Sections 2.1-2.3 Matrix operations

- Matrix addition/subtraction
- Matrix multiplication
- Matrix powers
- Matrix transpose
- Matrix inverse
- The Invertible Matrix Theorem

Section 2.4 Partitioned matrices

Section 2.5 LU decomposition
Matrix Algebra

Introduction

Matrices are **two dimensional arrays** of real numbers that are arranged along rows (first dimension) and columns (second dimension):

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
= [a_1 \ a_2 \ \ldots \ a_n].
\]

We denote matrices that have \(m \) rows and \(n \) columns by \(A \in \mathbb{R}^{m \times n} \), and say that the **size** of the matrix is \(m \times n \).

Vectors can be regarded as matrices with size \(n \times 1 \) (column) or \(1 \times n \) (row).

Sometimes, we also use notation like \(A = (a_{ij})_{1 \leq i \leq m, 1 \leq j \leq n} \), or even \(A = (a_{ij}) \).
Special matrices

We say that A is a **square** matrix if $m = n$ (i.e., equally many rows and columns).

Diagonal matrices are square matrices whose only nonzero entries are in the main diagonal of the matrix

$$A = \begin{bmatrix}
a_{11} & & \\
& \ddots & \\
& & a_{nn}
\end{bmatrix} \quad \leftarrow \text{empty spaces indicate zero}
$$

An **identity matrix** is a diagonal matrix with constant value 1 along the diagonal:

$$I_n = \text{diag}(1, \ldots, 1) \in \mathbb{R}^{n \times n}.$$

Lastly, a **zero matrix** is a matrix with all entries being 0, and denoted as O.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University
Matrix operations

• Scalar multiple of a matrix
• Matrix-vector product
• Adding two matrices of the same size (also letting them subtract)
• Multiplying two matrices of “matching” sizes
• Transpose of a matrix
• Inverse of a square matrix
Def 0.1 (Scalar multiple). Let r be a real number and $A \in \mathbb{R}^{m \times n}$. Then $B = rA$ is defined as a matrix of the same size with entries $b_{ij} = ra_{ij}$.

In matrix form, this is

$$rA = \begin{bmatrix} r a_{11} & r a_{12} & \cdots & r a_{1n} \\ r a_{21} & r a_{22} & \cdots & r a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ r a_{m1} & r a_{m2} & \cdots & r a_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}$$
Def 0.2 (Matrix sum/difference). Let \(A, B \in \mathbb{R}^{m \times n} \). Then the matrix sum \(C = A + B \) is defined as a matrix of the same size with the following entries

\[
C = (c_{ij}), \quad c_{ij} = a_{ij} + b_{ij}
\]

In matrix form, the above definition becomes

\[
A + B = \begin{bmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn}
\end{bmatrix} \in \mathbb{R}^{m \times n}
\]

Remark. The difference of two matrices, \(A - B \), is defined similarly (with every + sign being changed to - sign).
Example 0.1. Let

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}, \quad
B = \begin{bmatrix}
-1 & -1 & -1 \\
1 & 1 & 1
\end{bmatrix}.
\]

Find \(A + B \), \(A - B \), \(3B \) and \(A + 3B \).
The scalar multiple of a matrix and matrix sum satisfy the following **commutative**, **associative** and **distributive** laws.

Theorem 0.1. Let \(\mathbf{A}, \mathbf{B}, \mathbf{C} \) be three matrices of the same size and \(r, s \) be scalars. Then

- \(\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \)
- \(\mathbf{A} + \mathbf{O} = \mathbf{O} + \mathbf{A} = \mathbf{A} \) (\(\mathbf{O} \) is the zero matrix of same size)
- \((\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C}) \)
- \(r(s\mathbf{A}) = (rs)\mathbf{A} \)
- \(r(\mathbf{A} + \mathbf{B}) = r\mathbf{A} + r\mathbf{B} \)
- \((r + s)\mathbf{A} = r\mathbf{A} + s\mathbf{A} \)
Matrix-vector product

