SVD: A Summary

1. Singular Value Decomposition: $\mathbf{A}=\mathbf{U} \Sigma \mathbf{V}^{T}=\sum_{i} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$

Here, \mathbf{U}, \mathbf{V} have orthonormal columns and Σ is diagonal.

2. Matrix Norms

- Frobenius: $\|\mathbf{A}\|_{F}=\sqrt{\sum a_{i j}^{2}}=\sqrt{\sum \sigma_{i}^{2}(\mathbf{A})}$
- Spectral: $\|\mathbf{A}\|_{2}=\max _{\mathbf{q}:\|\mathbf{q}\|_{2}=1}\|\mathbf{A q}\|_{2}=\sigma_{\max }(\mathbf{A})=\sigma_{1}(\mathbf{A})$
- Nuclear: $\|\mathbf{A}\|_{*}=\sum \sigma_{i}(\mathbf{A})$

3. Low Rank Matrix Approximation

The best rank- k approximation of a matrix \mathbf{A} (under both the Frobenius norm and the spectral norm) is $\mathbf{A}_{k}=\sum_{i=1}^{k} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T}$.

4. Principal Component Analysis (PCA)

$$
\widetilde{\mathbf{X}}=\mathbf{X}-\overline{\mathbf{x}}=\mathbf{U} \Sigma \mathbf{V}^{T}
$$

Things to keep in mind:

1. The rows of \mathbf{X} represent the given data points, while those of $\widetilde{\mathbf{X}}$ represent centered data.
2. $\overline{\mathrm{x}}$ is the center of the data set, which always lies on the best-fit k-dimensional subspace (that minimizes the total squared orthogonal error).
3. $\mathbf{V}(:, 1: k)$ is an orthonormal basis for the best-fit k-dimensional subspace.
4. The rows of $\widetilde{\mathbf{X}}_{k}=\mathbf{U}(:, 1: k) \Sigma(1: k, 1: k) \mathbf{V}(:, 1: k)^{T}$ represent the coordinates of the projections of the centered data onto the best-fit subspace.
5. The rows of $\mathbf{U}(:, 1: k) \Sigma(1: k, 1: k)$, which also equals $\widetilde{\mathbf{X}} \mathbf{V}(:, 1: k)$, are called the top k principal components of the data, being the coordinates of the projections on the best-fit subspace relative to the basis $\mathbf{V}(:, 1: k)$.
6. The right singular vectors (i.e., columns of \mathbf{V}) are the principal directions in the data along which the variance of the projections onto \mathbf{v}_{j} is as large as possible (and equals the corresponding singular value squared, σ_{j}^{2})
7. The number of nonzero singular values is the matrix rank of $\widetilde{\mathbf{X}}$, while the number of "dominant" singular values is the "effective" rank of $\widetilde{\mathbf{X}}$.

In sum, PCA finds in a given data set low dimensional subspaces that

- minimize the total squared orthogonal error; and
- maximize the variances of the projections; and
- preserve the pairwise distances of the points in the data set as closely as possible.

Applications of SVD

- Low-rank matrix approximation
- Subspace fitting
- Data compression (including denoising, dimensionality reduction, visualization)
- Much more: computing matrix pseudoinverse, solving redundant linear systems, etc.

