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Vector Spaces

Introduction
In this chapter we introduce vector spaces and the associated notions of

• Subspace

• Dimension

• Basis

• Coordinate system

Meanwhile, we cover the following matrix concepts

• Column/ null space

• Rank
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Vector Spaces

Euclidean spaces
For any integer n ≥ 1, the n-dimensional Euclidean space is the set of all
n-dimensional vectors

Rn = {(x1, . . . , xn) | x1, . . . , xn are real numbers}

.

b b

R1 (all real numbers)

R2 (all ordered pairs)

00

(3, 2)

b

6
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Vector Spaces

Euclidean spaces are endowed with two kinds of operations, vector addition and
scalar multiplication, which satisfy the following properties:

(vector addition)

(1) For any u, v ∈ Rn, the sum is in the same space: u + v ∈ Rn.

(2) u + v = v + u (commutative law)

(3) (u + v) + w = u + (v + w) (associative law)

(4) There is a zero vector: u + 0 = u

(5) For each vector u, there is a vector −u ∈ Rn such that u + (−u) = 0
(opposite vector must also be contained)
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Vector Spaces

(scalar multiplication)

(6) Any scalar multiple of vector must also be in Rn: cu ∈ Rn (for any real
number c and vector u ∈ Rn)

(7) c(u + v) = cu + cv (distributive law)

(8) (c + d)u = cu + du (distributive law)

(9) c(du) = (cd)u

(10) 1u = u
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Vector Spaces

What are (abstract) vector spaces?
Formally, a vector space is a (nonempty) set V of objects, called “vectors”,
that is endowed with two kinds of operations, addition and scalar multiplication,
satisfying the same requirements (called axioms):

(1) For any u, v ∈ V , the sum is in the same space: u + v ∈ V .

(2) u + v = v + u (commutative law)

(3) (u + v) + w = u + (v + w) (associative law)

(4) There is a zero vector 0 in V : u + 0 = u

(5) For each vector u ∈ V , there is a vector −u ∈ V such that u + (−u) = 0
(opposite vector must also be contained)
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Vector Spaces

(6) Any scalar multiple of vector must also be in V : cu ∈ V (for any real
number c and vector u ∈ V )

(7) c(u + v) = cu + cv (distributive law)

(8) (c + d)u = cu + du (distributive law)

(9) c(du) = (cd)u

(10) 1u = u
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Vector Spaces

Examples of (abstract) vector spaces
Example 0.1. The set of all functions f : R 7→ R is a vector space:

• Functions are (abstract) vectors;

• There is an addition defined between functions, e.g., for f(x) = x2−3x+1
and g(x) = 3x + sin x, their sum is f(x) + g(x) = x2 + sin x + 1, and it
satisfies all the requirements.

• Scalar multiplication (between a scalar and a function) is also defined:
5f(x) = 5x2 − 15x + 5, and it meets all the requirements.
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Vector Spaces

Example 0.2. The set of all infinite sequences (a1, a2, . . . , an, . . .) is a vector
space:

• Sequences are (abstract) vectors;

• There is an addition defined between sequences

(a1, a2, . . . , an, . . .)+(b1, b2, . . . , bn, . . .) = (a1+b1, a2+b2, . . . , an+bn, . . .)

and it satisfies all the requirements.

• Scalar multiplication (between a scalar and a sequence) is also defined:

k(a1, a2, . . . , an, . . .) = (ka1, ka2, . . . , kan, . . .)

and it meets all the requirements.
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Vector Spaces

Example 0.3. The set of all matrices of a fixed size A ∈ Rm×n is a vector space:

• Matrices are (abstract) vectors;

• There is an addition defined between matrices (of the same size)

A + B

and it satisfies all the requirements.

• Scalar multiplication (between a scalar and a matrix) is also defined:

kA

and it meets all the requirements.
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Vector Spaces

Vector spaces are an algebraic system
These vector spaces, though consisting of very different objects (functions, se-
quences, matrices), are all equivalent to Euclidean spaces Rn in terms of algebraic
properties.

