: Multidimensional Scaling

(a) Below is the code for the MDS function. It takes the distance matrix X and k dimensions of the output space, and returns the mapped coordinates Y and its associated Kruskal's stress.

MDS Function

```
function [Y,stress] = mds(X,k)
points=size(X,1); %number of points
means=repmat(mean(X),points,1); %
l_i_dot=means; % column means
l_dot_j=means'; % row means
l_dot_dot=ones(points)*mean(mean(X)); % matrix mean
l_i_j=X;
L=(l_i_dot.^2+l_dot_j.^2-1_dot_dot.^2-1_i_j.^2)/2; %compute the L matrix
[U,D]=eig(L); % get the eigen-values and eigen vectors
reverse=points:-1:1; % sort in descending order (eig() returns ascending order
    )
U=U(:,reverse);
D=diag(nonzeros(D(:,reverse)));
Y=U*sqrt(D); % compute the Y matrix
Y=Y(:,1:k); % pull points in only the first k dimensions
% KRUSCAL STRESS
numerator=0;
denominator=0;
for i=1:points % loop through all rows
    % Loop through columns from i+1 to the end
    % To make this loop twice as fast, we only need to calculate the
    % scores between points we haven't calculated yet.
    for j=i+1:points
        numerator=numerator+(X(i,j)-sqrt(sum((Y(i,: )-Y(j,:)).^2)))^^2;
        denominator=denominator+X(i,j)^2;
    end
end
stress=sqrt(numerator/denominator); % calculate the final stress number
return;
```

Using our MDS function we can now do mutli-dimensional scaling on the Chinese city distance data. The steps in the script are:

1) Load data
2) Run MDS
3) Rotate the points so that they match the actual map
4) Plot the points

MDS Script

```
load ChineseCityData.mat;
[Y,stress]=mds(dists,2); % run the MDS function
% We now rotate the mapping so that it looks close to a real map of China
% Chongqing and Urumqi seem to be at a 45 degree angle in relation to the
% x axis on the map of China, so let's rotate the map to match this.
a=Y(4,:)-Y(6,:);
b=[1000, -1000];
rads= -acos(a*b.'/norm(a)/norm(b)) ;
rot_matrix=[cos(rads), -sin(rads);sin(rads), cos(rads)];
Y=Y*rot_matrix;
% plot the rotated Y points
figure;
img = imread('chinamap.jpg');
image([-4600 2300],[2000 -2500],img);
hold on;
scatter(Y(:,1),Y(:,2));
axis equal;
grid on;
text(Y(:,1), Y(:,2), Cities,'VerticalAlignment','bottom','HorizontalAlignment'
    ,'right');
title('2D mapping from a distance matrix');
xlabel('km''s from the center'); ylabel('km''s from the center');
```

```
>> stress
stress =
    0.0807
```

The Kruskal stress score was 0.0807 which as a rule of thumb places this in the "good" range.

The MDS map follows the map of China I found online fairly closely. In theory, these two maps might've lined up exactly since both the MDS map and this image need to project points in \mathbb{R}^{3} into \mathbb{R}^{2}. The Chinese map image may be distorted slightly due to the many ways to represent a map, causing the points not to match up.

(b) Unfortunately we wouldn't be able to construct a world map based on locations around the world. We can "flatten" a smaller portion of the world (like a single country) into a 2D map while preserving pairwise distance fairly well, but not as well if the points are formed around a sphere. The Kruskal score to a world airport mapping would probably be very bad.

2: ISOmap

(a) Galaxies Dataset The dataset I used was found on kaggle.com. The original goal of this kaggle.com competition was to measure the ellipticity of the galaxies in the test set. The ellipticity of a galaxy is a measure of the longest and shortest diameters of the elliptical shape of a galaxy. The dataset consists of $40,00048 \times 48$ grayscale images of galaxies. I only use the first 600 for this analysis.
I reduced the dimension on this dataset with standard PCA but received a similar output to the MNIST ones scatterplot from the first homework assignment. It seems that using MDS or ISOmap would result in a better interpretation.

