Chapter 4: Vector Spaces

San Jose State University

Prof. Guangliang Chen

Fall 2022

Outline

Section 4.1 Vector spaces and subspaces
Section 2.8 Subspaces of \mathbb{R}^{n}
Sections 4.2 Null space, column space and linear transformation
Sections 4.3 Basis for a vector space
Sections 4.4 Coordinate system
Sections 4.5 Dimension of a vector space
Sections 4.6 Rank of a matrix
Sections 4.7 Change of basis

Vector Spaces

Introduction

In this chapter we introduce vector spaces and the associated notions of

- Subspace
- Dimension
- Basis
- Coordinate system

Meanwhile, we cover the following matrix concepts

- Column/ null space
- Rank

Vector Spaces

Euclidean spaces

For any integer $n \geq 1$, the n-dimensional Euclidean space is the set of all n-dimensional vectors

$$
\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}, \ldots, x_{n} \text { are real numbers }\right\}
$$

R^{2} (all ordered pairs)

Vector Spaces

Euclidean spaces are endowed with two kinds of operations, vector addition and scalar multiplication, which satisfy the following properties:
(vector addition)
(1) For any $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$, the sum is in the same space: $\mathbf{u}+\mathbf{v} \in \mathbb{R}^{n}$.
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutative law)
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associative law)
(4) There is a zero vector: $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) For each vector \mathbf{u}, there is a vector $-\mathbf{u} \in \mathbb{R}^{n}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ (opposite vector must also be contained)

Vector Spaces

(scalar multiplication)

(6) Any scalar multiple of vector must also be in $\mathbb{R}^{n}: c \mathbf{u} \in \mathbb{R}^{n}$ (for any real number c and vector $\mathbf{u} \in \mathbb{R}^{n}$)
(7) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ (distributive law)
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ (distributive law)
(9) $c(d \mathbf{u})=(c d) \mathbf{u}$
(10) $1 \mathbf{u}=\mathbf{u}$

Vector Spaces

What are (abstract) vector spaces?

Formally, a vector space is a (nonempty) set V of objects, called "vectors", that is endowed with two kinds of operations, addition and scalar multiplication, satisfying the same requirements (called axioms):
(1) For any $\mathbf{u}, \mathbf{v} \in V$, the sum is in the same space: $\mathbf{u}+\mathbf{v} \in V$.
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (commutative law)
(3) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$ (associative law)
(4) There is a zero vector $\mathbf{0}$ in $V: \mathbf{u}+\mathbf{0}=\mathbf{u}$
(5) For each vector $\mathbf{u} \in V$, there is a vector $-\mathbf{u} \in V$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ (opposite vector must also be contained)

Vector Spaces

(6) Any scalar multiple of vector must also be in $V: c \mathbf{u} \in V$ (for any real number c and vector $\mathbf{u} \in V$)
(7) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$ (distributive law)
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$ (distributive law)
(9) $c(d \mathbf{u})=(c d) \mathbf{u}$
(10) $\mathbf{1 u}=\mathbf{u}$

Vector Spaces

Examples of (abstract) vector spaces

Example 0.1. The set of all functions $f: \mathbb{R} \mapsto \mathbb{R}$ is a vector space:

- Functions are (abstract) vectors;
- There is an addition defined between functions, e.g., for $f(x)=x^{2}-3 x+1$ and $g(x)=3 x+\sin x$, their sum is $f(x)+g(x)=x^{2}+\sin x+1$, and it satisfies all the requirements.
- Scalar multiplication (between a scalar and a function) is also defined: $5 f(x)=5 x^{2}-15 x+5$, and it meets all the requirements.

Vector Spaces

Example 0.2. The set of all infinite sequences $\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)$ is a vector space:

- Sequences are (abstract) vectors;
- There is an addition defined between sequences
$\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)+\left(b_{1}, b_{2}, \ldots, b_{n}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}, \ldots\right)$
and it satisfies all the requirements.
- Scalar multiplication (between a scalar and a sequence) is also defined:

$$
k\left(a_{1}, a_{2}, \ldots, a_{n}, \ldots\right)=\left(k a_{1}, k a_{2}, \ldots, k a_{n}, \ldots\right)
$$

and it meets all the requirements.

Vector Spaces

Example 0.3. The set of all matrices of a fixed size $\mathbf{A} \in \mathbb{R}^{m \times n}$ is a vector space:

- Matrices are (abstract) vectors;
- There is an addition defined between matrices (of the same size)

$$
\mathbf{A}+\mathbf{B}
$$

and it satisfies all the requirements.

- Scalar multiplication (between a scalar and a matrix) is also defined:

$$
k \mathbf{A}
$$

and it meets all the requirements.

Vector Spaces

Vector spaces are an algebraic system

These vector spaces, though consisting of very different objects (functions, sequences, matrices), are all equivalent to Euclidean spaces \mathbb{R}^{n} in terms of algebraic properties.

