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Principal Component Analysis (PCA)

Motivation
• The digits are 784 dimensional - very time consuming to perform even

simple tasks like kNN search

• Need a way to reduce the dimensionality of the data in order to increase
speed

• However, if we discard some dimensions, will that degrade performance?

• The answer can be no (as long as we do it carefully). In fact, it may even
improve results in some cases.
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Principal Component Analysis (PCA)

How is this possible?
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• Boundary pixels tend to be zero;

• The number of degrees of freedom of each digit is much less than 784.
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Principal Component Analysis (PCA)

The main idea of PCA

PCA reduces the dimensionality by discarding low-variance directions (under the
assumption that useful information is only along high-variance dimensions)
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Principal Component Analysis (PCA)

Other dimensionality reduction techniques
PCA reduces the dimension of data by preserving as much variance as possible.
Here are some alternatives:

• Linear Discriminant Analysis (LDA): by preserving discriminatory infor-
mation between the different training classes

• Multidimensional Scaling (MDS): by preserving pairwise distances

• ISOmap: by preserving geodesic distances

• Locally Linear Embedding (LLE): by preserving local geometry
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Principal Component Analysis (PCA)

Review of matrix algebra
• Special square matrices A ∈ Rn×n

– Symmetric: AT = A

– Diagonal: aij = 0 whenever i ̸= j

– Orthogonal: A−1 = AT (i.e. AAT = AT A = In)

• Eigenvalues and eigenvectors: Av = λv

– λ satisfies det(A − λI) = 0

– v satisfies (A − λI)v = 0
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Principal Component Analysis (PCA)

Eigenvalue decomposition of symmetric matrices
Let A ∈ Rn×n be a symmetric matrix. Then there exist an orthogonal matrix
Q = [q1 . . . qn] and a diagonal matrix Λ = diag(λ1, . . . , λn), both real & square,
such that

A = QΛQT

This is also called the spectral decomposition of A.

Note that the above equation is equivalent to

Aqi = λiqi, i = 1, . . . , n

Therefore, the λi’s represent eigenvalues of A while the qi’s are the associated
eigenvectors.
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Principal Component Analysis (PCA)

Remark 1: For convenience the diagonal elements of Λ are often sorted such
that λ1 ≥ λ2 ≥ · · · ≥ λn.

Remark 2: For asymmetric matrices, neither Q is orthogonal nor Λ is diagonal
needs to be true.

For an abitrary matrix A ∈ Rn×n, we have the following decomposition

A = PJP−1

where P is invertible and J is upper triangular. This is called the Jordan canonical
form of A.

When J can be made diagonal by selecting P (not always possible), we say that
A is diagonalizable.
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Principal Component Analysis (PCA)

Positive (semi)definite matrices

A symmetric matrix A is said to be positive (semi)definite if xT Ax > 0 (≥ 0)
for all x ̸= 0.

Theorem. A symmetric matrix A is positive (semi)definite if and only if its
eigenvalues are positive (nonnegative).

Proof : This result can be proved by applying the spectral decomposition of A.
Left to you as an exercise.
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Principal Component Analysis (PCA)

Matlab command for eigenvalue decomposition

D = eig(A) produces a column vector D containing the eigenvalues of a square
matrix A.

[V,D] = eig(A) produces a diagonal matrix D of eigenvalues and a full matrix
V whose columns are the corresponding eigenvectors so that A = VDV−1.
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Principal Component Analysis (PCA)

Singular value decomposition (SVD)
Let X ∈ Rn×d be a rectangular matrix. The SVD of X is defined as

Xn×d = Un×nΣn×dVT
d×d

where U = [u1 . . . un], V = [v1 . . . vd] are orthogonal and Σ is “diagonal”:

• ui’s are called the left singular vectors of X;

• vj ’s are called the right singular vectors of X;

• The “diagonal” entries of Σ are called the singular values of X.

Note. This is often called the full SVD, to distinguish from other variations.
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Principal Component Analysis (PCA)

Matlab command for matrix SVD

svd – Singular Value Decomposition.

