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Logistic Regression

Classification is a special kind of regression
Classification is essentially a regression problem with discrete outputs (i.e., a
small, finite set of values). Thus, it can be approached from a regression point
of view.

In our case, there are 784 predictors (pixels) while the target variable is categorical
(with 10 possible values 0, 1, . . . , 9):

y ≈ f(x1, . . . , x784).

To explain ideas, we start with the 1-D binary classification problem which has
only one predictor x and a binary output y = 0 or 1.
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Logistic Regression

Motivating example
Consider a specific example where x represents a person’s height while y denotes
gender (0 = Female, 1 = Male).
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Simple linear regression is obviously not appropriate in this case.
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A better choice is to use a curve that adapts to the shape.
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Logistic Regression

Such a curve may be obtained by using the following family of functions

p(x; θ⃗) = 1
1 + e−(θ0+θ1x)

where

• The template is g(z) = 1
1+e−z , called the logistic/sigmoid function.

• The parameters θ0, θ1 control location and sharpness of jump respectively.
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Logistic Regression

Properties of the logistic function

• g(z) is defined for all real numbers z

• g(z) is a monotonically increasing function

• 0 < g(z) < 1 for all z ∈ R

• g(0) = 0.5

• limz→−∞ g(z) = 0 and limz→+∞ g(z) = 1

• g′(z) = g(z)(1 − g(z)) for any z
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Logistic Regression

How to estimate θ⃗

• Optimization problem:

min
θ⃗

n∑
i=1

ℓ(yi, p(xi; θ⃗))

where ℓ is a loss function, e.g., square loss ℓ(y, p) = (y − p)2.

• Probabilistic perspective: We regard gender (y) as a random variable (Y )
and interpret p(x; θ⃗) as probability:

P (Y = 1 | x; θ⃗) = p(x; θ⃗), P (Y = 0 | x; θ⃗) = 1 − p(x; θ⃗)

This implies that E(Y | x; θ⃗) = p(x; θ⃗).
Clearly,

Y | x; θ⃗ ∼ Bernoulli(p(x; θ⃗)).
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Logistic Regression

The pdf of Y ∼ Bernoulli(p) can be written as

f(y; p) = py(1 − p)1−y, for y = 0, 1

Assuming that the training examples were generated independently, the likelihood
function of the sample is

L(θ⃗) =
n∏

i=1
f(yi; p(xi; θ⃗)) =

n∏
i=1

p(xi; θ⃗)yi(1 − p(xi; θ⃗))1−yi

and the log likelihood is

log L(θ⃗) =
n∑

i=1
yi log p(xi; θ⃗) + (1 − yi) log(1 − p(xi; θ⃗))
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Logistic Regression

Maximum Likelihood Estimation (MLE)
In principle, the MLE of θ⃗ is obtained by maximizing the log likelihood function

log L(θ⃗) =
n∑

i=1
yi log p(xi; θ⃗) + (1 − yi) log(1 − p(xi; θ⃗))

=
n∑

i=1
yi log 1

1 + e−(θ0+θ1xi) + (1 − yi) log(1 − 1
1 + e−(θ0+θ1xi) )

This actually corresponds to optimization with the logistic loss function

ℓ(y, p) = −(y log p + (1 − y) log(1 − p)) =

{
− log p, y = 1;
− log(1 − p), y = 0
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Logistic Regression

Loss functions
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Logistic Regression

Finding the MLE of θ⃗

It can be shown that the gradient of the log likelihood function is(
∂ log L(θ)

∂θ0
,

∂ log L(θ)
∂θ1

)
=

(
n∑

i=1
(yi − p(xi; θ⃗)),

n∑
i=1

(yi − p(xi; θ⃗))xi

)

There are two ways to find the MLE:
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Logistic Regression

• Critical-point method:

0 =
n∑

i=1
(yi − p(xi; θ⃗))

0 =
n∑

i=1
(yi − p(xi; θ⃗))xi

Due to the complex form Newton’s iteration is used. In one dimension,
the method works as follows:

Solve f(θ) = 0 by update rule θ(t+1) := θ(t) − f(θ(t))
f ′(θ(t))

The formula can be generalized to higher dimensions (which is needed
here).
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Logistic Regression

• Gradient descent: Always move by a small amount in the direction of
largest increase (i.e., gradient):

θ
(t+1)
0 := θ

(t)
0 + λ ·

n∑
i=1

(yi − p(xi; θ⃗(t)))

θ
(t+1)
1 := θ

(t)
1 + λ ·

n∑
i=1

(yi − p(xi; θ⃗(t)))xi

in which λ > 0 is called the learning rate.