- Concepts to be defined for \mathbb{R}^{n}, such as dimension, basis, and subspace, also apply to those vector spaces.
- Properties to be derived for \mathbb{R}^{n} (based on the two operations) will also generalize to other vector spaces.

In this course we will focus on \mathbb{R}^{n} (Math 129B deals with abstract vector spaces in more depth).

Vector Spaces

Subspace (subset of a vector space)

A subset of a vector space is called a subspace, if the subset also resembles a vector space (such as a line in \mathbb{R}^{2} through the origin).

Def 0.1. Let V be a vector space (e.g., \mathbb{R}^{n}). A subspace of V is a subset $H \subseteq V$ that is closed under addition and scalar multiplication:

- H contains the zero vector: $\mathbf{0} \in H$
- H is closed under scalar multiplication: For all real numbers c and vectors $\mathbf{u} \in H$, we have $c \mathbf{u} \in H$
- H is closed under addition: For all $\mathbf{u}, \mathbf{v} \in H$, we have $\mathbf{u}+\mathbf{v} \in H$

Vector Spaces

$$
V=R^{2}
$$

Not a subspace

Vector Spaces

Example 0.4. Consider the vector space $V=\mathbb{R}^{2}$.

- Any line going through the origin in \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}. In contrast, any line not passing through the origin is NOT a subspace.
- In fact, the single-element subset containing only the origin $\{\mathbf{0}\}$ is also a subspace of \mathbb{R}^{2}. It is called the zero subspace.
- The full vector space \mathbb{R}^{2} is also a subspace of itself (though also a trivial one).

Remark. Lines going through the origin in \mathbb{R}^{2} are called proper subspaces of \mathbb{R}^{2}.

Vector Spaces

Example 0.5. For the vector space $V=\mathbb{R}^{3}$,

- Lines and planes passing through the origin are proper subspaces.
- $\{0\}$ and \mathbb{R}^{3} are trivial subspaces.

Question: Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ?

Vector Spaces

Example 0.6. For the vector space $V=\mathbb{R}^{3}$,

- Lines and planes passing through the origin are proper subspaces.
- $\{\mathbf{0}\}$ and \mathbb{R}^{3} are trivial subspaces.

Question: Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ?
Answer: It is not, because it is not even a subset of \mathbb{R}^{3}, as they contain vectors of different dimensions.

However, the following is a subspace of \mathbb{R}^{3} :

$$
\left\{(x, y, 0)^{T} \in \mathbb{R}^{3} \mid x, y \text { are real numbers }\right\}
$$

Vector Spaces

Example 0.7. Let V be the vector space of all functions $f: \mathbb{R} \mapsto \mathbb{R}$. Then $H=\{$ All polynomial functions $\}$ is a subspace.

To verify this, note that

- $0 \in H$ (just a trivial polynomial)
- Any scalar multiple of a polynomial is still a polynomial (closed under scalar multiplication)
- Sum of two polynomials is still a polynomial (closed under addition)

A joke

Q: What do you call it when a mathematician's parrot hasn't been fed?
A: Poly"no meal"

Why does Neo have a painting of a sandwich shop on his wall?

He loves a good two-dimensional sub-space.
(Source: https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)

Vector Spaces

Span of a set of vectors is always a subspace

Theorem 0.1. For any set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$, their span

$$
\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=\left\{\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k} \mid c_{1}, \ldots, c_{k} \in \mathbb{R}\right\}
$$

is a subspace of V.

Vector Spaces

Proof. We verify directly the three requirements:

- $\mathbf{0} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}\left(\right.$ when $\left.c_{1}=\cdots=c_{k}=0\right)$;
- Let $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$. For any scalar r,

$$
r \mathbf{v}=\left(r c_{1}\right) \mathbf{v}_{1}+\cdots+\left(r c_{k}\right) \mathbf{v}_{k} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}
$$

- Let $\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}$ and $\mathbf{w}=d_{1} \mathbf{v}_{1}+\cdots+d_{k} \mathbf{w}_{k}$. Then

$$
\mathbf{v}+\mathbf{w}=\left(c_{1}+d_{1}\right) \mathbf{v}_{1}+\cdots+\left(c_{k}+d_{k}\right) \mathbf{v}_{k} \in \operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}
$$

Spaces defined over a matrix (overview)

Given a matrix $\mathbf{A}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}$, one can define the following spaces:

- Column space: Span of its column vectors

$$
\operatorname{Col}(\mathbf{A})=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\} \subseteq \mathbb{R}^{m}
$$

- Null space: Solution set of $\mathbf{A x}=\mathbf{0}$:

$$
\operatorname{Nul}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x}=\mathbf{0}\right\} \subseteq \mathbb{R}^{n}
$$

Vector Spaces

Column space of a matrix

Def 0.2. Let $\mathbf{A}=\left[\mathbf{a}_{1} \ldots \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}$ be any matrix. Its column space is defined as

$$
\operatorname{Col}(\mathbf{A})=\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}
$$

Remark. $\operatorname{Col}(\mathbf{A})$ must be a subspace of \mathbb{R}^{m}.
In terms of the linear transformation $T(\mathbf{x})=\mathbf{A} \mathbf{x}$, the column space of \mathbf{A} is exactly the range of T :

$$
\operatorname{Range}(T)=\left\{\mathbf{b}=\mathbf{A} \mathbf{x} \in \mathbb{R}^{m} \mid \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

Remark. The linear transformation $T(\mathbf{x})$ is onto if and only if $\operatorname{Col}(\mathbf{A})=\mathbb{R}^{m}$.

