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Outline

• Last time: LDA/QDA (classification)

• Today: 2DLDA (dimensionality reduction)

• HW3b and Midterm Project 3



2DLDA

What is 2DLDA?

Both PCA and FDA require first vectorizing the images. The output is also in
vector form.

2DLDA considers images as two-dimensional signals and works with matrices
directly (no vectorization needed). The output will still be images (but smaller).

2DLDA has the advantage of preserving information along both dimensions (i.e.,
rows and columns).
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2DLDA

How does 2DLDA work?
2DLDA transforms r × c images to smaller r′ × c′ images.

Let X ∈ Rr×c be a given image. The transformation is defined by two matrices
with orthonormal columns, L ∈ Rr×r′ and R ∈ Rc×c′ :

Y = LT XR ∈ Rr′×c′
.

Like FDA, 2DLDA finds the best transformations L, R by preserving the most
discriminatory information in the projection space

max
L,R

between-class scatter
within-class scatter
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2DLDA

Notation
Let Xi ∈ Rr×c, 1 ≤ i ≤ n be the ith image in the training set, which consist of
k classes Π1, . . . , Πk.

Let
Mi = 1

ni

∑
X∈Πi

X

be the (matrix) mean of class i, and

M = 1
n

∑
1≤i≤k

∑
X∈Πi

X = 1
n

∑
i

niMi

the global mean.
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2DLDA

Matrix norms
To define within-class and between-class scatters we need to introduce matrix
norms. For any matrix A (not necessarily square), define

• Frobenius norm:
∥A∥F =

√∑
i,j

a2
ij

It can be shown that ∥A∥F =
√∑

i σ2
i

• Spectral norm:

∥A∥2 = σ1 (largest singular value)

See Instructor’s lecture notes on SVD for more detail.
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2DLDA

Defining within-class and between-class scatters
In the given image space

• Within-class scatter:

s2
w =

∑
i

∑
X∈Πi

∥X−Mi∥2
F

• Between-class scatter:

s2
b =

∑
i

ni∥Mi −M∥2
F
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2DLDA

Defining within-class and between-class scatter
In the transformed space

• Within-class scatter:

s̃2
w =

∑
i

∑
X∈Πi

∥LT XR − LT MiR∥2
F

=
∑

i

∑
X∈Πi

∥LT (X−Mi)R∥2
F

• Between-class scatter:

s̃2
b =

∑
i

ni∥LT (Mi −M)R∥2
F
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2DLDA

The mathematical formulation of 2DLDA
Solve

max
L,R

∑
i ni∥LT (Mi −M)R∥2

F∑
i

∑
X∈Πi

∥LT (X−Mi)R∥2
F

where L ∈ Rr×r′
, R ∈ Rc×c′ are tall matrices with orthonormal columns.

Note. The projected images will be given by

Yi = LT XiR ∈ Rr′×c′
, ∀ i
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2DLDA

Matrix trace and it properties
The trace of a square matrix is the sum of its diagonals: trace(A) =

∑
i aii.

It has the following properties:

• Linearity (for matrices of same size): trace (
∑

i αiAi) =
∑

i αi trace(Ai)

• Trace-commutativity:

trace(AB) = trace(BA) (whenever both are defined)

• Relation to Frobenius norm

∥A∥2
F = trace(AAT ) = trace(AT A)
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2DLDA

Rewriting the problem
Using the trace properties we first rewrite the within-class scatter as follows∑

i

∑
X∈Πi

∥LT (X−Mi)R∥2
F

=
∑

i

∑
X∈Πi

trace
(
LT (X−Mi)RRT (X−Mi)T L

)
= trace

(∑
i

∑
X∈Πi

LT (X−Mi)RRT (X−Mi)T L
)

Note that LT and L may be factored out of the double summation (but still
within the trace operator).
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2DLDA

Similarly, for the between-class scatter,∑
i

ni∥LT (Mi −M)R∥2
F

= trace

(∑
i

niLT (Mi −M)RRT (Mi −M)T L
)

The 2DLDA problem now becomes

max
L,R

trace
(∑

i niLT (Mi −M)RRT (Mi −M)T L
)

trace
(∑

i

∑
X∈Πi

LT (X−Mi)RRT (X−Mi)T L
)
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2DLDA

Solving the problem
The joint optimization problem over L, R is very difficult to solve.

