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Dot product and orthogonality

Introduction
In this lecutre we introduce geometric concepts such as

• length,

• distance,

• angle, and

• orthogonality

for vectors in Rn.

They are all based on the so-called inner/dot product between vectors.

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 3/69



Dot product and orthogonality

Dot product
Def 0.1. The dot product, also called inner product, between any two
vectors of Rn

u =


u1
...
un

 , v =


v1
...
vn


is defined as

u · v︸ ︷︷ ︸
vector dot product

= u1v1 + · · ·+ unvn = [u1 . . . un]


v1
...
vn

 = uTv︸︷︷︸
matrix product
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Dot product and orthogonality

Properties of the inner product

Let u,v be vectors in Rn, and c a scalar. Then

• u · u ≥ 0 and u · u = 0 if and only if u = 0.

• u · v = v · u

• (u + v) ·w = u ·w + v ·w
u · (v + w) = u · v + u ·w

• (cu) · v = u · (cv) = c(u · v)
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Dot product and orthogonality

The length of a vector

Def 0.2. The length (or norm) of
a vector of Rn

u =


u1
...
un


is defined as

‖u‖ =
√

u · u =
√
u2

1 + · · ·+ u2
n

b u = (u1, u2)

u1

u2

‖u‖2 = u21 + u22
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Dot product and orthogonality

Properties of vector norm

Let u,v be vectors in Rn, and c a scalar. Then

• ‖u‖ ≥ 0 and ‖u‖ = 0 if and only if u = 0.

• ‖cu‖ = |c| · ‖u‖. In particular, ‖ − u‖ = ‖u‖.

• ‖u± v‖2 = ‖u‖2 + ‖v‖2 ± 2u · v.
This implies that ‖u± v‖2 = ‖u‖2 + ‖v‖2 if and only if u · v = 0.
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Dot product and orthogonality

Proof.

• This is obviously true based on the definition.

• ‖cu‖ =
√

(cu1)2 + · · ·+ (cun)2 =
√
c2(u2

1 + · · ·+ u2
n) = |c| · ‖u‖.

• We show the formula for u + v first:

‖u + v‖2 = (u + v) · (u + v)
= u · u + u · v + v · u + v · v
= ‖u‖2 + 2u · v + ‖v‖2

Now, apply this formula with u and −v gives the other formula:

‖u + (−v)‖2 = ‖u‖2 + 2u · (−v) + ‖ − v‖2
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Dot product and orthogonality

Unit vectors in Rn

Def 0.3. A vector u ∈ Rn whose
length is 1 is called a unit vector.

Theorem 0.1. For any nonzero vec-
tor v ∈ Rn, the normalized form

1
‖v‖v

is a unit vector.

Proof. ‖ 1
‖v‖v‖ = 1

‖v‖ ·‖v‖ = 1.
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Dot product and orthogonality

Distance in Rn

Def 0.4. The distance between two
vectors u,v ∈ Rn is defined as

dist(u,v) = ‖u− v‖

=

√√√√ n∑
i=1

(ui − vi)2

b

b

u

v

u− v
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Dot product and orthogonality

Orthogonal vectors

Def 0.5. Two vectors u,v ∈ Rn are
said to be orthogonal if u · v = 0.

Remark. Two vectors u,v ∈ Rn are
orthogonal if and only if

‖u± v‖2 = ‖u‖2 + ‖v‖2

u

v

u + v
u− v
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Dot product and orthogonality

Angle between two vectors in Rn

Def 0.6. The angle θ between two
vectors u,v ∈ Rn is defined as

cos θ = u · v
‖u‖ ‖v‖ = u

‖u‖ ·
v
‖v‖

Remark. Two special cases:

• u,v are orthogonal (u·v = 0):
cos θ = 0 (θ = π

2 )

• u,v coincide (u = v):
cos θ = 1 (θ = 0)

θ

u · v = ‖u‖‖v‖ cos θ
u

v
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Dot product and orthogonality

Example 0.1. Let u = [3, 4]T ,v = [−1, 1]T . Compute the following:

• Dot product u · v

• Norms of u, 1
5u,v,−2v

• Distance between u,v

• Angle between u,v
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Dot product and orthogonality

Orthogonal sets
Def 0.7. A set of vectors v1, . . . ,vk ∈ Rn is said to be an orthogonal
set if each pair of vectors from the set is orthogonal, that is, if

vi · vj = 0, for all i 6= j.
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Dot product and orthogonality

Example 0.2. The following sets of vectors of R3 are orthogonal sets:

• e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T

• v1 = [1, 1, 1]T ,v2 = [1,−1, 0]T ,v3 = [1, 1,−2]T
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Dot product and orthogonality

Orthogonal sets must be linearly independent sets

Theorem 0.2. If S = {v1, . . . ,vk} ⊂ Rn is an orthogonal set of nonzero
vectors, then it is a linearly independent set.
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Dot product and orthogonality

Proof : Suppose
c1v1 + · · ·+ ckvk = 0

for some scalars c1, c2, . . . ck.