Vector Spaces

Example 0.8. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 10 \\
3 & 6 & 9 & 10
\end{array}\right]
$$

Do the following:

- Determine if $\mathbf{b}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{T}$ lies in the column space of \mathbf{A}
- Find $\operatorname{Col}(\mathbf{A})$. Is $f(\mathbf{x})=\mathbf{A x}$ onto?

Vector Spaces

Null space of a matrix

Def 0.3. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix. Its null space is defined as

$$
\operatorname{Nul}(\mathbf{A})=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid \mathbf{A x}=\mathbf{0}\right\} .
$$

In terms of the linear transformation $T(\mathbf{x})=\mathbf{A x}$, the null space of \mathbf{A} is called the kernel of T :

$$
\operatorname{Ker}(T)=\left\{\mathbf{x} \in \mathbb{R}^{n} \mid T(\mathbf{x})=\mathbf{0}\right\}=\operatorname{Nul}(\mathbf{A})
$$

Remark. The linear transformation $T(\mathbf{x})=\mathbf{A x}$ is one to one if and only if $\operatorname{Ker}(T)=\operatorname{Nul}(\mathbf{A})=\{\mathbf{0}\}$.

Vector Spaces

Example 0.9. Let

$$
\mathbf{A}=\left[\begin{array}{llll}
1 & 4 & 7 & 10 \\
2 & 5 & 8 & 10 \\
3 & 6 & 9 & 10
\end{array}\right]
$$

Do the following:

- Determine if $\mathbf{x}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{T}$ and $\left.\mathbf{y}=\left[\begin{array}{lll}-5 & 0 & 5\end{array}\right]\right]^{T}$ lie in the null space of \mathbf{A}.
- Find $\operatorname{Nul}(\mathbf{A})$. Is $T(\mathbf{x})=\mathbf{A x}$ one to one?

Vector Spaces

Theorem 0.2. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}, \operatorname{Nul}(\mathbf{A})$ is a subspace of \mathbb{R}^{n}.
Proof. We verify directly the three requirements:

- $\mathbf{0} \in \operatorname{Nul}(\mathbf{A})$ because $\mathbf{A 0}=\mathbf{0}$;
- Let $\mathbf{x} \in \operatorname{Nul}(\mathbf{A})$, i.e., $\mathbf{A x}=\mathbf{0}$. For any scalar c,

$$
\mathbf{A}(c \mathbf{x})=c(\mathbf{A} \mathbf{x})=c \mathbf{0}=\mathbf{0}
$$

This shows that $c \mathbf{x} \in \operatorname{Nul}(\mathbf{A})$.

- Let $\mathbf{x}, \mathbf{y} \in \operatorname{Nul}(\mathbf{A})$. Then

$$
\mathbf{A}(\mathbf{x}+\mathbf{y})=\mathbf{A x}+\mathbf{A y}=\mathbf{0}+\mathbf{0}=\mathbf{0}
$$

This shows that $\mathbf{x}+\mathbf{y} \in \operatorname{Nul}(\mathbf{A})$.

Vector Spaces

Example 0.10. Find the null and column spaces of

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & -5 & 7 \\
3 & 7 & -8
\end{array}\right]
$$

Of which Euclidean spaces are they each a subspace?

Vector Spaces

Answer: They are both subspaces of \mathbb{R}^{3} :

$$
\begin{aligned}
& \operatorname{Col}(\mathbf{A})=\left\{\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)^{T} \in \mathbb{R}^{3} \mid b_{1}=b_{2}+b_{3}\right\}=\operatorname{Span}\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]\right) \\
& \operatorname{Nul}(\mathbf{A})=\operatorname{Span}\left(\left[\begin{array}{c}
-9 \\
5 \\
1
\end{array}\right]\right)
\end{aligned}
$$

Vector Spaces

Basis of a subspace

Consider the span H of the following three vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in V$ (which are linearly dependent). We already know that it is a subspace of V.

Observe that we do not really need all three vectors to span H; in fact, any two of them (e.g., $\mathbf{v}_{1}, \mathbf{v}_{2}$) will be able to span $H . \longrightarrow$ simpler, and more efficient

Vector Spaces

Question: Why can we remove a vector, \mathbf{v}_{3} in this case, from a set without changing the span of the set?

