi +µi
, pi ,i−1 = µi

λi +µi
, i > 0
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Proof. Suppose the process is in state i at present. Let the waiting time
for the next arrival be T (a)

i ∼ Exp(λi ) and the waiting time for the next
departure T (d)

i ∼ Exp(µi ). Then the waiting time for the next transition is

Ti = min
(
T (a)

i ,T (d)
i

)
∼ Exp(vi ), vi =λi +µi .

The transition probabilities are

pi ,i+1 = P
(
T (a)

i < T (d)
i

)
= λi

λi +µi

pi ,i−1 = 1−pi ,i+1 = µi

λi +µi
, i ≥ 1.

In particular, p01 = λ0
λ0+0 = 1.
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Example 0.2. The Poisson process is a birth and death process with
λi =λ and µi = 0

Example 0.3 (A birth process with linear birth rate, called Yule process).

λi = iλ, µi = 0

Example 0.4 (A linear growth model with immigration).

λi = iλ+θ, µi = iµ
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Theorem 0.2. Let X (t ) represent the size of the population at time t in
the linear growth model with immigration, and M(t ) =E(X (t )). If X (0) = i ,
then

M(t ) =


(
θ

λ−µ + i
)

e(λ−µ)t − θ
λ−µ , λ 6=µ;

θt + i , λ=µ.

Proof. (Not rigorous; see a rigorous proof in the textbook)

M ′(t ) = d

dt
E(X (t )) =E(X ′(t )) =E(λX (t )−µX (t )+θ) = (λ−µ)M(t )+θ.

There is also an initial condition M(0) =E(X (0)) = i .
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The differential equation (plus the initial condition) is of the following
form:

x ′(t ) = a · x(t )+b, x(0) = x0

The solution is

x(t ) =
x0eat + b

a

(
eat −1

)
, a 6= 0

bt +x0, a = 0

Applying the above formula directly would yield the desired result.
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Remark. If θ = 0 (no immigration), then the formula for M(t ) reduces to

M(t ) = i e(λ−µ)t , t ≥ 0.

Therefore, the effect of immigration on the population growth is

• when λ 6=µ:
θ

λ−µ
(
e(λ−µ)t −1

)
.

• when λ=µ:
θt
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Example 0.5 (The Queuing System M/M/1). Suppose that customers
arrive at a single-server service station in accordance with a Poisson process
having rate λ.

Upon arrival, each customer goes directly into service if the server is free;
if not, then the customer joins the queue (that is to wait in line).

When the server finishes serving a customer, the customer leaves the
system and the next customer in line, if any, enters service.

The successive service times are assumed to be independent exponential
random variables having mean 1/µ.
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The preceding example is known as the M/M/1 queuing system:

• The first M refers to the fact that the interarrival process is Markovian
(since it is a Poisson process);

• The second M to the fact that the service distribution is exponential
(and, hence, Markovian);

• The 1 refers to the fact that there is a single server.

If we let X (t ) denote the number in the system (queue + service station)
at time t , then {X (t ), t ≥ 0} is a birth and death process with

λi =λ, i ≥ 0, and µi =µ, i ≥ 1
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Example 0.6 (The Queuing System M/M/s). Consider an exponential
queuing system in which there are s servers available, each serving at rate
µ. An entering customer first waits in line and then goes to the first free
server. Assuming customers arrive according to a Poisson process with
rate λ, this is a birth and death process with parameters:

• arrival rates: λi =λ for each i ≥ 0, and

• departure rates: µi = min(i , s) ·µ for each i ≥ 1
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Consider now a general birth and death process with birth rates {λi } and
death rates {µi }, where µ0 = 0.

Let Ui denote the time, starting from state i , it takes for the process to
enter state i +1, for any i ≥ 0. Then we have the following result.
Theorem 0.3.

E(U0) = 1

λ0
, E(Ui ) = 1

λi
+ µi

λi
·E(Ui−1), i ≥ 1
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Proof. We will recursively compute E(Ui ), i ≥ 0, by starting with i = 0.

