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1. Review of matrix eigendecomposition

1.1. Eigenvalues and eigenvectors. Let A be an n× n real matrix
(this is often denoted as A ∈ R

n×n). The characteristic polynomial of A is

p(λ) = det(A− λI) =
∏

(λ− λi)
ai .

The (complex) roots λi of the characteristic equation p(λ) = 0 are called
the eigenvalues of A. For a specific eigenvalue λi of A, any nonzero vector
vi satisfying

(A− λiI)vi = 0

or equivalently,
Avi = λivi

is called an eigenvector of A associated to λi. All eigenvectors associated
to an eigenvalue λi together with the zero vector 0 form a subspace, called
the eigenspace; it is denoted as E(λi) = N(A − λiI). The dimension gi of
E(λi) is called the geometric multiplicity of λi, while the degree ai of the
factor (λ− λi)

ai in p(λ) is called the algebraic multiplicity of λi. Note that
we must have

∑
ai = n and for all i, 1 ≤ gi ≤ ai.

Example 1.1. Let

A =

⎛⎝ 3 0 0
5 1 −1
−2 2 4

⎞⎠ .

Find all the above quantities.
Answer. The eigenvalues are λ1 = 3, λ2 = 2 with a1 = 2, a2 = 1 and
g1 = g2 = 1. The corresponding eigenvectors are v1 = (0, 1,−2)T ,v2 =
(0, 1,−1)T .

Theorem 1.1. Let A be a real square matrix whose eigenvalues are
λ1, . . . , λn (counting multiplicities). Then

det(A) =

n∏
i=1

λi and trace(A) =

n∑
i=1

λi.

Definition 1.1. A square matrix A is diagonalizable if it is similar to
a diagonal matrix, i.e., there exist an invertible matrix P and a diagonal
matrix Λ such that

A = PΛP−1.

Remark. The above equation implies that Api = λipi for 1 ≤ i ≤ n, where
pi are the columns of P. This shows that the λi are the eigenvalues of A
and pi the associated eigenvectors. Thus, the above factorization is called
the eigenvalue decomposition of A.

Example 1.2. The matrix

A =

(
0 1
3 2

)
is diagonalizable because(

0 1
3 2

)
=

(
1 1
3 −1

)(
3
−1
)(

1 1
3 −1

)−1
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but B =

(
0 1
−1 2

)
is not.

Theorem 1.2. A matrix A is diagonalizable if and only if it has n
linearly independent eigenvectors.

Corollary 1.3. The following matrices are diagonalizable:

• Any matrix whose eigenvalues all have identical geometric and al-
gebraic multiplicities, i.e., gi = ai for all i;

• Any matrix with n distinct eigenvalues;

In next section, we show that symmetric matrices are always diagonal-
izable.

1.2. Symmetric matrices. Recall that an orthogonal matrix is a square
matrix whose columns and rows are both orthogonal unit vectors (i.e., or-
thonormal vectors):

QTQ = QQT = I,

or equivalently,

Q−1 = QT .

Theorem 1.4. Let A ∈ R
n×n be a symmetric matrix. Then

• All the eigenvalues of A are real;
• A is orthogonally diagonalizable, i.e., there exists an orthogonal
matrix Q and a diagonal matrix Λ such that

A = QΛQT .

Proof. This theorem can be proved by induction. �

Remark.

• For symmetric matrices, the eigenvalue decomposition is also called
the spectral decomposition.

• The converse is also true. Therefore, a matrix is symmetric if and
only if it is orthogonally diagonalizable.

• Write Λ = diag(λ1, . . . , λn) and Q = [q1, . . . ,qn]. Then the prod-
uct can be expanded as

A =

n∑
i=1

λiqiq
T
i .

• We often sort the diagonals of Λ in decreasing order such that

λ1 ≥ λ2 ≥ · · · ≥ λn.

Example 1.3. Find the spectral decomposition of the following matrix

A =

(
0 2
2 3

)
Answer.

A =
1√
5

(
1 −2
2 1

)
·
(
4
−1
)
· 1√

5

(
1 −2
2 1

)T
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Definition 1.2. A symmetric matrix A ∈ R
n×n is positive semidefinite

if xTAx ≥ 0 for all x ∈ R
n. It is positive definite if xTAx > 0 whenever

x �= 0.

Theorem 1.5. Let A be a symmetric matrix. It is positive definite
(semidefinite) if and only if all the eigenvalues are positive (nonnegative).

