Worksheet 1b: system of linear equations

Example 0.5. Describe the solution sets of the homogeneous system (of only one equation)

$$
x_{1}-3 x_{2}+2 x_{3}=0
$$

and the nonhomogeneous system

$$
x_{1}-3 x_{2}+2 x_{3}=1
$$

as well as their relationship.

Example 0.6. Determine if the following vectors are linearly independent:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]
$$

Example 0.7. Determine in each case if the vectors are linearly independent.
(1) $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}5 \\ 6\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}7 \\ 8\end{array}\right]$
(2) $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(3) $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 4 \\ 6 \\ 7\end{array}\right]$
(4) $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Example 0.8. Consider the transformation

$$
T: \mathbb{R} \mapsto \mathbb{R}, \quad \text { with } \quad T(x)=x^{2}
$$

Determine the domain, co-domain (target space), and range of T.

Example 0.9. Let $\mathbf{A}=\left[\begin{array}{ccc}1 & 2 & 3 \\ 1 & 0 & -1\end{array}\right]$. Then the matrix \mathbf{A} may be used to define a transformation

$$
T: \mathbb{R}^{3} \mapsto \mathbb{R}^{2}, \quad \text { with } \quad T(\mathbf{x})=\mathbf{A x}
$$

Answer the following questions:

- What are the domain and co-domain of T ?
- What is the image of $\mathbf{x}=\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right]$?
- Which points in \mathbb{R}^{3} have an image of $\mathbf{o} \in \mathbb{R}^{2}$?
- What is the range of T ?

Example 0.10. Determine the linear transformation that maps the points $(2,0),(1,1)$ in \mathbb{R}^{2} to $(-1,0),(0,-1)$ in \mathbb{R}^{2}, respectively.

Example 0.11. Determine in each case, if the linear transformation $T(\mathbf{x})=\mathbf{A} \mathbf{x}$ is one-to-one, or onto, or both.

- $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$
- $\mathbf{A}=\left[\begin{array}{ll}3 & 1 \\ 5 & 7 \\ 1 & 3\end{array}\right]$
- $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