Def 0.3. Let $A \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Their product is defined as a vector $y \in \mathbb{R}^m$ of the following form

$$y = Ax = \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{i1} & a_{i2} & \cdots & a_{in} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
= \begin{bmatrix}
 a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\
 \vdots \\
 a_{i1}x_1 + a_{i2}x_2 + \cdots + a_{in}x_n \\
 \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n
\end{bmatrix}
$$

In compact notation,

$$y = (y_i) \in \mathbb{R}^m, \quad \text{with} \quad y_i = \sum_{j=1}^{n} a_{ij}x_j, \quad 1 \leq i \leq m$$
Alternatively (as we have already seen previously), we can multiply a matrix and a vector in a columnwise fashion.

Theorem 0.2. Let $A = [a_1 \ldots a_n] \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Then

$$Ax = [a_1 \ldots a_n] \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \cdot a_1 + \cdots + x_n \cdot a_n.$$

Proof. By definition,

$$Ax = \begin{bmatrix} a_{11}x_1 + \cdots + a_{1n}x_n \\ a_{21}x_1 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \cdots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} a_{11}x_1 \\ a_{21}x_1 \\ \vdots \\ a_{m1}x_1 \end{bmatrix} + \cdots + \begin{bmatrix} a_{1n}x_n \\ a_{2n}x_n \\ \vdots \\ a_{mn}x_n \end{bmatrix} = x_1a_1 + \cdots + x_na_n.$$
Two properties about matrix-vector multiplication

Theorem 0.3. Let $A \in \mathbb{R}^{m \times n}$ and $x, y \in \mathbb{R}^n$ and $r \in \mathbb{R}$. Then

- $A(x + y) = Ax + Ay$
- $A(rx) = r(Ax)$

Remark. They were needed for showing that transformations of the form $f(x) = Ax$ must be linear.
Proof. By the columnwise way of multiplying a matrix and a vector,

\[A(x + y) = [a_1 \ldots a_n] \begin{bmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{bmatrix} = (x_1 + y_1)a_1 + \cdots + (x_n + y_n)a_n \\
= (x_1a_1 + \cdots + x_na_n) + (y_1a_1 + \cdots + y_na_n) \\
= Ax + Ay. \]

Similarly,

\[A(rx) = [a_1 \ldots a_n] \begin{bmatrix} rx_1 \\ \vdots \\ rx_n \end{bmatrix} = (rx_1)a_1 + \cdots + (rx_n)a_n = r \underbrace{x_1a_1 + \cdots + x_na_n}_{Ax}. \]
A third property about matrix-vector multiplication

Theorem 0.4. Let $A, B \in \mathbb{R}^{m \times n}$ and $x \in \mathbb{R}^n$. Then

$$(A + B)x = Ax + Bx.$$

Proof. Let $A = [a_1, \ldots, a_n]$ and $B = [b_1, \ldots, b_n]$. Then

$$A + B = [a_1 + b_1, \ldots, a_n + b_n].$$

It follows that

$$\begin{align*}
(A + B)x &= x_1(a_1 + b_1) + \cdots + x_n(a_n + b_n) \\
&= (x_1a_1 + \cdots + x_na_n) + (x_1b_1 + \cdots + x_nb_n) \\
&= Ax + Bx.
\end{align*}$$
Matrix Algebra

Matrix-matrix multiplications

Def 0.4. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Their product is defined as a matrix $C \in \mathbb{R}^{m \times p}$ with entries

$$c_{ij} = \begin{bmatrix} a_{i1} & \cdots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ \vdots \\ b_{nj} \end{bmatrix} = a_{i1}b_{1j} + \cdots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}.$$

Remark. The matrix-vector product is just the special case of $p = 1$.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 15/75
Example 0.2. Let

\[
\begin{align*}
A &= \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, & B &= \begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 0 & 0 \end{bmatrix}.
\end{align*}
\]

Find AB and BA. Are they the same?

Example 0.3. Let

\[
\begin{align*}
A &= \begin{bmatrix} 2 & 2 \\ 3 & 3 \end{bmatrix}, & B &= \begin{bmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \end{bmatrix}.
\end{align*}
\]

Find AB. Is BA defined?
Why does Morpheus keep asking people if they work from home?