2. Singular Value Decomposition

2.1. Matrix representation of high dimensional data. High di-
mensional data exists in various forms, such as images, videos, hyperspectral
images, audio signals, and text documents. All of them are commonly rep-
resented as points in high dimensional Euclidean spaces Rd. We often store
them as n× d matrices X ∈ R

n×d or d×n matrices Y ∈ R
d×n, whichever is

more convenient for the specific task.

2.2. Singular value decomposition (SVD). Suppose X ∈ R
n×d

(with rows representing points). Let C = XTX ∈ R
d×d.

Proposition 2.1. The matrix C is positive semidefinite.

We apply the spectral decomposition theorem toC to derive the singular
value decomposition of X. First, there exists an orthogonal matrix V =
[v1, . . . ,vd] ∈ R

d×d and a diagonal matrix Λ = diag(λ1, . . . , λd) ∈ R
d×d

with λ1 ≥ · · · ≥ λd ≥ 0 such that

C = XTX = VΛVT .

Rewrite the above equation as

XTXV = VΛ.

Consider, for each 1 ≤ i ≤ d, the ith column

(1) XTXvi = λivi = σ2
i vi,

where σi =
√
λi. For all σ1 ≥ · · · ≥ σr > 0, where r = rank(C) = rank(X),

define

ui =
1

σi
Xvi ∈ R

n.

Claim: u1, . . . ,ur are orthonormal vectors. The above is equivalent to

Xvi = σiui, i = 1, . . . , r.

For all r < i ≤ n select unit vectors ui ∈ R
n such that

U = [u1, . . . ,ur,ur+1, . . . ,un] ∈ R
n×n

is an orthogonal matrix. Let Σ be an n×d matrix whose entries are all zero
except the top r × r block

Σ(1 : r, 1 : r) = diag(σ1, . . . , σr).

It is easy to verify that with the above choices of U and Σ, we must have

XV = UΣ

Therefore, we have proved the following result.
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Theorem 2.2. For any matrix X ∈ R
n×d, there exist orthogonal matri-

ces U ∈ R
n×n,V ∈ R

d×d and a diagonal matrix Σ ∈ R
n×d (with nonnegative

entries) such that

Xn×d = Un×nΣn×dVT
d×d.

Definition 2.1. The above decomposition of a given matrix X ∈ R
n×d

is called the Singular Value Decomposition (SVD) of X. The diagonals of
Σ (including zero) are called the singular values of X; the columns of U,V
are called the left and right singular vectors, respectively.

Remark. The above decomposition is often called the full SVD of X, to
distinguish from other versions:

• Economic/compact SVD: Let r = rank(X). Define

Un×r = [u1, . . . ,ur] ∈ R
n×r

Vd×r = [v1, . . . ,vr] ∈ R
d×r

Σr×r = diag(σ1, . . . , σr) ∈ R
r×r

We then have

X = Un×rΣr×rVT
d×r.

• Rank-1 decomposition:

X =

r∑
i=1

σiuiv
T
i .

This has the interpretation that X is a weighted sum of rank-one
matrices.

In sum, X = UΣVT where both U,V have orthonormal columns and Σ is
diagonal. Furthermore, XT = VΣTUT is the SVD of XT .
Remark. For any version, the SVD of a matrix is not unique.

Example 2.1. Compute the SVD of

X =

⎛⎝1 −1
0 1
1 0

⎞⎠ .

Answer.

X =

⎛⎜⎝
2√
6

0

− 1√
6

1√
2

1√
6

1√
2

⎞⎟⎠ · (√3
1

)
·
(

1√
2

1√
2

− 1√
2

1√
2

)T

2.3. Low-rank approximation of matrices. Recall that a norm as-
sociated with a vector space V is a function ‖ · ‖ : V → R that satisfies three
conditions:

• ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 iff v = 0
• ‖kv‖ = |k|‖v‖
• ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ for all v1,v2 ∈ V

Example 2.2. In R
d, there are at least three different norms:

• 2-norm (or Euclidean norm): ‖x‖2 =
√∑

x2i =
√
xTx
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• 1-norm (Taxicab norm or Manhattan norm): ‖x‖1 =
∑ |xi|

• ∞-norm (maximum norm): ‖x‖∞ = max |xi|
When unspecified, it is defaulted the Euclidean norm.

We next define matrix norms. Just like vector norm is used to measure
the magnitude of vectors (‖v‖) and quantify the distance between vectors
(‖u− v‖), matrix norm is used similarly.

Definition 2.2. The Frobenius norm of a matrix is defined as

‖A‖F =

√∑
i,j

a2ij

Example 2.3. In the last example, ‖X‖F = 2.

Proposition 2.3.

‖A‖2F = trace(ATA) = trace(AAT )

Theorem 2.4. For any matrix A ∈ R
n×d,

‖A‖2F =
∑

σ2
i

A second matrix norm is the 2-norm, or the spectral norm.