Remark. A stochastic/online version of gradient descent may be employed
to increase speed.
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Logistic Regression

How to classify new observations

After we fit the logistic model to the training set,

p(x; θ⃗) = 1
1 + e−(θ0+θ1x)

we may use the following decision rule for a new observation x∗:

Assign label y∗ = 1 if and only if p(x∗; θ⃗) >
1
2

.
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Logistic Regression

The general binary classification problem
When there are more than one predictor x1, . . . , xd, just use

p(x; θ⃗) = 1
1 + e−(θ0+θ1x1+···+θdxd) .

Still the same procedure to find the best θ⃗.

The classification rule also remains the same:

y = 1p(x;θ⃗)>0.5

We call this classifier the Logistic Regression classifier.
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Logistic Regression

Understanding LR: decision boundary

The decision boundary consists of all points x ∈ Rd such that

p(x; θ⃗) = 1
2

or equivalently,
θ0 + θ1x1 + · · · + θdxd = 0

This is a hyperplane showing that LR is a linear classifier.
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Logistic Regression

Understand LR: model
The LR model can be rewritten as

log p

1 − p
= θ0 + θ1x1 + · · · + θdxd = θ⃗ · x

where x0 = 1 (for convenience) and

• p: probability of “success” (i.e. Y = 1)

• p
1−p : odds of “winning”

• log p
1−p : logit (a link function)

Remark. LR belongs to a family called generalized linear models (GLM).
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Logistic Regression

MATLAB functions for logistic regression

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

glm = fitglm(x, y, ’linear’, ’distr’, ’binomial’);

p = predict(glm, x);

% p = [0.0168, 0.0708, 0.1114, 0.4795, 0.6026, 0.2537, 0.6026, 0.9176,
0.9483, 0.9973, 0.9994]
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Logistic Regression

Python scripts for logistic regression

import numpy as np
from sklearn import linear_model

x = np.transpose(np.array([[162, 165, 166, 170, 171, 168, 171, 175, 176,
182, 185]]))

y = np.transpose(np.array([[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]))

logreg = linear_model.LogisticRegression(C=1e5).fit(x, y.ravel())

prob = logreg.predict_proba(x) # fitted probabilities

pred = logreg.predict(x) # prediction of labels
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Logistic Regression

Multiclass extensions
We have introduced logistic regression in the setting of binary classification.

There are two ways to extend it for multiclass classification:

• Union of binary models

– One versus one: construct a LR model for every pair of classes

– One versus rest: construct a LR model for each class against the
rest of training set

In either case, the “most clearly winning” class is adopted as the final
prediction.

• Softmax Regression (fixed versus rest)
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Logistic Regression

What is softmax regression?
Softmax regression fixes one class (say the first class) and fits c−1 binary logistic
regression models for each of the remaining classes against that class:

log P (Y = 2 | x)
P (Y = 1 | x)

= θ⃗2 · x

log P (Y = 3 | x)
P (Y = 1 | x)

= θ⃗3 · x

· · ·

log P (Y = c | x)
P (Y = 1 | x)

= θ⃗c · x

The prediction for a new observation will be the class with the largest relative
probability.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/34



Logistic Regression

Solving the system together with the constraint
c∑

j=1
P (Y = j | x) = 1

yields that
P (Y = 1 | x) = 1

1 +
∑c

j=2 eθ⃗j ·x

and correspondingly,

P (Y = i | x) = eθ⃗i·x

1 +
∑c

j=2 eθ⃗j ·x
, i = 2, . . . , c
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Logistic Regression

Remarks:

• If we define θ⃗1 = 0, then the two sets of formulas may be unified

P (Y = i | x; Θ) = eθ⃗i·x∑c
j=1 eθ⃗j ·x

, ∀ i = 1, . . . , c

• We may relax the constant θ⃗1 to a parameter so that we may have a
symmetric model, with (redundant) parameters Θ = {θ⃗1, . . . , θ⃗c} each
associated to a class.