It's dangerous to assume that they commute.

(Taken from https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)
 WARNINGS

- There is no commutative law between matrices: $AB \neq BA$. In fact, not both of them need to be defined at the same time.

- If $AB = O$, then we cannot conclude that $A = O$ or $B = O$.

- There is no cancellation law, i.e., $AB = AC$ does not necessarily imply $B = C$.

Can you give an example for the last statement?
A small, useful result on matrix-matrix-vector product

Theorem 0.5. Let \(A \in \mathbb{R}^{m \times n} \), \(B \in \mathbb{R}^{n \times p} \) and \(x \in \mathbb{R}^p \). Then

\[
(AB)x = A(Bx).
\]

Proof. We compare the entries of both sides. For any \(1 \leq i \leq m \),

\[
((AB)x)_i = \sum_j (AB)_{ij}x_j = \sum_j \sum_k a_{ik}b_{kj}x_j
\]

\[
= \sum_k a_{ik} \sum_j b_{kj}x_j = \sum_k a_{ik} (Bx)_k = (A(Bx))_i.
\]

Remark. The right hand side is much more efficient to compute, especially when having large matrices \(A, B \).
Matrix computing in Matlab (optional)

See the following lecture:
https://www.sjsu.edu/faculty/guangliang.chen/Math250/lec2matrixcomp.pdf

Matlab scripts available on the Math 250 course page:
https://www.sjsu.edu/faculty/guangliang.chen/Math250.html
The columnwise matrix multiplication (very important)

Theorem 0.6. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$. Then

$$C = AB = A[b_1 \ldots b_p] = [Ab_1 \ldots Ab_p]$$

This shows that for each $j = 1, \ldots, p$, the jth column of AB is equal to A times the jth column of B.

\[\begin{array}{c|c}
\text{C} & \text{A} \\
\hline
\end{array}\]

\[\begin{array}{c|c}
& \text{B} \\
\end{array}\]
Properties of matrix multiplication

Theorem 0.7. Let $A \in \mathbb{R}^{m \times n}$. Then

- $A(BC) = (AB)C$ (for $B \in \mathbb{R}^{n \times p}, C \in \mathbb{R}^{p \times q}$)
- $A(B + C) = AB + AC$ (for $B, C \in \mathbb{R}^{n \times p}$)
- $(B + C)A = BA + CA$ (for $B, C \in \mathbb{R}^{\ell \times m}$)
- $r(AB) = (rA)B = A(rB)$ (for $B \in \mathbb{R}^{n \times p}$)
- $I_mA = AI_n = A$.

Proof. Enough to compare columns.
Example 0.4. Compute the following product

\[
\begin{bmatrix}
1 \\
-1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\]
Matrix powers

Def 0.5. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix and k a positive integer. Then the kth power of A is defined as

$$A^k = \underbrace{A \cdot A \cdots A}_{k \text{ copies}}.$$

Example 0.5. Let

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Find A^3 and B^3. What are A^k and B^k for $k > 3$?
Transpose of a matrix

Def 0.6. Let $A \in \mathbb{R}^{m \times n}$ be any matrix. Its transpose, denoted as A^T is defined to the $n \times m$ matrix B with entries $b_{ij} = a_{ji}$.

Remark. During the transpose operation, rows (of A) become columns (of B), and columns become rows.
Example 0.6. Find the transpose of the following matrices:

\[
\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 2 & 4 \\ 4 & 1 \end{bmatrix}, \quad \mathbf{C} = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}
\]
Properties of the matrix transpose

Theorem 0.8. Let A, B be matrices with appropriate sizes for each statement.

- $(A^T)^T = A$
- $(A + B)^T = A^T + B^T$
- For any scalar r, $(rA)^T = rA^T$
- $(AB)^T = B^T A^T$ (not the other product $A^T B^T$, which may not even be defined)

Proof. The first three are obvious. To prove the last one, check the ij-entry of each side. We show the work in class. \qed
Matrix inverse

Just like nonzero real numbers \((a \in \mathbb{R})\) have their reciprocals \((\frac{1}{a})\), certain (not all) square matrices have matrix inverses.