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension as
X and with nonnegative diagonal elements in decreasing order, and orthogonal
matrices U and V so that X = U*S*VT .

s = svd(X) returns a vector containing the singular values.
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Principal Component Analysis (PCA)

Other versions of matrix SVD
Let X ∈ Rn×d. We define

• Economic SVD:

Xn×d =

{
Un×dΣd×dVT

d×d, n > d (tall matrix)
Un×nΣn×nVT

d×n, n < d (long matrix)

• Compact SVD:

Xn×d = Un×rΣr×rVT
d×r, where r = rank(X)

• Rank-1 decomposition:

X =
∑

σiuivT
i
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Principal Component Analysis (PCA)

Matlab command for Economic SVD
• For tall matrices only:

[U,S,V] = svd(X,0) produces the "economy size" decomposition. If X is
m-by-n with m > n, then only the first n columns of U are computed and
S is n-by-n. For m <= n, svd(X,0) is equivalent to svd(X).

• For both tall and long matrices:

[U,S,V] = svd(X,’econ’) also produces the "economy size" decomposi-
tion. If X is m-by-n with m >= n, then it is equivalent to svd(X,0). For
m < n, only the first m columns of V are computed and S is m-by-m.
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Principal Component Analysis (PCA)

A brief mathematical derivation of SVD
For any X ∈ Rn×d, form C = XT X ∈ Rd×d.

Observation: C is square, symmetric, and positive semidefinite.

Therefore, C = VΛVT for an orthogonal V ∈ Rd×d and Λ = diag(λ1, . . . , λd)
with λ1 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λd (where r = rank(X) ≤ d).

Define σi =
√

λi for all i and ui = 1
σi

Xvi for 1 ≤ i ≤ r.

Claim: u1, . . . , ur are orthonormal vectors.

Let U = [u1 . . . urur+1 . . . ud] such that it is orthogonal and Σ = diag(σ1, . . . , σd).
Then from Xvi = σiui, ∀i we obtain XV = UΣ, or equivalently, X = UΣVT .
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Principal Component Analysis (PCA)

Connection with eigenvalue decomposition

Let X = UΣV be the full SVD of X ∈ Rn×d. Then

• U consists of the eigenvectors of XXT ∈ Rn×n (gram matrix);

• V consists of the eigenvectors of XT X ∈ Rd×d (convariance matrix, if
the rows of X have a mean of zero);

• Σ consists of the square roots of the eigenvalues of either matrix (and
zero).
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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) Algorithm
Input: data set X = [x1 . . . xn]T ∈ Rn×d and integer s (with 0 < s < d)

Output: compressed data Y ∈ Rn×s

Steps:

1. Center data: X̃ = [x1 . . . xn]T − [m . . . m]T where m = 1
n

∑
xi

2. Perform SVD: X̃ = UΣVT

3. Return: Y = X̃ · V(:, 1 : s) = U(:, 1 : s) · Σ(1 : s, 1 : s)

Terminology. We call the columns of V the principal directions of the data and
the columns of Y its top s principal components.
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Principal Component Analysis (PCA)

Geometric meaning
The principal components Y represent the coefficients of the projection of X
onto the subspace through the point m = 1

n

∑
xi and spanned by the basis

vectors v1, . . . , vs.
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Principal Component Analysis (PCA)

MATLAB implementation of PCA
MATLAB built-in: [V, US] = pca(X); % Rows of X are observations

Alternatively, you may want to code it yourself:

n = size(X,1);
center = mean(X,1);
Xtilde = X - repmat(center, n, 1);
[U,S,V] = svd(Xtilde, ’econ’);
Y = Xtilde*V(:,1:k); % k is the reduced dimension

Note: The first three lines can be combined into one line
Xtilde = X - repmat(mean(X,1), size(X,1), 1);
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Principal Component Analysis (PCA)

Some properties of PCA
Note that the principal coordinates

Y = [X̃v1 . . . X̃vs] = [σ1u1 . . . σsus]

• The projection of X̃ onto the ith principal direction vi is X̃vi = σiui.

• The variance of the ith projection X̃vi is σ2
i .

Proof. First, 1T X̃vi = 0T vi = 0. This shows that X̃vi has mean zero.
Second, ∥σiui∥2

2 = σ2
i . Accordingly, the projection X̃vi = σiui has a

variance of σ2
i .