• Concepts to be defined for Rn, such as dimension, basis, and subspace,
also apply to those vector spaces.

• Properties to be derived for Rn (based on the two operations) will also
generalize to other vector spaces.

In this course we will focus on Rn (Math 129B deals with abstract vector spaces
in more depth).
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Vector Spaces

Subspace (subset of a vector space)
A subset of a vector space is called a subspace, if the subset also resembles a
vector space (such as a line in R2 through the origin).

Def 0.1. Let V be a vector space (e.g., Rn). A subspace of V is a subset H ⊆ V

that is closed under addition and scalar multiplication:

• H contains the zero vector: 0 ∈ H

• H is closed under scalar multiplication: For all real numbers c and vectors
u ∈ H, we have cu ∈ H

• H is closed under addition: For all u, v ∈ H, we have u + v ∈ H
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Vector Spaces

b

A subspace

Not a subspace

V = R2
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Vector Spaces

Example 0.4. Consider the vector space V = R2.

• Any line going through the origin in R2 is a subspace of R2. In contrast,
any line not passing through the origin is NOT a subspace.

• In fact, the single-element subset containing only the origin {0} is also a
subspace of R2. It is called the zero subspace.

• The full vector space R2 is also a subspace of itself (though also a trivial
one).

Remark. Lines going through the origin in R2 are called proper subspaces of R2.
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Vector Spaces

Example 0.5. For the vector space V = R3,

• Lines and planes passing through the origin are proper subspaces.

• {0} and R3 are trivial subspaces.

Question: Is R2 a subspace of R3?
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Vector Spaces

Example 0.6. For the vector space V = R3,

• Lines and planes passing through the origin are proper subspaces.

• {0} and R3 are trivial subspaces.

Question: Is R2 a subspace of R3?

Answer: It is not, because it is not even a subset of R3, as they contain vectors
of different dimensions.

However, the following is a subspace of R3:

{(x, y, 0)T ∈ R3 | x, y are real numbers}
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Vector Spaces

Example 0.7. Let V be the vector space of all functions f : R 7→ R. Then
H = {All polynomial functions} is a subspace.

To verify this, note that

• 0 ∈ H (just a trivial polynomial)

• Any scalar multiple of a polynomial is still a polynomial (closed under scalar
multiplication)

• Sum of two polynomials is still a polynomial (closed under addition)

A joke

Q: What do you call it when a mathematician’s parrot hasn’t been fed?
A: Poly“no meal”
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Vector Spaces

(Source: https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)
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Vector Spaces

Span of a set of vectors is always a subspace
Theorem 0.1. For any set of vectors v1, . . . , vk ∈ V , their span

Span{v1, . . . , vk} = {v = c1v1 + · · ·+ ckvk | c1, . . . , ck ∈ R}

is a subspace of V .

b b

b
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Vector Spaces

Proof. We verify directly the three requirements:

• 0 ∈ Span{v1, . . . , vk} (when c1 = · · · = ck = 0);

• Let v = c1v1 + · · ·+ ckvk. For any scalar r,

rv = (rc1)v1 + · · ·+ (rck)vk ∈ Span{v1, . . . , vk}

• Let v = c1v1 + · · ·+ ckvk and w = d1v1 + · · ·+ dkwk. Then

v + w = (c1 + d1)v1 + · · ·+ (ck + dk)vk ∈ Span{v1, . . . , vk}
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Vector Spaces

Spaces defined over a matrix (overview)

Given a matrix A = [a1 . . . an] ∈ Rm×n, one can define the following spaces:

• Column space: Span of its column vectors

Col(A) = Span{a1, . . . , an} ⊆ Rm

• Null space: Solution set of Ax = 0:

Nul(A) = {x ∈ Rn | Ax = 0} ⊆ Rn
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Vector Spaces

Column space of a matrix
Def 0.2. Let A = [a1 . . . an] ∈ Rm×n be any matrix. Its column space is defined
as

Col(A) = Span{a1, . . . , an}.

Remark. Col(A) must be a subspace of Rm.

In terms of the linear transformation T (x) = Ax, the column space of A is
exactly the range of T :

Range(T ) = {b = Ax ∈ Rm | x ∈ Rn}.