Def 0.7. A square matrix \(A \in \mathbb{R}^n\) is said to be invertible if there exists another matrix of the same size \(B\) such that

\[
AB = BA = I_n.
\]

In this case, \(B\) is called the inverse of \(A\) and we write \(B = A^{-1}\) (\(A\) is also called the inverse of \(B\)).
Example 0.7. Verify that $A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$ and $B = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$ are inverses of each other and then use this fact to solve the matrix equation $Ax = b$ for $b = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.

From the previous example, we can formulate the following theorem.

Theorem 0.9. Consider a matrix equation $Ax = b$ where $A \in \mathbb{R}^{n \times n}$ is a square matrix. If A is invertible, then for any vector $b \in \mathbb{R}^n$, the system has a unique solution $x = A^{-1}b$.

Proof. Since A is invertible, its inverse A^{-1} exists and we can use it to multiply both sides of the equation

$$A^{-1}(Ax) = A^{-1}b$$

By the associative law,

$$(A^{-1}A)x = A^{-1}b$$

which yields that

$$x = A^{-1}b.$$
Illustration of A^{-1} as a transformation
Properties of matrix inverse

Theorem 0.10. Let A, B be two invertible matrices of the same size. Then

- $\left(A^{-1} \right)^{-1} = A$
- $\left(A^T \right)^{-1} = (A^{-1})^T$
- For any nonzero scalar r, $(rA)^{-1} = \frac{1}{r} A^{-1}$
- $\left(AB \right)^{-1} = B^{-1} A^{-1}$ (not the other product $A^{-1} B^{-1}$)

Proof. We verify them in class.
The Invertible Matrix Theorem (part 1)

“For a square matrix, lots of things are the same.”

Theorem 0.11. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:

1. A is invertible.
2. There is an $n \times n$ matrix C such that $CA = I$.
3. The equation $Ax = 0$ only has the trivial solution.
4. A has n pivot positions.
5. A is row equivalent to I_n.
The Invertible Matrix Theorem (part 2)

Theorem 0.12. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:

1. A is invertible.

6. There is an $n \times n$ matrix D such that $AD = I$.

7. The equation $Ax = b$ (for any b) is always consistent.

8. The columns of A span \mathbb{R}^n.

9. The linear transformation $f(x) = Ax$ (from \mathbb{R}^n to \mathbb{R}^n) is onto.
The Invertible Matrix Theorem (part 3)

Theorem 0.13. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then the following statements are all equivalent:

1. A is invertible.

10. A^T is invertible.

3. The equation $Ax = 0$ only has the trivial solution.

11. The columns of A form a linearly independent set.

12. The linear transformation $f(x) = Ax$ is one-to-one.
Summary

Let $A \in \mathbb{R}^{n \times n}$ be a square matrix.

If A is invertible, then all of the following statements are true.

Conversely, if any of the following statement is true, then A must be invertible.

(2) There is an $n \times n$ matrix C such that $CA = I$.

(6) There is an $n \times n$ matrix D such that $AD = I$.
(3) The equation $A\mathbf{x} = \mathbf{0}$ only has the trivial solution.

(7) The equation $A\mathbf{x} = \mathbf{b}$ (for any \mathbf{b}) has at least one solution.

(8) The columns of A span \mathbb{R}^n.

(11) The columns of A form a linearly independent set.

(9) The linear transformation $f(\mathbf{x}) = A\mathbf{x}$ (from \mathbb{R}^n to \mathbb{R}^n) is onto.