(a) Regular-PCA Scatterplot

ISOmap Script

```
% First create an image matrix from the png files. Each png file is a 48x48
% grayscale image. I am using the first 600 images from the dataset.
file = dir('galaxy');
images=zeros(2304,600);
for k = 3 : 603
    images(:,k-2) = reshape(imread(fullfile('galaxy', file(k).name)), 2304,1);
end
% calculate the distance matrix
D = L2_distance(images, images, 1);
% Run the ISOmap code
options = struct();
options.dims = 1:5;
options.display = 0;
options.overlay = 0;
Y_isomap = Isomap(D, 'k', 7, options);
% Plot the ISOmap output on the first 2 dimensions
figure; gcplot(Y_isomap.coords{2}');
xlabel('Horizontal Eccentricity');ylabel('Vertical Eccentricity');
```


After picking points in each of the nine sections of the 2 dimensional representation, it became clear that the eccentricities of the galaxies were being mapped to the first 2 dimensions of the ISOmap output. The more to the right you go, the "taller" the galaxy is shown to be. The further up you go up or down, the "wider" the galaxy is.

Dataset located at
https://www.kaggle.com/c/mdm/forums/t/738/important-clarification-question

3: Dijkstra's Algorithm

Step 1 Start at Node O.

Create paths to nodes A, B, and C and assign the distances to each node.

Step 2 Since A has the shortest distance, we move to Node A.
Let's first create paths to node F, D, and B. The distance to B from A is now 4 which is less than the current distance of 5 . We can then replace the distance to B with 4 and remove the path from O to B .

Step 3 Nodes B and C have the next shortest distances. We'll arbitrarily choose Node B.
Let's create paths from node B to nodes C, E, and D. The path to node C through B is the same as the current distance to C , therefore we can remove this path. The path to D through node B is 8 , which is shorter than the current path from A . We can remove the edge from A to D as well. Finally, the path to E doesn't exist yet so we give it the distance of 7 .

Step 4 The next shortest path is from Node C. The edge from node C to node B is not needed since we have already seen node B. The distance to node E from node C is $4+4=8$ which is larger than the current distance of 7 so we can disregard that path as well.

Step 5 Node E has the next shortest path. The distance to node D through node E is larger than the current distance of 8 so we can ignore that edge. The path to node T doesnt exist yet so we can creat that path with a distance of $7+7=14$.

Step 6 Node D has the next shortest distance with a distance of 8. The only node connected to node D that hasn't be seen yet is node T . Going through node D , the distance to node T is only 13 , which is less than the current distance of 14 so we can remove the edge from node E to node T.

Step 7 Of the two remaining nodes, T and F , Node \mathbf{T} has the shorter distance. The only edge remaining is the edge from node T to node F . The distance to node F doesnt decrease when going through node T so we can ignore this final edge.

Done We have now seen all nodes and can now see the shortest paths from node O to any other node.

Node O to:
A: distance $=2$. path: O to A
$\mathrm{B}:$ distance $=4$. path: O to A to B
$\mathrm{C}:$ distance $=4$. path: O to C
D: distance $=8$. path O to A to B to D
E: distance $=7$. path: O to A to B to E
$\mathrm{F}:$ distance $=14$. path: O to A to F
$\mathrm{T}:$ distance $=13$. path: O to A to B to D to T

4: Kernel PCA

(a) The kPCA function takes the input data (centered or uncentered) and the reduced dimension k , and returns the Y matrix of points in the dimension k .

Kernel PCA Function

```
function Y = kPCA(X,k)
n=size(X,1);
X_tilde=X-repmat(mean(X,1),n,1); % compute a centered X matrix
% This section is used to compute an initial value for the
% parameter, sigma
dist=zeros(n,n); % initialize the distance matrix
for i=1:n
    for j=i+1:n
        dist(i,j)=sqrt(sum((X_tilde(i,:)-X_tilde(j,:)).^2));
    end
end
dist=dist + dist';
mean_sim=mean(sort(dist,1),2); %for each point, sort columns by distance
% Taking Dr. Chen's suggestion, we'll take the average of the 8th nearest
% neighbor. We use nine here since we don't count the point itself as
% a "nearest neighbor"
sigma =mean_sim(9);
% We now can compute the K matrix. We use our own function "RBF" to clean
% up the code a little bit.
K=zeros(n,n);
for i=1:n
    % Since K is symmetric, we only need to compute an upper triangular
    % matrix and just add the transpose.
    for j=i:n
        K(i,j)= RBF(X_tilde(i,:),X_tilde(j,:),sigma);
    end
end
K=K + K'-diag(diag(K));% compute K from the upper triangular K matrix.
one=ones(n,n); % compute the K tilde matrix
K_tilde=K-(1/n)*K*one -(1/n)*one*K +(1/n)^2*one*K*one;
% find the eigenvalues/vectors that satisfy K*V_i = n*lambda*V_i.
% We also need to resort the eigenvectors by largest eigenvalues.
[V,D]=eig(K_tilde/n);
[~,index]=sort(diag(D), 'descend');
V=V(:,index);
% finally compute the Y matrix
Y=K*V(:,1:k);
return;
```