The reason is that \mathbf{v}_{3} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$:

$$
\mathbf{v}_{3}=d_{1} \mathbf{v}_{1}+d_{2} \mathbf{v}_{2} \quad \text { for some scalars } d_{1}, d_{2}
$$

and makes no "new contribution" to the span:

$$
\begin{aligned}
c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3} & =c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+c_{3}\left(d_{1} \mathbf{v}_{1}+d_{2} \mathbf{v}_{2}\right) \\
& =\left(c_{1}+c_{3} d_{1}\right) \mathbf{v}_{1}+\left(c_{2}+c_{3} d_{2}\right) \mathbf{v}_{2}
\end{aligned}
$$

That is, any linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ can always be obtained from $\mathbf{v}_{1}, \mathbf{v}_{2}$ using a different set of coefficients.

Next question: Can we remove one of $\mathbf{v}_{1}, \mathbf{v}_{2}$ while still preserving the span?

Vector Spaces

The answer is obviously no:

- We can only remove a vector that is a linear combination of the others (according to previous reasoning).
- We have to stop removing vectors from a set (if we want to preserve the span) when there is no more vector that is a linear combination of the rest.

This just means that the remaining vectors are linearly independent. This is the smallest set you can use to span the same subspace H, and it is nonempty as long as $H \neq\{\mathbf{0}\}$.

In the book this is called the Spanning Set Theorem.

Vector Spaces

Basis for a subspace

Briefly speaking, a basis for a subspace of a vector space, $H \subseteq V$, is a set of linearly independent vectors that can span H.

Def 0.4. Let $H \subseteq V$ be a subspace of the vector space V. We say that a set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in V$ form a basis for H if

- Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=H$; \longleftarrow This implies that every \mathbf{v}_{i} must be in H.
- The set $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linear independent.

Remark. The definition covers the case of $H=V$, so we can talk about basis for the vector space V.

Vector Spaces

It is easy to see that the set of vectors $\mathbf{v}_{1}=[1,0]^{T}, \mathbf{v}_{2}=[0,1]^{T}$ is a basis for \mathbb{R}^{2}.
In fact, for any positive integer n, the following set of vectors
$\mathbf{e}_{1}=\left[\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{c}0 \\ 1 \\ \ddots \\ 0\end{array}\right], \ldots, \mathbf{e}_{n}=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ 1\end{array}\right]$

is always a basis for \mathbb{R}^{n}.

It is called the standard basis for \mathbb{R}^{n}.

Vector Spaces

Columns of any square, invertible matrix are a basis

Theorem 0.3. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then the columns of \mathbf{A} form a basis for \mathbb{R}^{n} because

- The columns of \mathbf{A} are linearly independent, and
- They span \mathbb{R}^{n}
both by the Invertible Matrix Theorem.

Example 0.11. Show that the columns of $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ form a basis for \mathbb{R}^{2}.

Vector Spaces

Example 0.12. Determine if the columns of the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

form a basis for \mathbb{R}^{3}.

Vector Spaces

Finding a basis for $\operatorname{Col}(\mathrm{A})$

We first consider a matrix in the RREF and explain how to find a basis for its column space by direct observation.

Example 0.13. Find a basis for the column space of

$$
\mathbf{A}=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Vector Spaces

Example 0.14. Find a basis for the column space of

$$
\mathbf{B}=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right]
$$

A couple things to note first:

- A on the preceding slide is actually the RREF of \mathbf{B}.
- $\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{5}$ are pivot columns. For the other columns of \mathbf{A},

$$
\mathbf{a}_{2}=4 \mathbf{a}_{1}, \quad \mathbf{a}_{4}=2 \mathbf{a}_{1}-\mathbf{a}_{3} .
$$

Do exactly the same dependence relationships hold true for the columns of \mathbf{B} ?

Vector Spaces

The answer is yes, which implies that we can remove $\left\{\mathbf{b}_{2}, \mathbf{b}_{4}\right\}$ and use the remaining columns $\left\{\mathbf{b}_{1}, \mathbf{b}_{3}, \mathbf{b}_{5}\right\}$ as a basis for $\operatorname{Col}(\mathbf{B})$.

To see this, we first point out that there exist a sequence of elementary matrices such that

$$
\underbrace{\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}}_{=\mathbf{E} \text { (invertible) }} \mathbf{B}=\underbrace{\mathbf{A}}_{\text {RREF }}, \quad \text { or } \quad \mathbf{B}=\mathbf{E}^{-1} \mathbf{A}
$$

Using this equation and the columnwise multiplication

$$
\mathbf{b}_{1}=\mathbf{E}^{-1} \mathbf{a}_{1}, \quad \ldots, \quad \mathbf{b}_{5}=\mathbf{E}^{-1} \mathbf{a}_{5}
$$

we can show that any dependence relation among the columns of \mathbf{A}, such as $\mathbf{a}_{4}=2 \mathbf{a}_{1}-\mathbf{a}_{3}$, also holds true for \mathbf{B} :

$$
\mathbf{E}^{-1} \mathbf{a}_{4}=\mathbf{E}^{-1}\left(2 \mathbf{a}_{1}-\mathbf{a}_{3}\right) \quad \longrightarrow \quad \mathbf{b}_{4}=2 \mathbf{b}_{1}-\mathbf{b}_{3} .
$$

Vector Spaces

We have effectively proved the following result.
Theorem 0.4. The pivot columns of any matrix A form a basis for its column space $\operatorname{Col}(\mathbf{A})$.