Remark. The linear transformation T (x) is onto if and only if Col(A) = Rm.
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Vector Spaces

Example 0.8. Let

A =

1 4 7 10
2 5 8 10
3 6 9 10


Do the following:

• Determine if b = [1 − 1 1]T lies in the column space of A

• Find Col(A). Is f(x) = Ax onto?
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Vector Spaces

Null space of a matrix
Def 0.3. Let A ∈ Rm×n be any matrix. Its null space is defined as

Nul(A) = {x ∈ Rn | Ax = 0}.

In terms of the linear transformation T (x) = Ax, the null space of A is called
the kernel of T :

Ker(T ) = {x ∈ Rn | T (x) = 0} = Nul(A)

Remark. The linear transformation T (x) = Ax is one to one if and only if
Ker(T ) = Nul(A) = {0}.
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Vector Spaces

Example 0.9. Let

A =

1 4 7 10
2 5 8 10
3 6 9 10


Do the following:

• Determine if x = [1 − 2 1]T and y = [−5 0 5 − 3]T lie in the null space
of A.

• Find Nul(A). Is T (x) = Ax one to one?
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Vector Spaces

Theorem 0.2. For any matrix A ∈ Rm×n, Nul(A) is a subspace of Rn.

Proof. We verify directly the three requirements:

• 0 ∈ Nul(A) because A0 = 0;

• Let x ∈ Nul(A), i.e., Ax = 0. For any scalar c,

A(cx) = c(Ax) = c0 = 0

This shows that cx ∈ Nul(A).

• Let x, y ∈ Nul(A). Then

A(x + y) = Ax + Ay = 0 + 0 = 0.

This shows that x + y ∈ Nul(A).
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Vector Spaces

Example 0.10. Find the null and column spaces of

A =

 1 2 −1
−2 −5 7
3 7 −8


Of which Euclidean spaces are they each a subspace?
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Vector Spaces

Answer: They are both subspaces of R3:

Col(A) = {b = (b1, b2, b3)T ∈ R3 | b1 = b2 + b3} = Span


1

1
0

 ,

1
0
1




Nul(A) = Span


−9

5
1



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Vector Spaces

Basis of a subspace
Consider the span H of the following three vectors v1, v2, v3 ∈ V (which are
linearly dependent). We already know that it is a subspace of V .

b

v1

v3

v2

H

Observe that we do not really need all three vectors to span H; in fact, any two
of them (e.g., v1, v2) will be able to span H. −→ simpler, and more efficient
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Vector Spaces

Question: Why can we remove a vector, v3 in this case, from a set without
changing the span of the set?

The reason is that v3 is a linear combination of v1, v2:

v3 = d1v1 + d2v2 for some scalars d1, d2

and makes no “new contribution” to the span:

c1v1 + c2v2 + c3v3 = c1v1 + c2v2 + c3(d1v1 + d2v2)
= (c1 + c3d1)v1 + (c2 + c3d2)v2

That is, any linear combination of v1, v2, v3 can always be obtained from v1, v2
using a different set of coefficients.

Next question: Can we remove one of v1, v2 while still preserving the span?
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Vector Spaces

The answer is obviously no:

• We can only remove a vector that is a linear combination of the others
(according to previous reasoning).

• We have to stop removing vectors from a set (if we want to preserve the
span) when there is no more vector that is a linear combination of the rest.

This just means that the remaining vectors are linearly independent. This is the
smallest set you can use to span the same subspace H, and it is nonempty as
long as H 6= {0}.

In the book this is called the Spanning Set Theorem.
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Vector Spaces

Basis for a subspace
Briefly speaking, a basis for a subspace of a vector space, H ⊆ V , is a set of
linearly independent vectors that can span H.

Def 0.4. Let H ⊆ V be a subspace of the vector space V . We say that a set of
vectors v1, . . . , vk ∈ V form a basis for H if

• Span{v1, . . . , vk} = H; ←− This implies that every vi must be in H.

• The set B = {v1, . . . , vk} is linear independent.