We consider a special case when R is given. The problem reduces to

max
L

trace
(
LT SR

b L
)

trace (LT SR
w L)

where

SR
w =

∑
i

∑
X∈Πi

(X−Mi)RRT (X−Mi)T ∈ Rr×r

SR
b =

∑
i

ni(Mi −M)RRT (Mi −M)T ∈ Rr×r
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2DLDA

The solution of this reduced problem is often approximated by the first c′ gener-
alized eigenvectors

SR
b li = λi SR

w li

or eigenvectors (
SR

w

)−1 SR
b li = λili

Remarks:

• Both matrices SR
w , SR

b have the size of r × r, and thus are much smaller
than their counterparts in FDA which have a size of d × d with d = rc.
Therefore, this problem is much easier to solve numerically.

• In general SR
w is nonsingular, so the singularity issue with FDA does not

exist in 2DLDA.
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2DLDA

Similarly, if L is given to us, then the problem maybe written as

max
R

trace
(∑

i niRT (Mi −M)T LLT (Mi −M)R
)

trace
(∑

i

∑
X∈Πi

RT (X−Mi)T LLT (X−Mi)R
) =

trace
(
RT SL

b R
)

trace (RT SL
wR)

where

SL
w =

∑
i

∑
X∈Πi

(X−Mi)T LLT (X−Mi) ∈ Rc×c,

SL
b =

∑
i

ni(Mi −M)T LLT (Mi −M) ∈ Rc×c.

The approximate solution is given by the first few eigenvectors of(
SL

w

)−1 SL
b ∈ Rc×c.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 15/22



2DLDA

Algorithm for 2DLDA
The previous discussions motivate us to solve the 2DLDA problem using an
iterative procedure:

1. Initialize R =

(
Ic′×c′

0(c−c′)×c′

)
∈ Rc×c′

2. Iterative until convergence:

• L←− top r′ eigenvectors of
(
SR

w

)−1 SR
b

• R ←− top c′ eigenvectors of
(
SL

w

)−1 SL
b

3. Return final versions of L and R
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2DLDA

MATLAB code for 2DLDA
2DLDA is not implemented in MATLAB.

However, there is a toolbox available at MATLAB File Exchange:

http://www.mathworks.com/matlabcentral/fileexchange/20174-
2dlda-pk-lda-for-feature-extraction

The function to use is

[R, L] = iterative2DLDA(trainImages, trainLabels+1, 10, 10, 28, 28)

% Columns are images
% Labels must start at 1
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2DLDA

Ways of using 2DLDA

Like FDA, 2DLDA is a supervised dimensionality reduction methods. It has the
following usage:

• 2DLDA + a classifier (e.g., kNN, kmeans, LDA/QDA, Naive Bayes)

• 2DLDA + FDA + a classifier
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2DLDA

Comparison between FDA and 2DLDA

Both are supervised methods aiming to preserve discriminatory information.

• 2DLDA is more flexible (can project data down to any size r′ × c′)

• 2DLDA does not have the singularity issue (no PCA needed)

• 2DLDA is harder to solve (as it has two matrices to choose, so that we can
only use alternating optimization) but individual linear algebra problems
are much easier to solve (as the scatter matrices are smaller)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/22



2DLDA

HW3b (due Friday noon, March 18)
First use 2DLDA to transform the MNIST handwritten digits to a smaller size
(9 × 9, or a better pair that you find for the particular classifiers used below),
and then do the following.

4. Perform kNN classification with three different distance metrics: Euclidean,
city block and cosine of the angle. You may use a fixed k = 3 as before,
but if you have more time, try different values of k (e.g., from 1 to 10).
Plot the results in a bar graph (if single k) or as three curves (if multiple k).
How does 2DLDA compare with PCA in terms of dimensionality reduction
for kNN?

5. Apply LDA to the images transformed by 2DLDA. How does this combi-
nation perform (by comparing with PCA + LDA)?
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2DLDA

Midterm project 3: 2DLDA

Interested students please discuss with me your ideas.
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2DLDA

Further learning

• Symmetric 2DLDA
http://ranger.uta.edu/~chqding/papers/Symmetric2DLDA.pdf

• Nonparametric Discriminant Analysis (NDA)
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4775283
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