Remark. To identify the pivot columns of A, a REF would suffice. There is no need to obtain the RREF (which requires more work).

Remark. Do not use the pivot columns from any REF of A toward a basis for $\mathrm{Col}(\mathbf{A})$. Instead, always use the pivot columns of \mathbf{A} to create a basis.

The reason is that row operations actually change the column space, but preserve the dependence relationship among the columns.

Vector Spaces

Basis for $\operatorname{Nul}(\mathrm{A})$

We use an example to explain how to find a basis for the null space of a matrix.
Example 0.15. Find a basis for the null space of

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
-2 & -5 & 7 & 5 \\
3 & 7 & -8 & -5
\end{array}\right]
$$

Answer. By direct calculation, the solution of $\mathbf{A x}=\mathbf{0}$ is

$$
\mathbf{x}=x_{3}\left[\begin{array}{c}
-9 \\
5 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-10 \\
5 \\
0 \\
1
\end{array}\right], \quad x_{3}, x_{4} \text { are free variables }
$$

Vector Spaces

The Unique Representation Theorem

One nice thing about the basis of a vector space V is that it can uniquely span any vector in V.

Theorem 0.5. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be a basis for a vector space V. Then for any vector $\mathbf{v} \in V$, there exists a unique set of scalars c_{1}, \ldots, c_{k} such that

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}
$$

Vector Spaces

Proof. For any given vector \mathbf{v}, the existence of the scalars is due to $\operatorname{Span}(\mathcal{B})=V$.
To prove the uniqueness, suppose there are two sets of scalars such that

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{v}=d_{1} \mathbf{v}_{1}+\cdots+d_{k} \mathbf{v}_{k}
$$

Merging terms gives that

$$
\left(c_{1}-d_{1}\right) \mathbf{v}_{1}+\cdots+\left(c_{k}-d_{k}\right) \mathbf{v}_{k}=\mathbf{0}
$$

Because the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent, we conclude that

$$
c_{1}-d_{1}=\cdots=c_{k}-d_{k}=0, \quad \text { i.e., } \quad c_{1}=d_{1}, \ldots, c_{k}=d_{k} .
$$

Thus, the set of scalars must be unique.

Vector Spaces

Example 0.16. Consider the Euclidean space \mathbb{R}^{n}. Every vector $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)^{T}$ in it has a unique representation under the standard basis:

$$
\mathbf{b}=b_{1} \mathbf{e}_{1}+\cdots+b_{n} \mathbf{e}_{n}
$$

Example 0.17. We have previously showed that the columns of the matrix form a basis for \mathbb{R}^{3} :

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

Let $\mathbf{b}=\left[\begin{array}{lll}1 & 0 & 2\end{array}\right]^{T}$. Find the unique set of scalars c_{1}, c_{2}, c_{3} such that

$$
\mathbf{b}=c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+c_{3} \mathbf{a}_{3} . \longleftarrow \text { Answer }: c_{1}=-1, c_{2}=-2, c_{3}=2
$$

Vector Spaces

Coordinate system

The describe the location of a point in the plane, we need to specify a reference point (origin) and two direction vectors (e.g., east and north).

Vector Spaces

The red point is 4 units to the east and 3 units to the north, relative to the origin.

Vector Spaces

Here is a new but weird way of describing the location of the red point.

Vector Spaces

Coordinates of a vector relative to a basis

In fact, any basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ of a vector space V can be used as a coordinate system to describe the locations of all vectors in the vector space.

For any $\mathbf{v} \in V$, due to the Unique Representation Theorem, there exist a unique set of scalars c_{1}, \ldots, c_{k} such that

$$
\mathbf{v}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}
$$

Def 0.5. The (unique) coefficients c_{1}, \ldots, c_{k} are called coordinates of the vector v relative to the basis \mathcal{B}, or in short \mathcal{B}-coordinates.

We collect them to form a (coordinate) vector and denote it by $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{c}c_{1} \\ \vdots \\ c_{k}\end{array}\right]$.

Vector Spaces

Always label your axes

Prof. Guangliang Chen | Mathematics \& Statistics, San José State University

Vector Spaces

Example 0.18. Find the coordinate vector of $\mathbf{x}=[2,5]^{T} \in \mathbb{R}^{2}$ relative to the basis given by the columns of $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

Example 0.19. We have previously showed that the columns of the matrix form a basis for \mathbb{R}^{3} :

$$
\mathbf{A}=\left[\begin{array}{ccc}
3 & -4 & -2 \\
0 & 1 & 1 \\
-6 & 7 & 5
\end{array}\right]
$$

and for $\mathbf{b}=\left[\begin{array}{ll}1 & 0\end{array}\right)^{T} \in \mathbb{R}^{3}$, we obtained that

$$
\mathbf{b}=(-1) \mathbf{a}_{1}+(-2) \mathbf{a}_{2}+2 \mathbf{a}_{3} .
$$

Therefore, the coordinates of \mathbf{b} relative to the basis (columns of \mathbf{A}) are $[-1,-2,2]^{T}$.