Remark. The definition covers the case of H = V , so we can talk about basis for
the vector space V .
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Vector Spaces

It is easy to see that the set of vectors v1 = [1, 0]T , v2 = [0, 1]T is a basis for R2.

In fact, for any positive integer n, the
following set of vectors

e1 =


1
0
...
0

 , e2 =


0
1
. . .
0

 , . . . , en =


0
0
...
1


is always a basis for Rn.

It is called the standard basis for Rn.

b

b

e1 = (1, 0)

e2 = (0, 1)
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Vector Spaces

Columns of any square, invertible matrix are a basis

Theorem 0.3. Let A ∈ Rn×n be an invertible matrix. Then the columns of A
form a basis for Rn because

• The columns of A are linearly independent, and

• They span Rn

both by the Invertible Matrix Theorem.

Example 0.11. Show that the columns of A =
[

1 2
3 4

]
form a basis for R2.
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Vector Spaces

Example 0.12. Determine if the columns of the matrix

A =

 3 −4 −2
0 1 1
−6 7 5


form a basis for R3.
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Vector Spaces

Finding a basis for Col(A)

We first consider a matrix in the RREF and explain how to find a basis for its
column space by direct observation.

Example 0.13. Find a basis for the column space of

A =


1 4 0 2 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0


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Vector Spaces

Example 0.14. Find a basis for the column space of

B =


1 4 0 2 −1
3 12 1 5 5
2 8 1 3 2
5 20 2 8 8


A couple things to note first:

• A on the preceding slide is actually the RREF of B.

• a1, a3, a5 are pivot columns. For the other columns of A,

a2 = 4a1, a4 = 2a1 − a3.

Do exactly the same dependence relationships hold true for the columns of B?
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Vector Spaces

The answer is yes, which implies that we can remove {b2, b4} and use the
remaining columns {b1, b3, b5} as a basis for Col(B).

To see this, we first point out that there exist a sequence of elementary matrices
such that

E` · · ·E2E1︸ ︷︷ ︸
=E (invertible)

B = A︸︷︷︸
RREF

, or B = E−1A

Using this equation and the columnwise multiplication

b1 = E−1a1, . . . , b5 = E−1a5

we can show that any dependence relation among the columns of A, such as
a4 = 2a1 − a3, also holds true for B:

E−1a4 = E−1(2a1 − a3) −→ b4 = 2b1 − b3.
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Vector Spaces

We have effectively proved the following result.

Theorem 0.4. The pivot columns of any matrix A form a basis for its column
space Col(A).

Remark. To identify the pivot columns of A, a REF would suffice. There is no
need to obtain the RREF (which requires more work).

Remark. Do not use the pivot columns from any REF of A toward a basis for
Col(A). Instead, always use the pivot columns of A to create a basis.

The reason is that row operations actually change the column space, but preserve
the dependence relationship among the columns.
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Vector Spaces

Basis for Nul(A)
We use an example to explain how to find a basis for the null space of a matrix.

Example 0.15. Find a basis for the null space of

A =

 1 2 −1 0
−2 −5 7 5
3 7 −8 −5


Answer. By direct calculation, the solution of Ax = 0 is

x = x3


−9
5
1
0

 + x4


−10

5
0
1

 , x3, x4 are free variables
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Vector Spaces

The Unique Representation Theorem

One nice thing about the basis of a vector space V is that it can uniquely span
any vector in V .

Theorem 0.5. Let B = {v1, . . . , vk} be a basis for a vector space V . Then for
any vector v ∈ V , there exists a unique set of scalars c1, . . . , ck such that

v = c1v1 + · · ·+ ckvk
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Vector Spaces

Proof. For any given vector v, the existence of the scalars is due to Span(B) = V .

To prove the uniqueness, suppose there are two sets of scalars such that

c1v1 + · · ·+ ckvk = v = d1v1 + · · ·+ dkvk.

Merging terms gives that

(c1 − d1)v1 + · · ·+ (ck − dk)vk = 0

Because the vectors v1, . . . , vk are linearly independent, we conclude that

c1 − d1 = · · · = ck − dk = 0, i.e., c1 = d1, . . . , ck = dk.