• The distribution of Y , taking c values 1, . . . , c, is multinomial with the
corresponding probabilities displayed above. Therefore, softmax regression
is also called multinomial logistic regression.
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Logistic Regression

Parameter estimation

Like logistic regression, softmax regression estimates the parameters by maximiz-
ing the likelihood of the training set:

L(Θ) =
n∏

i=1
P (Y = i | xi; Θ) =

n∏
i=1

eθ⃗yi
·xi∑c

j=1 eθ⃗j ·xi

The MLE can be found by using either Newton’s method or gradient descent.
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Logistic Regression

MATLAB functions for multinomial LR

x = [162 165 166 170 171 168 171 175 176 182 185]’;

y = [0 0 0 0 0 1 1 1 1 1 1]’;

B = mnrfit(x,categorical(y));

p = mnrval(B, x);
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Logistic Regression

Python function for multinomial LR

logreg = linear_model.LogisticRegression(C=1e5, multi_class=
‘multinomial’, solver=’newton-cg’).fit(x, y.ravel())

# multi_class = ‘ovr’ (one versus rest) by default

# solver=‘lbfgs’ would also work (default =’liblinear’)
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Logistic Regression

Feature selection for logistic regression
Logistic regression tends to overfit the data in the setting of high dimensional
data (i.e., many predictors). There are two ways to resolve this issue:

• First use a dimensionality reduction method (such as PCA, 2DLDA) to
project data into lower dimensions

• Add a regularization term to the objective function

min
θ⃗=(θ0,θ1)

−
n∑

i=1
yi log p(xi; θ⃗) + (1 − yi) log(1 − p(xi; θ⃗)) + C∥θ⃗∥p

p

where p is normally set to 2 (ℓ2 regularization) or 1 (ℓ1 regularization).
The constant C > 0 is called a regularization parameter; larger values of
C would lead to sparser (simpler) models.
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Logistic Regression

Python function for regularized LR

# with default values
logreg = linear_model.LogisticRegression(penalty=’l2’, C=1.0,
solver=’liblinear’, multi_class=’ovr’)

# penalty: may be set to ‘l1’
# C: inverse of regularization strength (smaller values specify stronger reg-
ularization). Cross-validation is often needed to tune this parameter.
# multi_class: may be changed to ‘multinomial’ (no ‘ovo’ option)
# solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}. Algorithm to use in the
optimization problem.

(to be continued)
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Logistic Regression

(cont’d from last page)

# solver: {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’}. Algorithm to use in the
optimization problem.

• For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ is faster
for large ones.

• For multiclass problems, only ‘newton-cg’ and ‘lbfgs’ handle multino-
mial loss; ‘sag’ and ‘liblinear’ are limited to one-versus-rest schemes.

• ‘newton-cg’, ‘lbfgs’ and ‘sag’ only handle L2 penalty.
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Logistic Regression

Summary
• Binary logistic regression

• Multiclass extensions

– One versus one

– One versus rest

– Softmax/multinomial

• Regularized logistic regression
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Logistic Regression

HW4 (due Friday noon, April 8)
This homework tests the logistic regression classifier on the MNIST digits. In
Questions 1-4 below, apply PCA 50 to the digits first to reduce the dimensionality
for logistic regression. In all questions below report your results using both graphs
and texts.

1. Apply the binary logistic regression classifier to the following pairs of digits:
(1) 0, 2 (2) 1, 7 and (3) 4, 9.

2. Implement the one-versus-one extension of the binary logistic regression
classifier and apply it to the MNIST handwritten digits.

3. Implement the one-versus-all extension of the binary logistic regression
classifier and apply it to the MNIST handwritten digits.
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Logistic Regression

4. Apply the multinomial logistic regression to the MNIST handwritten digits.

5. Apply the ℓ1-regularized one-versus-all extension of binary logistic regres-
sion to the MNIST handwritten digits.
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Logistic Regression

Midterm project 4: Logistic regression

Interested students please discuss with me your ideas.
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