• Therefore, the right singluar vectors v1, . . . , vs represent the directions of
decreasing variance (σ2

1 ≥ · · · ≥ σ2
s).
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Principal Component Analysis (PCA)

Is there an even better direction than v1?
The answer is no; that is, ±v1 contains the maximum possible variance among
all single directions.

Mathematically, it is the solution of the following problem:

max
v∈Rd: ∥v∥2=1

∥X̃v∥2
2

Proof. Consider the full SVD of X̃ = UΣVT . For any unit vector v ∈ Rd, write
v = Vα for some unit vector α ∈ Rd. Then Xv = XVα = UΣα. Accordingly,
∥Xv∥2

2 = ∥UΣα∥2
2 = ∥Σα∥2

2 =
∑

σ2
i α2

i ≤ σ2
1 , where the equality holds when

α = ±e1 and correspondingly, v = ±Ve1 = ±v1.

Remark: The maximum value is σ2
1 , which is consistent with before.
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Principal Component Analysis (PCA)

How to set the parameter s in principle?
Generally, there are two ways to choose the reduced dimension s:

• Set s = #“dorminant” singular values

• Choose s such that the top s principal directions explain a certain fraction
of the variance of the data:

s∑
i=1

σ2
i︸ ︷︷ ︸

explained variance

> p ·
∑

σ2
i︸ ︷︷ ︸

total variance

Typically, p = .95, or .99 (more conservative), or .90 (more aggressive).
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Principal Component Analysis (PCA)

More interpretations of PCA

PCA reduces the dimension of data by maximizing the variance of the projection
(for a given dimension).

It is also known that PCA for a given dimension s

• preserves the most of the pairwise distances between the data points

• minimizes the total orthogonal fitting error by a s-dimensional subspace
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Principal Component Analysis (PCA)

PCA for classification
Note that in the classification setting there are two data sets: Xtrain and Xtest.

Perform PCA on the entire training set and then project the test data using the
training basis:

Ytest = (Xtest − [mtrain . . . mtrain]T ) · Vtrain

Finally, select a classifier to work in the reduced space:

• PCA + kNN

• PCA + local kmeans

• PCA + other classifiers
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Principal Component Analysis (PCA)

A final remark about the projection dimension s

PCA is an unsupervised method, and the 95% (or 90%) criterion is only a
conservative choice in order to avoid losing any useful direction.

In the context of classification it is possible to get much lower than this threshold
while maintaining or even improving the classification accuracy.

The reason is that variance is not necessarily useful for classification.

In practice, one may want to use cross validation to select the optimal s.
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Principal Component Analysis (PCA)

HW2a (due in about two weeks)
1. Apply the plain kNN classifier with 6-fold cross validation to the projected

digits with s = 154 (corresponding to 95% variance) and 50 (correspond-
ing to 82.5% variance) separately to select the best k from the range 1:10
(for each s). Plot the curves of validation error versus k and compare
them with that of no projection (i.e. HW1-Q1). For the three choices of s

(50, 154, and 784), what are the respective best k? Overall, which (s, k)
pair gives the smallest validation error?

2. For each of the three values of s above (with corresponding optimal k),
apply the plain kNN classifier to the test data and display their errors
using a bar plot. Interpret the results. Is what you got in this question
consistent with that in Question 1?
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Principal Component Analysis (PCA)

3. Apply the local kmeans classifier, with each k = 1, . . . , 10, to the test set
of handwrittend digits after they are projected into R50. How does your
result compare with that of no projection (i.e. HW1-Q5)? What about
speed?

Note: HW2b will be available after we finish our next topic.
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Principal Component Analysis (PCA)

Midterm project 1: Instance-based classification
Task: Concisely describe the classifiers we have learned thus far and summarize
their corresponding results in a poster to be displayed in the classroom. You
are also encouraged to try new ideas/options (e.g., normal weights for weighted
kNN, other metrics such as cosine) and include your findings in the poster.

Who can participate: One to two students from this class, subject to instruc-
tor’s approval.

When to finish: In 2 to 3 weeks.

How it will be graded: Based on clarity, completeness, correctness, originality.

You are welcome to consult with the instructor for ideas to try in this project.
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