Thus, the set of scalars must be unique.
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Vector Spaces

Example 0.16. Consider the Euclidean space Rn. Every vector b = (b1, . . . , bn)T

in it has a unique representation under the standard basis:

b = b1e1 + · · ·+ bnen

Example 0.17. We have previously showed that the columns of the matrix form
a basis for R3:

A =

 3 −4 −2
0 1 1
−6 7 5


Let b = [1 0 2]T . Find the unique set of scalars c1, c2, c3 such that

b = c1a1 + c2a2 + c3a3.←− Answer : c1 = −1, c2 = −2, c3 = 2
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Vector Spaces

Coordinate system
The describe the location of a point in the plane, we need to specify a reference
point (origin) and two direction vectors (e.g., east and north).

b

b

e1

e2
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Vector Spaces

The red point is 4 units to the east and 3 units to the north, relative to the origin.

b

b

(4,3)

e1

e2
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Vector Spaces

Here is a new but weird way of describing the location of the red point.

b

b
v1

v2
(1, 1)

(2, 1)
b

(1, 2)
b
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Vector Spaces

Coordinates of a vector relative to a basis
In fact, any basis B = {v1, . . . , vk} of a vector space V can be used as a
coordinate system to describe the locations of all vectors in the vector space.

For any v ∈ V , due to the Unique Representation Theorem, there exist a unique
set of scalars c1, . . . , ck such that

v = c1v1 + · · ·+ ckvk

Def 0.5. The (unique) coefficients c1, . . . , ck are called coordinates of the
vector v relative to the basis B, or in short B-coordinates.

We collect them to form a (coordinate) vector and denote it by [v]B =

c1
...

ck

.
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Vector Spaces
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Vector Spaces

Example 0.18. Find the coordinate vector of x = [2, 5]T ∈ R2 relative to the

basis given by the columns of A =
[

1 2
3 4

]
.

Example 0.19. We have previously showed that the columns of the matrix form
a basis for R3:

A =

 3 −4 −2
0 1 1
−6 7 5


and for b = [1 0 2]T ∈ R3, we obtained that

b = (−1)a1 + (−2)a2 + 2a3.

Therefore, the coordinates of b relative to the basis (columns of A) are [−1,−2, 2]T .
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Vector Spaces

Coordinate axes for a subspace
It is also possible to select a coordinate system for a subspace H ⊂ V .
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Vector Spaces

Example 0.20. Let v1 = [1, 1]T . Then B = {v1} is a basis for H = Span{v1} ⊂
R2. Determine if x = [5, 5]T is in H, and if yes, find its coordinate vector relative
to B.

Example 0.21. Let v1 = [1, 1, 0]T , v2 = [1, 0, 1]T . Then B = {v1, v2} is a basis
for H = Span{v1, v2} ⊂ R3. Determine if x = [3, 2, 1]T is in H, and if yes, find
its coordinate vector relative to B.
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Vector Spaces

What is a dimension?
We have seen that vector spaces have infinitely many vectors inside, yet all of
them can be uniquely spanned by a basis (which is often a small, finite set).

The cardinality of the basis (as a set) is an intrinsic property of a vector space.
We will use it to define the dimension of the vector space.

Before that we need to address the following question: Could different bases have
different sizes?

The answer is no, according to the following theorem.

Theorem 0.6. Any two bases of a vector space must have the same size.
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Vector Spaces

Def 0.6. Let V be a vector space with basis B. The size (or cardinality) of B is
called the dimension of V , and written as dim(V ).

• The dimension of the zero vector space {0} is defined to be 0.

• If V has a finite basis, then it is said to be finite dimensional.

• If V cannot be spanned by a finite set, then it is said to be infinite
dimensional.