RBF Function

```
function mapping = RBF(xi,xj,sigma)
mapping=exp( -sqrt(sum((xi-xj).^2))/(2*sigma^2));
return;
```

Kernel PCA Script

```
load kernelpca_data
% Plot the original data
figure;plot(X(labels==1,1),X(labels==1, 2),'.b','MarkerSize', 10);
hold on;
plot(X(labels==2,1),X(labels==2,2),'.g','MarkerSize',10);
title 'Kernel PCA Data';
legend('Inside Cluster','Outside Cluster')
Y=kPCA(X,2); % Run the kernel PCA function with dimension 2
% Plot the newly mapped data on the first two dimensions
figure;plot(Y(labels==1,1),Y(labels==1, 2),'.b','MarkerSize', 10);
hold on;
plot(Y(labels==2,1),Y(labels==2, 2),'.g','MarkerSize', 10);
title 'Kernel PCA Data(Remapped)';
legend('Inside Cluster','Outside Cluster')
```


Figure 1: Kernel PCA
The data can now clearly be separated with lines. This can now be easily clustered without any issues. We can test whether this is true by running the kmeans script on the next page.
k-means clustering on top of Kernel PCA

```
k=2
[labels_kmeans,C,scatter] = kmeans(X,k,'Replicates',10);
error=computing_percentage_of_misclassified_points(labels,labels_kmeans)
figure; gcplot(X, labels_kmeans); axis equal
[labels_kmeans,C,scatter] = kmeans(Y,k,'Replicates',10);
error=computing_percentage_of_misclassified_points(labels,labels_kmeans)
figure; gcplot(Y, labels_kmeans); axis equal
```

Running the k-means code on these data points shows that if we were to cluster the original data set, we could potentially get an error of 34%. But running k-means on the remapped data set, we see an error rate of 0%.

Figure 2: k-means over Kernel PCA

5: k-means

(a) Below is the script for the k -means clustering of the Iris dataset. It uses the built-in kmeans() function in MATLAB.

```
script_read_irisdata
n=150;
k=3; % set the number of clusters to three
[labels_kmeans,C,scatter] = kmeans(X,k,'Replicates',10);
error=computing_percentage_of_misclassified_points(labels,labels_kmeans);
% plot the k-means clusters
figure; gcplot(X, labels_kmeans); axis equal
legend('Iris-setosa','Iris-versicolor','Iris-virginica')
% we now want to check k-means for cluster size 1 through 6
k=6
labels_kmeans=zeros(k,size(X,1));
scatter_2=zeros(k,1);
for i=1:k
    [labels_kmeans(i,:),C,sumd] =kmeans(X,i,'Replicates',10);
    scatter_2(i)=mean(sumd)/(150/i);
end
% Plot the scatter for each k-means model
figure;plot(1:k,scatter_2,'bo-');
xlabel('K value');ylabel('Scatter'); grid on; hold on;
plot(3,scatter_2(3),'o','MarkerSize', 20);
set(gca,'xtick', [1 2 3 4 5 6])
title 'Average within-cluster Error'
%calculate the percent of variance
figure;plot(1:k,(ones(k,1)*scatter_2(1)-scatter_2(1:k))./(ones(k,1)*scatter_
    2(1)),'bo-')
xlabel('K value');ylabel('Variance'); grid on; hold on;
plot(3,(scatter_2(1)-scatter_2(3))/scatter_2(1),'o','MarkerSize', 20);
set(gca,'xtick', [1 2 3 4 5 6])
title 'Percentage of Variance for k clusters'
```

```
>> error
error =
    0.1067
```

The error percentage on k -means cluster with $\mathrm{k}=3$ is 10.67%. Only 9.33% of the data points are misclassified as the wrong type of iris. This error rate can be considered good depending on the model's application.

Figure 3: k -means clustering with $\mathrm{k}=3$

Figure 4: Choosing a value for k
What we see in the error and variance graphs is that there's an elbow at $\mathrm{k}=3$ clusters. This indicates that we should choose k to be three (which matches the actual number of clusters). The percentage of the variance explained by the clustering hits nearly 90% and slowly increases with larger numbers of clusters. We see the same idea in the average within-cluster error.

