Worksheet 9: Coordinate system

Example 0.61. Find the coordinate vector of $\mathbf{x}=[2,5]^{T} \in \mathbb{R}^{2}$ relative to the basis given by the columns of $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Example 0.62. We have previously showed that the columns of the matrix form a basis for \mathbb{R}^{3} :

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

and for $\mathbf{b}=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{T} \in \mathbb{R}^{3}$, we obtained that

$$
\mathbf{b}=(-1) \mathbf{a}_{1}+(-2) \mathbf{a}_{2}+2 \mathbf{a}_{3} .
$$

Therefore, the coordinates of \mathbf{b} relative to the basis (columns of \mathbf{A}) are $[-1,-2,2]^{T}$.

Example 0.63. Let $V=\{$ all polynomials of degree at most 2$\}$. Then V is a vector space with basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$. The coordinate mapping from V to \mathbb{R}^{3} is

$$
\mathbf{v}=c_{0}+c_{1} t+c_{2} t^{2} \quad \mapsto \quad[\mathbf{v}]_{\mathcal{B}}=\left[c_{0}, c_{1}, c_{2}\right]^{T} \in \mathbb{R}^{3}
$$

It can be shown that this is a 1-to-1 linear transformation (isomorphism) from V to \mathbb{R}^{3} and the two vector spaces are identical algebraically.

Example 0.64. Let $\mathbf{v}_{1}=[1,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}\right\}$ is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}\right\} \subset \mathbb{R}^{2}$. Determine if $\mathbf{x}=[5,5]^{T}$ is in H, and if yes, find its coordinate vector relative to \mathcal{B}.

Example 0.65. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,0,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for $H=$ $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subset \mathbb{R}^{3}$. Determine if $\mathbf{x}=[3,2,1]^{T}$ is in H, and if yes, find its coordinate vector relative to \mathcal{B}.