Remark. In a k-dimension vector space V , any set of k + 1 or more vectors must
be linearly dependent.
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Vector Spaces

Dimensions of various subspaces of R3:

Remark. An example of infinite dimensional vector spaces is the space of all
polynomials. However, the subspace of all polynomials of degree no more than a
fixed number, say n, has a dimension n + 1, thus it is finite-dimensional.
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Vector Spaces

Dimension of a subspace

Example 0.22. Let v1 = [1, 1, 0]T , v2 = [1, 0, 1]T . Then B = {v1, v2} is a
basis for H = Span{v1, v2} ⊂ R3. It follows that the dimension of H is 2, i.e.,
dim(H) = 2.

Theorem 0.7. If H ⊆ V , then dim(H) ≤ dim(V ).

Proof. Suppose H 6= {0} (otherwise it is trivially true). Let B be a basis for
H. Because B is a linearly independent subset of V , its size cannot exceed the
dimension of V . That is, dim(H) ≤ dim(V ).
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Vector Spaces

The Basis Theorem
Recall that a set of vectors is a basis for a vector space if they are linearly
independent and span the vector space.

However, with a correct size (= dimension of the vector space), any one of linear
independence or spanning must imply the other and thus makes a basis.

Theorem 0.8. Let V be a k-dimensional vector space.

• Any k linearly independent vectors in V are a basis for V ;

• Any k vectors that span V must also be a basis for V .
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Vector Spaces

Dimensions of null and column spaces
Theorem 0.9. Let A be any matrix. Then

• The dimension of Nul(A) is the number of free variables in the equation
Ax = 0, and

• The dimension of Col(A) is the number of pivot columns in A.

Example 0.23. For the following matrix, dim(Col(A)) = 3 (pivot columns), and
dim(Nul(A)) = 2 (free variables).

A =

0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6

 −→
1 0 −2 3 0

0 1 −2 2 0
0 0 0 0 1


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Vector Spaces

Rank of a matrix?

Briefly speaking, the rank of a matrix A ∈ Rm×n is the maximal number of
linearly independent columns (or rows) of A.

It is one of the most fundamental characteristics of a matrix.

A lot of properties of a matrix can be determined by its rank. For example,
“An n× n matrix is invertible if and only if the rank is n”.
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Formally, we define the matrix rank as follows.

Def 0.7. The rank of a matrix A ∈ Rm×n is defined as the dimension of the
column space of A, i.e.,

rank(A) = dim(Col(A))

Example 0.24. For the following matrix,

A =

0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6


its rank is 3 (because we already know that dim(Col(A)) = 3). Thus, the
maximal number of linearly independent columns is also 3.
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Vector Spaces

The Rank Theorem
Theorem 0.10. For any matrix A ∈ Rm×n,

rank(A) + dim(Nul(A)) = n.

That is, the column and null spaces of a matrix have a combined dimension that
is equal to the number of columns.

Proof. Because

• rank(A) = dim(Col(A)) is equal to the number of pivot columns

• dim(Nul(A)) is equal to the number of free variables in Ax = 0

their sum must be equal to n (the number of columns).
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Vector Spaces

Example 0.25. Consider the matrix again:

A =

0 3 −6 6 4
3 −7 8 −5 8
3 −9 12 −9 6


Because its rank is 3, we must have

dim(Nul(A)) = n− rank(A) = 5− 3 = 2.

You may want to verify this by finding a basis for the null space.
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Vector Spaces

The Invertible Matrix Theorem (cont’d)
Let A ∈ Rn×n (square matrix). Then each of the following statements is
equivalent to “A is invertible”.

• The columns of A form a basis for Rn.

• Col(A) = Rn

• dim(Col(A)) = n

• rank(A) = n

• Nul(A) = {0}

• dim(Nul(A)) = 0
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The row space of a matrix
Given a matrix A ∈ Rm×n, we have defined its column space as the span of the
column vectors (which are in Rm). It is a subspace of Rm.

Similarly, we can consider the span of the rows of A (treated as vectors in Rn),
which is called the row space and denoted Row(A). It is a subspace of Rn.

Clearly, Row(A) = Col(AT ).

