Worksheet 6: Applications of matrix determinant

Example 0.42. Find the determinant of

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & -7 & -3 \\
6 & 0 & -5 \\
2 & 7 & -2
\end{array}\right]
$$

and use it to determine
(a) if the columns of \mathbf{A} are linearly independent;
(b) if the linear transformation $f(\mathbf{x})=\mathbf{A x}$ is one-to-one, or onto, or both.

Example 0.43. Use Cramer's rule to solve the following equation

$$
\begin{aligned}
& 5 x_{1}+7 x_{2}=3 \\
& 2 x_{1}+4 x_{2}=1
\end{aligned}
$$

Example 0.44. Use the adjoint to find the inverse of the matrix

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 4 & 1
\end{array}\right]
$$

Example 0.45. Find

(a) the area of the parallelogram spanned by $\mathbf{a}_{1}=(1,2)^{T}, \mathbf{a}_{2}=(3,4)^{T}$
(b) the volume of the parallelepiped spanned by $\mathbf{a}_{1}=(1,0,0)^{T}, \mathbf{a}_{2}=(0,1,0)$, and $\mathbf{a}_{3}=$ $(1,1,1)$.