(12) The linear transformation $f(\mathbf{x}) = A\mathbf{x}$ is one-to-one.
Finding matrix inverse

First consider 2×2 matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}.$$

If $ad - bc \neq 0$, then A is invertible and its inverse is given by the following empirical rule

$$A^{-1} = \frac{1}{ad - bc} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Example 0.8. Use the above rule to find the inverse of

$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
In general, given an invertible matrix $A \in \mathbb{R}^{n \times n}$ (for any n), finding its inverse is equivalent to solving the matrix equation

$$AX = I_n, \quad \text{or equivalently} \quad A[x_1, \ldots, x_n] = [e_1, \ldots, e_n]$$

This leads to n separate systems of linear equations:

$$Ax_1 = e_1 \quad (\text{i.e. } [A \mid e_1]), \quad \ldots, \quad Ax_n = e_n \quad (\text{i.e. } [A \mid e_n]).$$

which may be solved simultaneously:

$$[A \mid [e_1, \ldots, e_n]] = [A \mid I_n] \longrightarrow [I_n \mid A^{-1}].$$
Example 0.9. Find the inverse of the matrix

\[
\mathbf{A} = \begin{bmatrix}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{bmatrix},
\]

if it exists.
Partitioned matrices

A partitioned matrix, also called a block matrix, is a matrix whose elements have been divided into blocks (called submatrices).

For example,

\[
A = \begin{bmatrix}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
0 & 0 & 0 & 7 & 8 \\
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
3 & 3 & 3 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{bmatrix}
\]

Partitioned matrices are very useful because they reduce large matrices into a collection of smaller matrices (which are easier to deal with).
Addition and scalar multiplication

If two matrices A, B have the same size and have been partitioned in exactly the same way, then we can just add the corresponding blocks to get their sum (with the same partition):

$$A + B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32} \end{bmatrix} = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

The scalar multiple of a partitioned matrix is

$$rA = \begin{bmatrix} rA_{11} & rA_{12} \\ rA_{21} & rA_{22} \\ rA_{31} & rA_{32} \end{bmatrix}$$
Multiplication of partitioned matrices: simple cases

Let $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$ be two matrices that may be multiplied together.

When the columns of A and rows of B are divided in a conformable way, we can carry out block multiplication:

\[
A B = A_{11} B_{11} + A_{12} B_{21} + A_{13} B_{31}
\]

Remark.

- All terms $AB, A_{11}B_{11}, A_{12}B_{21}, A_{13}B_{31}$ are $m \times p$ matrices.
- Such partitions do not show up in the product matrix.
Example 0.10. Let

\[A = \begin{bmatrix} 1 & 2 & 3 & 0 & 0 \\ 4 & 5 & 6 & 0 & 0 \\ 7 & 8 & 9 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} \]

Find \(AB \) using two ways: (a) direct multiplication (b) block multiplication.

Answer.

\[AB = \begin{bmatrix} 6 & -6 \\ 15 & -15 \\ 24 & -24 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \]
A joke

How does a mathematician change three light bulbs at the same time?

He gives them to three engineers and ask them to do it in parallel.
Let \(A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} \) be two matrices that are partitioned in a conformable way (i.e., column partition of \(A \) matches row partition of \(B \)).

Regardless of the row partition of \(A \) and column partition of \(B \), we can carry out block multiplications by treating the blocks as numbers.

Remark. Row partition of \(A \ + \) column partition of \(B \) = partition of \(AB \) (such two partitions do not need to match).
In terms of math symbols, that is

\[
\mathbf{AB} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} \cdot \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22} \\
B_{31} & B_{32}
\end{bmatrix}
\]

\[
= \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} + A_{13}B_{31} & A_{11}B_{12} + A_{12}B_{22} + A_{13}B_{32} \\
A_{21}B_{11} + A_{22}B_{21} + A_{23}B_{31} & A_{21}B_{12} + A_{22}B_{22} + A_{23}B_{32} \\
A_{31}B_{11} + A_{32}B_{21} + A_{33}B_{31} & A_{31}B_{12} + A_{32}B_{22} + A_{33}B_{32}
\end{bmatrix}
\]