Example 0.26. Let A =

1 1
1 0
0 1

. The column space is the span of

1
1
0

 ,

1
0
1

 ∈
R3, while the row space is the span of

[
1
1

]
,

[
1
0

]
,

[
0
1

]
∈ R2.
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Vector Spaces

Row operations preserve row space (but not
column space)
Theorem 0.11. If two matrices A, B ∈ Rm×n are row equivalent, then their row
spaces are the same.

Example 0.27. The following two matrices have the same row space, but not
the same column space:

A =
[

1 1 1
2 2 2

]
−→ B =

[
1 1 1
0 0 0

]

The reason is that linear combinations of rows of B, which are linear combinations
of rows of A, are always linear combinations of rows of A (and vice versa).
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Vector Spaces

Proof. Let A, B ∈ Rm×n be two row equivalent matrices. Then there exists an
invertible matrix E = E` · · ·E2E1 (which is a product of elementary matrices)
such that

EA = B

Any linear combination of the rows of B must be a linear combination of the
rows of A:

cT B = cT (EA) = (cT E)A

This shows that Row(B) ⊆ Row(A).

Similarly, by using E−1B = A we can show that Row(A) ⊆ Row(B). Therefore,
we must have Row(A) = Row(B).
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Vector Spaces

The previous theorem implies the following result.

Corollary 0.12. Let A ∈ Rm×n be any matrix and R its echelon form. Then

Row(A) = Row(R)

Example 0.28. Find a basis for the row space of A:

A =

0 3 −6 6
3 −7 8 −5
3 −9 12 −9

 −→
1 0 −2 3

0 1 −2 2
0 0 0 0


Note that the first two rows of A are not necessarily a basis of its row space!
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Vector Spaces

Theorem 0.13. For any matrix A ∈ Rm×n, we have

dim(Row(A)) = dim(Col(A)) = rank(A).

Proof. This is because

• dim(Row(A)) = number of pivot rows (nonzero rows);

• dim(Col(A)) = number of pivot columns

which must be the same.
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Vector Spaces

A, AT must have the same rank

Corollary 0.14. For any matrix A ∈ Rm×n, we have

rank(AT ) = rank(A).

Proof. rank(AT ) = dim(Col(AT )) = dim(Row(A)) = rank(A).
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Vector Spaces

Example 0.29 (p233). Find a basis for each of the row/column/null spaces of
the following matrix

A =


−2 −5 8 0 −17
1 3 −5 1 5
3 11 −19 7 1
1 7 −13 5 −3

 −→ B =


1 3 −5 1 5
0 1 −2 2 −7
0 0 0 −4 20
0 0 0 0 0


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Vector Spaces

The change of basis problem
Assume two bases B = {b1, b2} and C = {c1, c2} for R2. For a fixed point
x ∈ R2, suppose we know its coordinates with respect to B: [x]B = [3, 1]T .
What is its coordinate vector [x]C with respect to C?
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Vector Spaces

Solution. Define two basis matrices

PB = [b1, b2], PC = [c1, c2].

Then we have
PB · [x]B = x = PC · [x]C

Since PC is invertible, we obtain

[x]C = P−1
C PB · [x]B

Remark.

• PC←B = P−1
C PB is called the change-of-coordinates matrix from B to C.

• Similarly, [x]B = P−1
B PC · [x]C . The change-of-coordinates matrix from C

to B is
PB←C = P−1

B PC = (P−1
C PB)−1 = (PC←B)−1
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Example 0.30. Suppose

B = {b1, b2}, b1 =
[

4
−2

]
, b2 =

[
−2
4

]

C = {c1, c2}, c1 =
[

1
−1

]
, c2 =

[
1
1

]

and for some vector x ∈ R2, [x]B =
[

3
1

]
. Find [x]C .
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How to compute PC←B = P−1
C PB efficiently in general

Recall how to compute the inverse of a matrix

[PC | I] −→ [I | P−1
C ] (via elementary row operations)

which is equivalent to the following matrix equation:

P−1
C · [PC | I] = [I | P−1

C ]

Similarly, we can compute P−1
C PB as follows:

[PC | PB] −→ [I | P−1
C PB] (via elementary row operations)

which is equivalent to the following matrix equation:

P−1
C · [PC | PB] = [I | P−1

C PB]
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