Vector Spaces

Coordinate axes for a subspace

It is also possible to select a coordinate system for a subspace $H \subset V$.

Vector Spaces

Example 0.20. Let $\mathbf{v}_{1}=[1,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}\right\}$ is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}\right\} \subset$ \mathbb{R}^{2}. Determine if $\mathbf{x}=[5,5]^{T}$ is in H, and if yes, find its coordinate vector relative to \mathcal{B}.

Example 0.21. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,0,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subset \mathbb{R}^{3}$. Determine if $\mathbf{x}=[3,2,1]^{T}$ is in H, and if yes, find its coordinate vector relative to \mathcal{B}.

Vector Spaces

What is a dimension?

We have seen that vector spaces have infinitely many vectors inside, yet all of them can be uniquely spanned by a basis (which is often a small, finite set).

The cardinality of the basis (as a set) is an intrinsic property of a vector space. We will use it to define the dimension of the vector space.

Before that we need to address the following question: Could different bases have different sizes?

The answer is no, according to the following theorem.

Theorem 0.6. Any two bases of a vector space must have the same size.

Vector Spaces

Def 0.6. Let V be a vector space with basis \mathcal{B}. The size (or cardinality) of \mathcal{B} is called the dimension of V, and written as $\operatorname{dim}(V)$.

- The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0 .
- If V has a finite basis, then it is said to be finite dimensional.
- If V cannot be spanned by a finite set, then it is said to be infinite dimensional.

Remark. In a k-dimension vector space V, any set of $k+1$ or more vectors must be linearly dependent.

Vector Spaces

Dimensions of various subspaces of \mathbb{R}^{3} :

Remark. An example of infinite dimensional vector spaces is the space of all polynomials. However, the subspace of all polynomials of degree no more than a fixed number, say n, has a dimension $n+1$, thus it is finite-dimensional.

Vector Spaces

Dimension of a subspace

Example 0.22. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,0,1]^{T}$. Then $\mathcal{B}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \subset \mathbb{R}^{3}$. It follows that the dimension of H is 2 , i.e., $\operatorname{dim}(H)=2$.

Theorem 0.7. If $H \subseteq V$, then $\operatorname{dim}(H) \leq \operatorname{dim}(V)$.

Proof. Suppose $H \neq\{\mathbf{0}\}$ (otherwise it is trivially true). Let \mathcal{B} be a basis for H. Because \mathcal{B} is a linearly independent subset of V, its size cannot exceed the dimension of V. That is, $\operatorname{dim}(H) \leq \operatorname{dim}(V)$.

Vector Spaces

The Basis Theorem

Recall that a set of vectors is a basis for a vector space if they are linearly independent and span the vector space.

However, with a correct size (= dimension of the vector space), any one of linear independence or spanning must imply the other and thus makes a basis.

Theorem 0.8. Let V be a k-dimensional vector space.

- Any k linearly independent vectors in V are a basis for V;
- Any k vectors that span V must also be a basis for V.

Vector Spaces

Dimensions of null and column spaces

Theorem 0.9. Let A be any matrix. Then

- The dimension of $\operatorname{Nul}(\mathbf{A})$ is the number of free variables in the equation $\mathbf{A x}=\mathbf{0}$, and
- The dimension of $\operatorname{Col}(\mathbf{A})$ is the number of pivot columns in \mathbf{A}.

Example 0.23. For the following matrix, $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=3$ (pivot columns), and $\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=2$ (free variables).

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 3 & -6 & 6 & 4 \\
3 & -7 & 8 & -5 & 8 \\
3 & -9 & 12 & -9 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{ccccc}
1 & 0 & -2 & 3 & 0 \\
0 & 1 & -2 & 2 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Vector Spaces

Rank of a matrix?

Briefly speaking, the rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the maximal number of linearly independent columns (or rows) of \mathbf{A}.

It is one of the most fundamental characteristics of a matrix.

A lot of properties of a matrix can be determined by its rank. For example, "An $n \times n$ matrix is invertible if and only if the rank is n ".

Vector Spaces

Formally, we define the matrix rank as follows.
Def 0.7. The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as the dimension of the column space of \mathbf{A}, i.e.,

$$
\operatorname{rank}(\mathbf{A})=\operatorname{dim}(\operatorname{Col}(\mathbf{A}))
$$

Example 0.24. For the following matrix,

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 3 & -6 & 6 & 4 \\
3 & -7 & 8 & -5 & 8 \\
3 & -9 & 12 & -9 & 6
\end{array}\right]
$$

its rank is 3 (because we already know that $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=3$). Thus, the maximal number of linearly independent columns is also 3 .