Since U0 = T0 is exponential with rate λ0, we have E(U0) = 1/λ0.

For i ≥ 1, we condition on the first transition which takes the process into
state i −1 or i +1:

E(Ui ) = 1

λi +µi
+ λi

λi +µi
·0+ µi

λi +µi
· [E(Ui−1)+E(Ui )]

Thus,
E(Ui ) = 1

λi
+ µi

λi
·E(Ui−1), i ≥ 1.
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Remark. A recursive formula for the variance of Ui is the following:

Var(U0) = 1

λ2
0

Var(Ui ) = 1

λi (λi +µi )
+ µi

λi
Var(Ui−1)+ µi

λi +µi
[E(Ui−1)+E(Ui )]2 , i ≥ 1

See the textbook for its derivation.
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Corollary 0.4. If λi =λ and µi =µ for all i , then

E(Ui ) =


1−(µ/λ)i+1

λ−µ , λ 6=µ
i+1
λ , λ=µ

Proof. This is a direct application of the following formula: If

ai+1 = c +d ·ai , i = 0,1,2, . . .

then

ai =
ci +a0, d = 1

c 1−d i

1−d +d i a0, d 6= 1
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Remark. The expected time for the process to transition from i to j > i is

E(Ui )+·· ·+E(U j−1)

and the variance of the overall transition time from i to j is

Var(Ui )+·· ·+Var(U j−1)
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The transition probability function pi j (t )

Consider a continuous-time, homogeneous Markov chain. Let

pi j (t ) = P (X (t + s) = j | X (s) = i ) = P (X (t ) = j | X (0) = i )

We consider two different scenarios for the Markov chain and find formulas
for pi j (t ) separately:

• Pure birth process with distinct birth rates

• General continuous-time Markov chains
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Pure birth process with distinct birth rates
We have the following explicit formula for the transition probability function
in the case of a pure birth process (µi = 0, vi = λi ) having distinct birth
rates (λi 6=λ j ).
Theorem 0.5. For a pure birth process having distinct rates,

pi i (t ) = P (Ti > t ) = e−λi t

pi j (t ) =
j∑

k=i
Ck,i , j e−λk t −

j−1∑
k=i

Ck,i , j−1e−λk t , i < j

where
Ck,i , j =

∏
i≤`≤ j , 6̀=k

λ`

λ`−λk
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Remark. Two special cases:

• j = i +1:

pi j (t ) = λi+1

λi+1 −λi
e−λi t + λi

λi −λi+1
e−λi+1t −e−λi t

= λi

λi+1 −λi
(e−λi t −e−λi+1t )
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• λk = kλ for all k ≥ 1 (Yule process): λi 6=λ j if i 6= j .

Suppose X0 = 1. Then it can be shown that (textbook Example 6.8)

p1 j (t ) = e−λt (1−e−λt ) j−1

implying that

X (t ) | X (0) = 1 ∼ Geom(p = e−λt ).

That is, starting with a single individual, the population size at
time t has a geometric distribution with mean eλt . If initially there
are i individuals, then the population size at time t has a negative
binomial distribution NB(n = i , p = e−λt ).
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Proof of the theorem. First, we write

pi j (t ) = P (X (t ) < j +1 | X (0) = i )−P (X (t ) < j | X (0) = i ).

Next, letting Tk represent the duration of the chain in state k, we have

P (X (t ) < j | X (0) = i ) = P (Ti +·· ·+T j−1 > t )

and similarly,

P (X (t ) < j +1 | X (0) = i ) = P (Ti +·· ·+T j > t )