Definition 2.3. The spectral norm of a matrix is defined as

‖A‖2 = max
q∈Rd:‖q‖2=1

‖Aq‖2

Theorem 2.5. For any matrix A ∈ R
n×d, a maximizer of the above

problem is the first right singular vector v1 of A and the maximum value is

‖A‖2 = σ1.

Proof. Consider the full SVD of A = UΣVT . For any unit vector q ∈
R
d, write q = Vα for some unit vector α ∈ R

d. Then Aq = A(Vα) = UΣα.

Accordingly, ‖Aq‖2 = ‖UΣα‖2 = ‖Σα‖2 =
√∑

σ2
i α

2
i ≤ σ1, where the

equality holds when α = ±e1 and correspondingly, y = ±Ve1 = ±v1. �
Example 2.4. In the last example, ‖X‖2 =

√
3.

Corollary 2.6. Let A ∈ R
n×d. Then for all x ∈ R

d,

‖Ax‖2 ≤ ‖A‖2‖x‖2 = σ1‖x‖2.
We note that the Frobenius and spectral norms of a matrix correspond

to the 2- and ∞-norms of the vector of singular values. The 1-norm of
singular values is called the nuclear norm of A.

Definition 2.4. The nuclear norm of a matrix A ∈ R
m×n is

‖A‖∗ =
∑

σi.

Example 2.5. In the last example, ‖X‖∗ =
√
3 + 1.

We now consider the low rank matrix approximation problem.

Definition 2.5. For any 1 ≤ k ≤ r, define Ak =
∑k

i=1 σiuiv
T
i ∈ R

n×d
as the truncated svd.
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Figure 2. Illustration of the PCA fitting problem

Remark. Clearly, rank(Ak) = k.

Theorem 2.7. For each 1 ≤ k ≤ r, Ak is the best rank-k approximation
to A under the Frobenius norm:

min
B : rankB=k

‖A−B‖F = ‖A−Ak‖F =

√∑
i>k

σ2
i .

Proof. �
Remark.

• The theorem still holds true if the spectral norm is used instead.
In this case, the minimum value is σk+1.

• The constraint rankB = k can be changed to rankB ≤ k without
changing the solution.

Example 2.6. In the last example, the best rank-1 approximation (un-
der the Frobenius/spectral norm) is

X1 =

⎛⎝ 1 −1
−1

2
1
2

1
2 −1

2

⎞⎠ .

Finally, we also mention the matrix 1- and ∞-norms:

‖A‖1 = max
j

∑
i

|aij | (maximum absolute column sum)

‖A‖∞ = max
i

∑
j

|aij | (maximum absolute row sum)

2.4. Orthogonal Best-Fit Subspace. Consider the following prob-
lem: given n points xi ∈ R

d, find the “best-fit” k-dimensional subspace (see
Fig. 2) which minimizes ∑

‖xi − PS(xi)‖22
Remark. Compare with the least squares fitting problem.

Let m ∈ R
d represent a fixed point and B ∈ R

d×k an orthonormal basis
of S (i.e., BTB = Ik×k, but not BBT = Id×d for k < d) so that a parametric
equation for the plane is

x = m+Bα.
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First,

PS(xi) = m+BBT (xi −m).

We then rewrite the above problem as

min
m,B

∑
‖xi − (m+BBT (xi −m))‖2

Using multivariable calculus, we can show that a best m is x̄ = 1
n

∑
xi.

Plugging in x̄ for m and letting x̃i = xi − x̄ we rewrite the above equation
as follows:

min
B

∑
‖x̃i −BBT x̃i‖2.

In matrix notation, this is

min
B
‖X̃− X̃BBT ‖2F

where X̃ = [x̃1, . . . , x̃n]
T ∈ R

n×d. The minimum occurs when X̃BBT = X̃k,

the best rank-k approximation of X̃, and the corresponding minimizer B
can be taken to be the matrix consisting of the top k right singular vectors

of X̃:

B = (v1, . . . ,vk) where X̃ = UΣVT .

We have thus proved the following result.

Theorem 2.8. A best-fit subspace to the data is given by

x = m+Bα

where

m = center, B = top k right singular vectors of X̃,

and the projection of X̃ onto the best-fit k-plane is X̃k.

Example 2.7. Computer demonstration.

2.5. Data analysis.
2.5.1. Principal component analysis (PCA).

Example 2.8. Consider a plane embedded in R
10, from which we sample

100 points and add noise to the data. We can use PCA to reduce dimension
and visualize the data. Additional effects include denoising.