Vector Spaces

The Rank Theorem

Theorem 0.10 . For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
\operatorname{rank}(\mathbf{A})+\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=n .
$$

That is, the column and null spaces of a matrix have a combined dimension that is equal to the number of columns.

Proof. Because

- $\operatorname{rank}(\mathbf{A})=\operatorname{dim}(\operatorname{Col}(\mathbf{A}))$ is equal to the number of pivot columns
- $\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))$ is equal to the number of free variables in $\mathbf{A x}=\mathbf{0}$ their sum must be equal to n (the number of columns).

Vector Spaces

Example 0.25. Consider the matrix again:

$$
\mathbf{A}=\left[\begin{array}{ccccc}
0 & 3 & -6 & 6 & 4 \\
3 & -7 & 8 & -5 & 8 \\
3 & -9 & 12 & -9 & 6
\end{array}\right]
$$

Because its rank is 3 , we must have

$$
\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=n-\operatorname{rank}(\mathbf{A})=5-3=2 .
$$

You may want to verify this by finding a basis for the null space.

Vector Spaces

The Invertible Matrix Theorem (cont'd)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ (square matrix). Then each of the following statements is equivalent to " \mathbf{A} is invertible".

- The columns of \mathbf{A} form a basis for \mathbb{R}^{n}.
- $\operatorname{Col}(\mathbf{A})=\mathbb{R}^{n}$
- $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=n$
- $\operatorname{rank}(\mathbf{A})=n$
- $\operatorname{Nul}(\mathbf{A})=\{\mathbf{0}\}$
- $\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=0$

Vector Spaces

The row space of a matrix

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have defined its column space as the span of the column vectors (which are in \mathbb{R}^{m}). It is a subspace of \mathbb{R}^{m}.

Similarly, we can consider the span of the rows of \mathbf{A} (treated as vectors in \mathbb{R}^{n}), which is called the row space and denoted $\operatorname{Row}(\mathbf{A})$. It is a subspace of \mathbb{R}^{n}.

Clearly, $\operatorname{Row}(\mathbf{A})=\operatorname{Col}\left(\mathbf{A}^{T}\right)$.
Example 0.26. Let $\mathbf{A}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. The column space is the span of $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \in$ \mathbb{R}^{3}, while the row space is the span of $\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right] \in \mathbb{R}^{2}$.

Row operations preserve row space (but not column space)

Theorem 0.11. If two matrices $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ are row equivalent, then their row spaces are the same.

Example 0.27. The following two matrices have the same row space, but not the same column space:

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right] \quad \longrightarrow \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

The reason is that linear combinations of rows of \mathbf{B}, which are linear combinations of rows of \mathbf{A}, are always linear combinations of rows of \mathbf{A} (and vice versa).

Vector Spaces

Proof. Let $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$ be two row equivalent matrices. Then there exists an invertible matrix $\mathbf{E}=\mathbf{E}_{\ell} \cdots \mathbf{E}_{2} \mathbf{E}_{1}$ (which is a product of elementary matrices) such that

$$
\mathbf{E A}=\mathbf{B}
$$

Any linear combination of the rows of \mathbf{B} must be a linear combination of the rows of \mathbf{A} :

$$
\mathbf{c}^{T} \mathbf{B}=\mathbf{c}^{T}(\mathbf{E A})=\left(\mathbf{c}^{T} \mathbf{E}\right) \mathbf{A}
$$

This shows that $\operatorname{Row}(\mathbf{B}) \subseteq \operatorname{Row}(\mathbf{A})$.
Similarly, by using $\mathbf{E}^{-1} \mathbf{B}=\mathbf{A}$ we can show that $\operatorname{Row}(\mathbf{A}) \subseteq \operatorname{Row}(\mathbf{B})$. Therefore, we must have $\operatorname{Row}(\mathbf{A})=\operatorname{Row}(\mathbf{B})$.

Vector Spaces

The previous theorem implies the following result.
Corollary 0.12. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be any matrix and \mathbf{R} its echelon form. Then

$$
\operatorname{Row}(\mathbf{A})=\operatorname{Row}(\mathbf{R})
$$

Example 0.28. Find a basis for the row space of \mathbf{A} :

$$
\mathbf{A}=\left[\begin{array}{cccc}
0 & 3 & -6 & 6 \\
3 & -7 & 8 & -5 \\
3 & -9 & 12 & -9
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -2 & 3 \\
0 & 1 & -2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Note that the first two rows of \mathbf{A} are not necessarily a basis of its row space!

Vector Spaces

Theorem 0.13. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have

$$
\operatorname{dim}(\operatorname{Row}(\mathbf{A}))=\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=\operatorname{rank}(\mathbf{A})
$$

Proof. This is because

- $\operatorname{dim}(\operatorname{Row}(\mathbf{A}))=$ number of pivot rows (nonzero rows);
- $\operatorname{dim}(\operatorname{Col}(\mathbf{A}))=$ number of pivot columns
which must be the same.