It remains to determine the distribution of a sum of independent exponential
random variables with distinct rates, by using the result on next page.
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Proposition 0.6. If Xi ∼ Exp(λi ), i = 1,2 are independent random variables
having distinct rates (λ1 6=λ2), then

fX1+X2 (t ) = λ1

λ1 −λ2
λ2e−λ2t + λ2

λ2 −λ1
λ1e−λ1t , t > 0

More generally, for n such random variables (in that case, the sum is called
a hyperexponential random variable),

fX1+···+Xn (t ) =
n∑

k=1
Ck,1,n λk e−λk t , Ck,1,n = ∏

1≤`≤n, 6̀=k

λ`

λ`−λk
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Proof. We prove only the special case of n = 2 (the proof of the general
case can be found in Section 5.2.4):

fX1+X2 (t ) =
∫ t

0
fX1 (s) fX2 (t − s)ds

=
∫ t

0
λ1e−λ1s ·λ2e−λ2(t−s) ds

=λ1λ2e−λ2t
∫ t

0
e−(λ1−λ2)s ds

=λ1λ2e−λ2t 1

λ1 −λ2
(1−e−(λ1−λ2)t )

= λ1

λ1 −λ2
λ2e−λ2t + λ2

λ2 −λ1
λ1e−λ1t
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Remark. In the case of n = 2 with equal rate λ1 =λ2 =λ,

fX1+X2 (t ) =λ2te−λt , t > 0

This is the Gamma(α= 2,λ) density.

Remark. The survival function of the hyperexponential random variable
S = X1 +·· ·+Xn is

P (S > t ) =
n∑

k=1
Ck,1,n e−λk t
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General continuous-time Markov chains

First, we also have the so-called Chapman–Kolmogorov equations.
Theorem 0.7 (Chapman–Kolmogorov equations). For all s, t ≥ 0,

pi j (t + s) =∑
k

pi k (t )pk j (s)
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Proof.

pi j (t + s) = P (X (t + s) = j | X (0) = i )

=∑
k

P (X (t + s) = j , X (t ) = k | X (0) = i )

=∑
k

P (X (t + s) = j | X (t ) = k, X (0) = i )P (X (t ) = k | X (0) = i )

=∑
k

pk j (s)pi k (t ).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 34/49



Math 263, Continuous-time Markov chains

From the Chapman–Kolmogorov equations we can obtain the following
differential equations for all pi j (t ).
Theorem 0.8 (Kolmogorov’s Backward Equations). In any continuous-time
Markov chain,

p ′
i j (t ) = ∑

k 6=i
qi k pk j (t )− vi pi j (t )

where
qi k = vi pi k

are called the instantaneous transition rates (from state i to state k).
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Remark. We have∑
k

qi k = vi
∑
k

pi k = vi , and pi k = qi k

vi
= qi k∑

k qi k
.

Remark. In a birth and death process, the instantaneous transition rates
are just birth and death rates:

qi ,i+1 = vi pi ,i+1 = (λi +µi ) · λi

λi +µi
=λi

qi ,i−1 = vi pi ,i−1 = (λi +µi ) · µi

λi +µi
=µi
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Proof. For any h > 0,

pi j (t +h)−pi j (t )

h
= 1

h

(∑
k

pi k (h)pk j (t )−pi j (t )

)

= ∑
k 6=i

pi k (h)

h
pk j (t )− 1−pi i (h)

h
pi j (t )

It remains to show that

lim
h→0

pi k (h)

h
= qi k , k 6= i

lim
h→0

1−pi i (h)

h
= vi .
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First, since

pi i (h) = P (X (h) = i | X (0) = i ) = P (Ti > h) = e−hvi ,

we have
lim
h→0

1−pi i (h)

h
= lim

h→0

1−e−hvi

h
= vi .

Next, due to

pi k (h) = P (X (h) = k | X (0) = i ) = P (Ti < h)pi k = (1−e−hvi )pi k ,

we can correspondingly obtain that

lim
h→0

pi k (h)

h
= lim

h→0

(1−e−hvi )pi k

h
= vi pi k .
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Example 0.7 (A continuous-time Markov chain consisting of two states).
Consider a machine that works for an exponential amount of time having
mean 1/λ before breaking down; and suppose that it takes an exponential
amount of time having mean 1/µ to repair the machine. If the machine is
in working condition at time 0, then what is the probability that it will be
working at time t = 10?
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Solution. We note that the process is a birth and death process (with
state 0 meaning that the machine is working and state 1 that it is being
repaired) having parameters

