Worksheet 3: partitioned matrices

Example 0.20. Let

$$
\mathbf{A}=\left[\begin{array}{lll|ll}
1 & 2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 & 0 \\
7 & 8 & 9 & 0 & 0
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{cc}
1 & -1 \\
1 & -1 \\
1 & -1 \\
\hline 1 & -1 \\
1 & -1
\end{array}\right]
$$

Find AB using two ways: (a) direct multiplication (b) block multiplication.
Answer (we have already worked out this last time).

$$
\mathbf{A B}=\left[\begin{array}{cc}
6 & -6 \\
15 & -15 \\
24 & -24
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & -1 \\
1 & -1 \\
1 & -1
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

Example 0.21. Show that

$$
\left[\begin{array}{ll}
U_{1} & U_{2}
\end{array}\right]\left[\begin{array}{cc}
\Sigma & O \\
O & O
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{T}=U_{1} \Sigma V_{1}^{T}
$$

(assuming all submatrices are compatible with each other)

Example 0.22. Find the product of $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 0 \\ 1 & 0\end{array}\right]$ by using three different ways: (a) Columnwise multiplication (b) Rowwise multiplication and (c) Column-row multiplication

Example 0.23. Find the inverse of $\left[\begin{array}{ll|l}1 & 2 & \\ 1 & 3 & \\ \hline & & 4\end{array}\right]$

Example 0.24. Find the inverse of

$$
\left[\begin{array}{ll|l}
1 & 2 & 1 \\
1 & 3 & 1 \\
\hline & & 4
\end{array}\right]
$$

