Worksheet 14: Diagonalization of symmetric matrices
Example 0.118. The following matrices are all symmetric:

$$
\left[\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right], \quad\left[\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 1
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Example 0.119. Diagonalize the following symmetric matrices:

$$
\left[\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Example 0.120. Diagonalize the following symmetric matrices through orthogonal matrices:

$$
\left[\begin{array}{ll}
7 & 2 \\
2 & 4
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Example 0.121. Determine the positive definiteness of each of the following symmetric matrices by finding their eigenvalues:

$$
\left(\begin{array}{ll}
1 & 3 \\
3 & 2
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right), \quad\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right)
$$