In the above, we can think of \(\mathbf{A} \) as a \(3 \times 3 \) partitioned matrix and \(\mathbf{B} \) as a \(3 \times 2 \) partitioned matrix, so that we must obtain a \(3 \times 2 \) partitioned matrix.
Example 0.11. Verify that

\[
\begin{bmatrix}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
7 & 8 & 9 & 0 & 0
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & -1 \\
1 & -1 \\
1 & -1 \\
1 & -1
\end{bmatrix}
=
\begin{bmatrix}
6 & -6 \\
15 & -15 \\
24 & -24
\end{bmatrix}
\]
Example 0.12. Show that

\[
\begin{bmatrix}
U_1 & U_2
\end{bmatrix}
\begin{bmatrix}
\Sigma & O \\
O & O
\end{bmatrix}
\begin{bmatrix}
V_1 \\
V_2
\end{bmatrix} = U_1 \Sigma V_1
\]

(assuming all submatrices are compatible with each other)
Matrix multiplication again

The columnwise multiplication of two compatible matrices $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$ actually has already used simple partitions of matrices:

$$AB = A[b_1 \ldots b_p] = [Ab_1 \ldots Ab_p]$$
We present two new ways of performing matrix multiplication:

- **Rowwise** multiplication

\[
\begin{align*}
AB &= \begin{bmatrix} A_1 \\ \vdots \\ A_m \end{bmatrix} B = \begin{bmatrix} A_1 B \\ \vdots \\ A_m B \end{bmatrix} \\
\end{align*}
\]

where \(A_1, \ldots, A_m \) are the rows of \(A \).
Column-row expansion

\[
AB = \begin{bmatrix} a_1 & \ldots & a_n \end{bmatrix} \begin{bmatrix} B_1 \\ \vdots \\ B_n \end{bmatrix} = a_1 B_1 + \cdots + a_n B_n
\]
Example 0.13. Find the product of $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$ by using three different ways:

(a) Columnwise multiplication

(b) Rowwise multiplication and

(c) Column-row multiplication
Block diagonal matrices

Def 0.8. A matrix is said to be **block diagonal** if it is of the form

\[
A = \begin{bmatrix}
A_{11} & \\
& A_{22}
\end{bmatrix}
\]

Example 0.14.

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
2 & 2
\end{bmatrix}
\]
Theorem 0.14. Let A, B be two block diagonal matrices with conformable partitions:

\[
A = \begin{bmatrix} A_{11} & \quad & \\
& & \\
& & A_{22}
\end{bmatrix}, \quad B = \begin{bmatrix} B_{11} & \quad & \\
& & \\
& & B_{22}
\end{bmatrix}
\]

Then we have

\[
AB = \begin{bmatrix} A_{11}B_{11} & \\
& \\
& A_{22}B_{22}
\end{bmatrix}.
\]

Proof. By direct verification. \(\square\)

Remark. This formula also generalizes to three or more blocks.
The previous result immediately implies the following.

Theorem 0.15. For a block diagonal matrix

\[
A = \begin{bmatrix} A_{11} & \newline A_{21} \\ \newline A_{12} & A_{22} \end{bmatrix},
\]

if the two blocks are both square and invertible, then \(A \) is also invertible. Moreover,

\[
A^{-1} = \begin{bmatrix} A_{11}^{-1} & \newline A_{21}^{-1} \\ \newline A_{12}^{-1} & A_{22}^{-1} \end{bmatrix}
\]

Proof. By direct verification. \(\square \)
Example 0.15. Find the inverse of

\[
\begin{bmatrix}
1 & 2 \\
1 & 3 \\
\hline
1 & 3
\end{bmatrix}
\]
Block upper triangular matrices

Def 0.9. A matrix is said to be **block upper triangular** if it is of the form

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
& \\
& A_{22}
\end{bmatrix}
\]

Example 0.16.

\[
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\hline
1 & 0 \\
0 & 1 \\
3 & 3 \\
1 & 1 \\
2 & 2
\end{bmatrix}
\]
Theorem 0.16. For a block upper triangular matrix

\[\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} \\ A_{12}^T & A_{22} \end{bmatrix}, \]

if the two main blocks are both square and invertible, then \(\mathbf{A} \) is also invertible, and

\[\mathbf{A}^{-1} = \begin{bmatrix} A_{11}^{-1} & -A_{11}^{-1}A_{12}A_{22}^{-1} \\ A_{22}^{-1} \end{bmatrix} \]