Vector Spaces

$\mathrm{A}, \mathrm{A}^{T}$ must have the same rank

Corollary 0.14. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we have

$$
\operatorname{rank}\left(\mathbf{A}^{T}\right)=\operatorname{rank}(\mathbf{A})
$$

Proof. $\operatorname{rank}\left(\mathbf{A}^{T}\right)=\operatorname{dim}\left(\operatorname{Col}\left(\mathbf{A}^{T}\right)\right)=\operatorname{dim}(\operatorname{Row}(\mathbf{A}))=\operatorname{rank}(\mathbf{A})$.

Vector Spaces

Example 0.29 (p233). Find a basis for each of the row/column/null spaces of the following matrix

$$
\mathbf{A}=\left[\begin{array}{ccccc}
-2 & -5 & 8 & 0 & -17 \\
1 & 3 & -5 & 1 & 5 \\
3 & 11 & -19 & 7 & 1 \\
1 & 7 & -13 & 5 & -3
\end{array}\right] \quad \longrightarrow \quad \mathbf{B}=\left[\begin{array}{ccccc}
1 & 3 & -5 & 1 & 5 \\
0 & 1 & -2 & 2 & -7 \\
0 & 0 & 0 & -4 & 20 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Vector Spaces

The change of basis problem

Assume two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}$ for \mathbb{R}^{2}. For a fixed point $\mathbf{x} \in \mathbb{R}^{2}$, suppose we know its coordinates with respect to $\mathcal{B}:[\mathbf{x}]_{\mathcal{B}}=[3,1]^{T}$. What is its coordinate vector $[\mathbf{x}]_{\mathcal{C}}$ with respect to \mathcal{C} ?

Vector Spaces

Solution. Define two basis matrices

$$
\mathbf{P}_{\mathcal{B}}=\left[\mathbf{b}_{1}, \mathbf{b}_{2}\right], \quad \mathbf{P}_{\mathcal{C}}=\left[\mathbf{c}_{1}, \mathbf{c}_{2}\right] .
$$

Then we have

$$
\mathbf{P}_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}}=\mathbf{x}=\mathbf{P}_{\mathcal{C}} \cdot[\mathbf{x}]_{\mathcal{C}}
$$

Since $\mathbf{P}_{\mathcal{C}}$ is invertible, we obtain

$$
[\mathbf{x}]_{\mathcal{C}}=\mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}} \cdot[\mathbf{x}]_{\mathcal{B}}
$$

Remark.

- $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}=\mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}$ is called the change-of-coordinates matrix from \mathcal{B} to \mathcal{C}.
- Similarly, $[\mathbf{x}]_{\mathcal{B}}=\mathbf{P}_{\mathcal{B}}^{-1} \mathbf{P}_{\mathcal{C}} \cdot[\mathbf{x}]_{\mathcal{C}}$. The change-of-coordinates matrix from \mathcal{C} to \mathcal{B} is

$$
\mathbf{P}_{\mathcal{B} \leftarrow \mathcal{C}}=\mathbf{P}_{\mathcal{B}}^{-1} \mathbf{P}_{\mathcal{C}}=\left(\mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}\right)^{-1}=\left(\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}\right)^{-1}
$$

Vector Spaces

Example 0.30. Suppose

$$
\begin{array}{ll}
\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}, & \mathbf{b}_{1}=\left[\begin{array}{c}
4 \\
-2
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{c}
-2 \\
4
\end{array}\right] \\
\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}\right\}, \quad \mathbf{c}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \mathbf{c}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{array}
$$

and for some vector $\mathbf{x} \in \mathbb{R}^{2},[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Find $[\mathbf{x}]_{\mathcal{C}}$.

Vector Spaces

How to compute $\mathbf{P}_{\mathcal{C} \leftarrow \mathcal{B}}=\mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}$ efficiently in general

Recall how to compute the inverse of a matrix

$$
\left[\mathbf{P}_{\mathcal{C}} \mid \mathbf{I}\right] \longrightarrow\left[\mathbf{I} \mid \mathbf{P}_{\mathcal{C}}^{-1}\right] \quad \text { (via elementary row operations) }
$$

which is equivalent to the following matrix equation:

$$
\mathbf{P}_{\mathcal{C}}^{-1} \cdot\left[\mathbf{P}_{\mathcal{C}} \mid \mathbf{I}\right]=\left[\mathbf{I} \mid \mathbf{P}_{\mathcal{C}}^{-1}\right]
$$

Similarly, we can compute $\mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}$ as follows:

$$
\left[\mathbf{P}_{\mathcal{C}} \mid \mathbf{P}_{\mathcal{B}}\right] \longrightarrow\left[\mathbf{I} \mid \mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}\right] \quad \text { (via elementary row operations) }
$$

which is equivalent to the following matrix equation:

$$
\mathbf{P}_{\mathcal{C}}^{-1} \cdot\left[\mathbf{P}_{\mathcal{C}} \mid \mathbf{P}_{\mathcal{B}}\right]=\left[\mathbf{I} \mid \mathbf{P}_{\mathcal{C}}^{-1} \mathbf{P}_{\mathcal{B}}\right]
$$