λ0 =λ, λ1 = 0, µ1 =µ, µ0 = 0, and p01 = 1 = p10

We can write down the Chapman–Kolmogorov backward equations:

p ′
00(t ) =λ(p10(t )−p00(t ))

p ′
10(t ) =µ(p00(t )−p10(t ))

or in matrix form (
p00(t )

p10(t )

)′
=

(
−λ λ

µ −µ

)(
p00(t )

p10(t )

)
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along with the intial conditions:

p00(0) = 1, p10(0) = 0

The matrix has the following decomposition(
−λ λ

µ −µ

)
=

(
1 λ

1 −µ

)(
0

−λ−µ

)(
1 λ

1 −µ

)−1

Therefore, the solution is given by(
p00(t )

p10(t )

)
=

(
1 λ

1 −µ

)(
1

e−(λ+µ)t

)(
1 λ

1 −µ

)−1 (
1

0

)
=

( µ
λ+µ + λ

λ+µe−(λ+µ)t

µ
λ+µ −

µ
λ+µe−(λ+µ)t

)
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Similarly, we can obtain the Kolmogorov’s forward equations.
Theorem 0.9 (Kolmogorov’s Forward Equations). Under suitable regularity
conditions,

p ′
i j (t ) = ∑

k 6= j
qk j pi k (t )− v j pi j (t )
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Remark. For a pure birth process, Kolmogorov’s forward equations become

p ′
i j (t ) =λ j−1pi , j−1(t )−λ j pi j (t )

which then yield that

pi j (t ) = 0, j < i

pi i (t ) = e−λi t ,

pi j (t ) =λ j−1e−λ j t
∫ t

0
eλ j s pi , j−1(s)ds, j ≥ i +1
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Limiting probabilities

For each state j of a continuous-time Markov-chain, let

P j = lim
t→∞pi j (t )

The limit exists and is independent of the initial state i if all states
communicate and the chain is positive recurrent.

The P j are called stationary probabilities.

Additionally, P j also have the interpretation of being the long-run propor-
tion of time that the process is in state j .
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We have the following result.
Theorem 0.10.

v j P j =
∑
k 6= j

qk j Pk
(∑

P j = 1
)

Proof. Let t →∞ in the forward equations and use limt→∞ p ′
i j (t ) = 0

Interpretation:

• LHS: rate at which the process leaves state j ;

• RHS: rate at which the process enters state j .
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Example 0.8 (A continuous-time Markov chain consisting of two states,
continued). Find the proportion of time when the machine is in working
condition.
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Example 0.9. For a birth and death process, a sufficient and necessary
condition for the limiting probabilities to exist is

∞∑
i=1

λ0λ1 · · ·λi−1

µ1µ2 . . .µi
<∞

In this case, it can be shown that

P0 = 1

1+∑∞
i=1

λ0λ1···λi−1
µ1µ2...µi

, Pi = λ0λ1 · · ·λi−1

µ1µ2 . . .µi
P0, n ≥ 1

In the M/M/1 queue (λi =λ,µi =µ),

Pi = (λ/µ)i

1+∑∞
i=1(λ/µ)i

= (λ/µ)i (1−λ/µ)

provided that λ/µ< 1.
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Proof. For the given birth and death process,

j = 0 : λ0P0 =µ1P1

j ≥ 1 : (λ j +µ j )P j =λ j−1P j−1 +µ j+1P j+1

and further that (by induction)

λ j P j =µ j+1P j+1, j ≥ 0

or equivalently,
P j+1

P j
= λ j

µ j+1
, j ≥ 0

Multiplying such equations from j = 0 to j = i −1 gives that

Pi = λ0λ1 · · ·λi−1

µ1µ2 . . .µi
P0, i ≥ 1.
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Using P0 +∑∞
i=1 Pi = 1, we can find

P0 = 1

1+∑∞
i=1

λ0λ1···λi−1
µ1µ2...µi

assuming
∞∑

i=1

λ0λ1 · · ·λi−1

µ1µ2 . . .µi
<∞.
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