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About This Study Algorithm For 2DLDA 

In this study, we are going to investigate how the algorithms of (2D) 

matrix-based linear discriminant analysis (LDA) perform on the 

classification problems of the MNIST handwritten digits dataset, and to 

compare its performance to the traditional (1D) vector-based dimension 

reduction method: Principal Compnent Analysis (PCA).

Linear Discriminant Analysis (LDA) is most commonly used as 

dimensionality reduction technique in the pre-processing step for 

pattern-classification and machine learning applications. The goal is to 

project a dataset onto a lower-dimensional space with good class-

separability in order to avoid overfitting (“curse of dimensionality”) and 

also reduce computational costs. The main ideas behind 2DLDA are 

that they are based on 2D matrices as opposed to the traditional LDA, 

which are based on 1D vector. [1]

With all the benefits come with 2DLDA, you may ask: “how does it 

performs with different classification methods (e.g. k nearest neighbors 

algorithm and LDA classification)?” or “is it better than 1D-PCA?”

We investigate these questions and analyze extensively them based on 

a large database of handwritten digits. The database contains 60,000 

training images and 10,000 testing images. In addition, each image 

contains 28 x 28 pixels. [3]

Investigations & Results: Case II 2DLDA + kNN

Investigations & Results: Case III 2DLDA vs. PCA
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Fig.10: 2DLDA + NB (kernel) Test Error
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Fig.9: 2DLDA + NB Test Error

Minimum Test Error = 0.148

Minimum Test Error = 0.1185
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Dimension Reduction Methods

We need to obtain the optima  L and R by solving the following 

equation:

Where                 and                are tall matrices with 

orthonormal columns.      

The iterative procedure: 

1. Initialize 

2. Iterative until convergence: 

•    ← top     eigenvectors of 

•    ← top     eigenvectors of

3. Return final versions of L and R.
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Examples of Projected Displays by 2DLDA

Figure 9: Naïve Bayes (Normal): 2DLDA vs. PCA. The lowest test 

error(0.1185) obtained when using PCA with data size 8 x 8.
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Fig.3: 2DLDA + kNN Test Error:

Euclidean

Minimum Test Error: Euclidean= 0.0415
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Fig.4: 2DLDA + kNN Test Error:

City Block

Minimum Test Error: City Block= 0.0376
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Fig.5: 2DLDA + kNN Test Error:

Cosine

Minimum Test Error: Cosine= 0.0359
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Fig.6: Min. Test Error Comparsion:

Euclidean(10x10) vs. City Block(8x8) vs. Cosine(9x9)

0.0415

0.0376

0.0359

Figure 3 – 6: Different distant metrics with kNN. The lowest test 

error we obtained is 0.0359 with Cosine Angle distant function & the 

data size is 9 x 9. 
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The study is conducted in two parts:

1). We use 2DLDA to reduced the dimension of the MNIST

handwritten digit dataset and applied different classification methods 

on the reduced dataset. 

2). We compare the performance between 2DLDA and PCA (in term 

of test errors) by using different classifiers. 

We compared the accuracy of those classifiers in term of test error 

rates.

Conclusions & Limitations

How Does 2dlda Work?
Investigations & Results: Case I 2DLDA + Local kMeans
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Fig.7: 2DLDA + LDA vs. PCA + LDA Test Error

Minimum Test Error = 0.1257

Minimum Test Error = 0.1229

2DLDA + LDA

PCA + LDA

Dimension Reduction Methods

2 4 6 8 10 12 14 16

Projected Dimension

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
rr
o
rs

Fig.8: 2DLDA + QDA vs. PCA + QDA Test Error

Minimum Test Error = 0.056

Minimum Test Error = 0.0364
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Investigations & Results: Case III 2DLDA vs. PCA

� For 2DLDA + kNN / Local Kmeans:

�the choice of distance functions will have a huge impact on the 

optimal combination of projected dimension and number of k;

�This is possible for lower projected dimension to yield higher 

accuracy rate;

� The higher the projected dimension will not always produce 

significant lower test error;

� 2DLDA vs. PCA:

�Both of LDA and QDA will produce lower min. test error rates PCA;

�LDA & Naïve Bayes does not yield good classifying results; 

� Limitations:

�Due to the resource constrains, we DID NOT implement exhaustive 

search to obtain the global optimal combination(s) of projected 

dimension and classifier for either 2DLDA or PCA;

� Even though we had obtained the global optimal combination here, 

that may ONLY apply to MNIST dataset. 
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2DLDA transforms         images to smaller           images.

Let                 be a given image. The transformation is defined by 

two matrices with orthonormal columns,                 and                 :

Like FDA, 2DLDA finds the best transformations L, R by 

preserving the most discriminatory information in the projection 

space:

And the between-class scatter and within-class scatter are defined 

as follow:

Within-class scatter:

Between-class scatter:
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Examples of Projected Displays by 2DLDA

The image on the left 

displays the first six images 

were projected here. The 

projected dimension is 15 x 

15 for each image. Can our 

human recognize these 

images? (They are 5, 0, 4, 

1, 9 & 2).  

Figure 7: LDA: 2DLDA vs. PCA. The lowest test error(0.1229) 

obtained when using PCA with data size 11 x 11.

Figure 8: QDA: 2DLDA vs. PCA. The lowest test error(0.0364) 

obtained when using PCA with data size 7 x 7. 

Figure 10: Naïve Bayes (kernel): 2DLA vs. PCA. The lowest test 

error(0.1138) obtained when using PCA with data size 12 x 12.

1 2 3 4 5 6 7 8 9 10

K

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

E
rr
o
rs

Fig.1: 2DLDA + local kmean Test Error

Minimum = 0.0272
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Figure 1: 2DLDA + 

Local kMeans. [4]

The lowest test error 

(0.0272) reached 

when the dimension 

is 14 x 14 and k = 10. 

Figure 2: 2DLDA + 

Local kMeans (k=9 & 

10). 

The lowest test error 

(0.0272) reached 

when the projected 

dimension is 14 x 14 

& k = 10. 
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Fig.6: 2DLDA + localkmean k=10 Test Error

Minimum = 0.0272
Minimum = 0.0277
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