Definition 2.6. The new coordinates of the centered data X̃ with re-
spect to the basis V(:, 1 : k), i.e., rows of

X̃V(:, 1 : k)T = U(:, 1 : k)Σ(1 : k, 1 : k)

are called the principal components.

Theorem 2.9. For each 1 ≤ j ≤ k, the variance of the projection of X̃
onto the vj is σ2

j . Moreover, these variances are the largest possible.
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Proof. We can show that the right singular vectors are solutions of the
following problems:

σ1 = max
v: ‖v‖2=1

‖Av‖2
σ2 = max

v: ‖v‖2=1,vT
1 v=0

‖Av‖2
σ3 = max

v: ‖v‖2=1,vT
i v=0,i=1,2

‖Av‖2
...

�
Remark. PCA selects the orthogonal directions that maximize the vari-
ances of the projections onto each of those directions.

Algorithm 1 Principal component analysis (PCA)

Input: Data set X = [x1, . . . ,xn]
T and target dimension k

Return:
1: Center of the data set: x̄ (a point on the best-fit subspace)

2: Top k right singular vectors of X̃ (an orthonormal basis for the best-fit
subspace)

3: The singular values σi (standard deviation of projection onto the ith
principal direction)

4: Principal components X̃V(:, 1 : k) = U(:, 1 : k)Σ(1 : k, 1 : k)

Example 2.9 (Eigenfaces). Take many images of the facial images in
frontal pose from the Exendend Yale B dataset and apply SVD to learn a
basis.

Question 1: How do we select k?
There are several ways to determine k:

• Set k= # dorminant singular values (effective rank)
• Choose k such that the top k principal directions explain a certain
amount of variance in the data (e.g., 95%):∑k

i=1 σ
2
i∑

i σ
2
i

> 95%

Each criterion corresponds to a plot.
2.5.2. Data compression. Storage is reduced from nd to k(n+d+1)+1.

X ≈ UΣVT +m

Example 2.10. Take a digital image (matrix) and apply SVD to obtain
low-rank approximations. Show the corresponding images.

2.5.3. Other practical issues. Question 2: Is SVD robust to out-
liers?
We will do an experiment to find out.

Question 3: What if we have nonlinear data?
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Figure 3. Sensitivity of PCA to outliers

SVD: A Summary

A. Singular Value Decomposition: A = UΣVT =
∑

i σiuiv
T
i .

Here, U,V have orthonormal columns and Σ is diagonal.

B. Matrix Norms.

• Frobenius: ‖A‖F =
√∑

a2ij =
√∑

σ2
i (A)

• Spectral: ‖A‖2 = maxq:‖q‖2=1 ‖Aq‖2 = σmax(A) = σ1(A)
• Nuclear: ‖A‖∗ =

∑
σi(A)

C. Low Rank Matrix Approximation. The best rank-k approxima-
tion of a matrix A (under both the Frobenius norm and the spectral norm)

is Ak =
∑k

i=1 σiuiv
T
i .

D. Principal Component Analysis (PCA).

X̃ = X− x̄ = UΣVT

Things to keep in mind:

(1) The rows of X represent the given data points, while those of X̃
represent centered data.

(2) x̄ is the center of the data set X, which always lies on the best-fit k-
dimensional subspace (that minimizes the total squared orthogonal
error).

(3) V(:, 1 : k) is an orthonormal basis for the best-fit k-dimensional
subspace.

(4) The rows of X̃k = U(:, 1 : k)Σ(1 : k, 1 : k)V(:, 1 : k)T represent the
coordinates of the projections of the centered data onto the best-fit
subspace.

(5) The rows of U(:, 1 : k)Σ(1 : k, 1 : k), which also equals X̃V(:, 1 : k),
are called the top k principal components of the data, being the
coordinates of the projections on the best-fit subspace relative to
the basis V(:, 1 : k).

(6) The right singular vectors (i.e., columns of V) are the principal
directions in the data along which the variance of the projections
onto each such direction is as large as possible (and equals the
corresponding singular value squared, σ2

j )
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(7) The number of nonzero singular values is the matrix rank of X̃,
while the number of “dominant” singular values is the “effective”

rank of X̃.

In sum, PCA finds in a given data set low dimensional subspaces that

• minimize the total squared orthogonal error; and
• maximize the variances of the projections; and
• preserve the pairwise distances of the points in the data set as
closely as possible.

Applications of SVD.

• Low-rank matrix approximation
• Subspace fitting
• Data compression (including denoising, dimensionality reduction,
visualization)

• Much more: computing matrix pseudoinverse, solving redundant
linear systems, etc.