Proof. By direct verification.
Example 0.17. Find the inverse of

\[
\begin{bmatrix}
1 & 2 & 1 \\
1 & 3 & 1 \\
1 & 3 & 1 \\
\end{bmatrix}
\]
LU decomposition

In this part, we will derive a factorization scheme to express a given matrix $A \in \mathbb{R}^{m \times n}$ as a product of two matrices of special forms

$$A = L \cdot U = \begin{bmatrix} 1 & * & * & * & * \\ * & 1 & * & * & * \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * \\ * & * & * \\ * & * \end{bmatrix}$$

where $L \in \mathbb{R}^{m \times m}$ is square, lower-triangular with 1’s on the diagonal (called unit lower triangular), and $U \in \mathbb{R}^{m \times n}$ is the REF of A (which is upper triangular).

Such a factorization is very useful for solving linear systems $Ax = b$.
For example, the following is an LU decomposition (verify this):

\[
\begin{bmatrix}
3 & -7 & -2 \\
-3 & 5 & 1 \\
6 & -4 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 1 & 1 \\
-1 & 2 & -5 \\
0 & 0 & 1
\end{bmatrix}
\cdot
\begin{bmatrix}
3 & -7 & -2 \\
-2 & -1 & 0 \\
-1 & 0 & 0
\end{bmatrix}
\]

To use it to solve the system of linear equations

\[Ax = b, \quad \text{where} \quad b = \begin{bmatrix} -7 & 5 & 2 \end{bmatrix}^T \]

we first rewrite the equation as

\[Ax = (LU)x = L(Ux) = b\]
and then solve two simper systems in the order

\[Ly = b \quad \rightarrow \quad Ux = y \]

That is, from the first equation, we obtain that
\[y = \begin{bmatrix} -7 & -2 & 6 \end{bmatrix}^T \]
and then use it to solve the second equation for
\[x = \begin{bmatrix} 3 & 4 & -6 \end{bmatrix}^T \]
(work done in class).

Verify:
\[
\begin{bmatrix}
 3 & -7 & -2 \\
 -3 & 5 & 1 \\
 6 & -4 & 0
\end{bmatrix}
\begin{bmatrix}
 3 \\
 4 \\
 -6
\end{bmatrix} =
\begin{bmatrix}
 -7 \\
 -5 \\
 2
\end{bmatrix}.
\]

However, how to find such a decomposition in the first place will require the introduction of the so-called **elementary matrices**.
Elementary matrices

Elementary matrices are (square) matrices that can be obtained from the identity matrix through a single elementary row operation.

\[
\begin{align*}
M_i(r) & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \\
R_{i\leftarrow j}(k) & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \\
P_{ij} & = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}
\end{align*}
\]
Performing an elementary row operation on a given matrix can now is equivalent to matrix multiplication (the elementary matrix left multiplies the given matrix).

- $M_i(r)$ - Multiply row i by a nonzero scalar r

\[
M_3(r)A = \begin{bmatrix} 1 & 1 & r \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ r a_{31} & r a_{32} & r a_{33} & r a_{34} \end{bmatrix}
\]
Matrix Algebra

- $\mathbf{R}_{i\leftarrow j}(k)$ - Add a scalar multiple (k) of one row (j) to another row (i) to replace that row (i):

 - Downward replacement

$$\mathbf{R}_{3\leftarrow 1}(k)\mathbf{A} = \begin{bmatrix} 1 & 1 & a_{11} & a_{12} & a_{13} & a_{14} \\ k & 1 & a_{21} & a_{22} & a_{23} & a_{24} \\ & & a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ ka_{11} + a_{31} & ka_{12} + a_{32} & ka_{13} + a_{33} & ka_{14} + a_{34} \end{bmatrix}$$
– Upward replacement

$$\mathbf{R}_{1\leftarrow 3}(k) \mathbf{A} = \begin{bmatrix} 1 & k \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11} + ka_{31} & a_{12} + ka_{32} & a_{13} + ka_{33} & a_{14} + ka_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}$$
Matrix Algebra

- Interchange two rows

\[
P_{12}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix}
\]

\[
P_{13}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{11} & a_{12} & a_{13} & a_{14} \end{bmatrix}
\]

\[
P_{23}A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{bmatrix}
\]
An important fact

Elementary matrices are all invertible (because elementary row operations are all reversible)

\[
M_i\left(\frac{1}{r}\right) \cdot M_i(r) = I \\
R_{i \leftarrow j}(-k) \cdot R_{i \leftarrow j}(k) = I \\
P_{ij} \cdot P_{ij} = I
\]

and their inverses are the same kind of elementary matrices!

\[
M_i(r)^{-1} = M_i\left(\frac{1}{r}\right) \\
R_{i \leftarrow j}(k)^{-1} = R_{i \leftarrow j}(-k) \\
P_{ij}^{-1} = P_{ij}
\]
Application of elementary matrices in finding matrix inverse

Previously we presented a procedure for finding the inverse of a square, invertible matrix

\[
\begin{bmatrix}
A & I_n
\end{bmatrix}
\xrightarrow{\text{elementary row operations}}
\begin{bmatrix}
I_n & A^{-1}
\end{bmatrix}
\]

This is equivalent to using a sequence of elementary matrices \(E_1, E_2, \ldots, E_\ell\) to left multiply the augmented matrix:

\[
E_\ell \cdots E_2 E_1 \cdot \begin{bmatrix}
A & I_n
\end{bmatrix} = \begin{bmatrix}
I_n & A^{-1}
\end{bmatrix}
\]

Through matrix block multiplication, we obtain

\[
\begin{bmatrix}
E_\ell \cdots E_2 E_1 A & E_\ell \cdots E_2 E_1
\end{bmatrix} = \begin{bmatrix}
I_n & A^{-1}
\end{bmatrix}
\]

This shows that

\[
A^{-1} = E_\ell \cdots E_2 E_1
\]
Application of elementary matrices in finding matrix REF

Similarly, give any matrix \(A \in \mathbb{R}^{m \times n} \), one can perform a sequence of elementary row operations through corresponding elementary matrices \(E_1, E_2, \ldots, E_\ell \) to transform the given matrix into its REF

\[
E_\ell \cdots E_2 E_1 A = U
\]

This yields that

\[
A = (E_\ell \cdots E_2 E_1)^{-1} U = E_1^{-1} E_2^{-1} \cdots E_\ell^{-1} U
\]

Note that \(U \) (as REF) must be upper triangular.
Existence of the LU decomposition

In some cases, one only needs to use a sequence of downward replacement operations (i.e., $R_{i\leftarrow j}(k)$ for $j < i$) to transform a matrix $A \in \mathbb{R}^{m \times n}$ into its REF $U \in \mathbb{R}^{m \times n}$. That is,

$$
A = \underbrace{E_\ell \cdots E_2 E_1}_{\text{all downward replacements}} \quad A = U
$$

Then

$$
A = \underbrace{E_1^{-1} E_2^{-1} \cdots E_\ell^{-1}}_{\text{also downward replacements}} \quad U = \underbrace{L}_{\text{lower triangular}} \underbrace{U}_{\text{REF}}
$$

Remark. In other cases, one can always rearrange the rows of A in a way such that an LU decomposition exists.
Finding the L matrix

When a matrix $A \in \mathbb{R}^{m \times n}$ has an LU decomposition, we can find it as follows:

$$E_\ell \cdots E_2 E_1 A = \underbrace{U}_{\text{REF}}$$

$$E_\ell \cdots E_2 E_1 L = I$$

\[\leftarrow L = E_1^{-1} E_2^{-1} \cdots E_\ell^{-1}\]

That is, we will try to design a matrix L (lower triangular with 1’s on the diagonal) so that the same row operations performed on A toward its REF will transform L into the identity matrix.
Example 0.18. Find the LU decomposition of

\[A = \begin{bmatrix} 3 & -7 & -2 \\ -3 & 5 & 1 \\ 6 & -4 & 0 \end{bmatrix} \]
Example 0.19. Find the LU decomposition of

$$A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & -1 & 9 & 8 \end{bmatrix}$$