For each i = 1, . . . , k, take dot product between vi and each side of the
equation to get

vi · (c1v1 + · · ·+ ckvk) = vi · 0

Since v1, . . . ,vk are orthogonal to each other, we have

ci(vi · vi) ←− vi · (civi) = 0

Since vi is nonzero, i.e., vi · vi 6= 0, we obtain that ci = 0. This thus
completes the proof.
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Dot product and orthogonality

Orthogonal basis (basis + orthogonality)

Def 0.8. A basis B for a subspaceW of Rn is called an orthogonal basis
for W if B is also an orthogonal set.
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Dot product and orthogonality

Example 0.3. Each of the following two sets of vectors is an orthogonal
basis for R3:

• e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T

• v1 = [1, 1, 1]T ,v2 = [1,−1, 0]T ,v3 = [1, 1,−2]T

but the following sets are not:

• v1 = [1, 1, 0]T ,v2 = [1,−1, 0]T (only an orthogonal set)

• v1 = [1, 0, 0]T ,v2 = [1, 1, 0]T ,v3 = [1, 1, 1]T (only a basis)
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Dot product and orthogonality

Under an orthogonal basis, coordinates are easy to compute

Theorem 0.3. Let B = {v1, . . . ,vk} be an orthogonal basis for a subspace
W of Rn. For any vector x ∈W , the coordinate vector of x with respect
to the basis is

[x]B =


c1
...
ck

 , with ci = x · vi
vi · vi

= x · vi
‖vi‖2

This implies that

x = c1v1 + · · ·+ ckvk = x · v1
v1 · v1

v1 + · · ·+ x · vk
vk · vk

vk
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Dot product and orthogonality

Proof. Suppose
c1v1 + · · ·+ ckvk = x

for some scalars c1, c2, . . . ck. We need to solve for c1, . . . , ck.

For each i = 1, . . . , k, use vi to take dot product with the equation to get

vi · x = vi · (c1v1 + · · ·+ ckvk)
= vi · (civi) = ci(vi · vi)

where we have used the orthogonality of the vectors.

Since vi is nonzero, i.e., vi · vi 6= 0, we obtain that

ci = vi · x
vi · vi

This thus completes the proof.
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Dot product and orthogonality

Illustration: Coordinates relative to an orthogonal basis

b

+ b

b

v2

v1

x

(c1, c2) = ( x·v1
v1·v1 ,

x·v2
v2·v2)

c2v2

c1v1
W
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Dot product and orthogonality

Example 0.4. For the coordinate vector of x = [1, 2, 3]T with respect to
the orthogonal basis

v1 = [1, 1, 1]T ,v2 = [1,−1, 0]T ,v3 = [1, 1,−2]T
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Dot product and orthogonality

Orthonormal = orthogonal + unit length
• A set of vectors v1, . . . ,vk in Rn is called an orthonormal set if
the vectors are orthogonal to each other and all have unit norm.

• An orthogonal basis for a subspace of Rn is called an orthonormal
basis if the basis vectors all have unit norm.
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Dot product and orthogonality

Example 0.5. Each of the following sets of vectors is an orthonormal
basis for R3:

• e1 = [1, 0, 0]T , e2 = [0, 1, 0]T , e3 = [0, 0, 1]T

• v1 = 1√
3 [1, 1, 1]T ,v2 = 1√

2 [1,−1, 0]T ,v3 = 1√
6 [1, 1,−2]T
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Dot product and orthogonality

Expansion onto an orthonormal basis is even easier
Corollary 0.4. Let B = {v1, . . . ,vk} be an orthonormal basis for a subspace
W of Rn. For any vector x ∈W , the coordinate vector of x with respect
to the basis is

[x]B =


c1
...
ck

 , with ci = x · vi

This implies that

x = c1v1 + · · ·+ ckvk = (x · v1)v1 + · · ·+ (x · vk)vk
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Dot product and orthogonality

Example 0.6. Find the coordinates of x = [1, 2, 3]T with respect to the or-
thonormal basis v1 = 1√

3 [1, 1, 1]T ,v2 = 1√
2 [1,−1, 0]T ,v3 = 1√

6 [1, 1,−2]T
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Dot product and orthogonality

Orthogonal subspaces
Let W be a subspace of Rn and x a vector in Rn. We say that x is
orthogonal to W if x ·w = 0 for all w ∈W , and denote it by x ⊥W .
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Dot product and orthogonality

Def 0.9. Let U, V be two subspaces of Rn.

• The two subspaces U, V are said to be orthogonal to each other if
every vector u ∈ U is orthogonal to V and every vector v ∈ V is
orthogonal to U . That is,

u · v = 0, for all u ∈ U,v ∈ V.

• They are called orthogonal complements of each other in Rn if
they are orthogonal to each other and their total dimension is equal
to n (i.e., dim(U) + dim(V ) = n). In this case, we write U = V ⊥

and V = U⊥.
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Dot product and orthogonality

Example 0.7. In the right picture,
U, V,W are all subspaces of R3.

• orthogonal subsapces:
U and V , U and W

• orthogonal complements:
only U and W .

We thus write U = W⊥ and
W = U⊥.
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Dot product and orthogonality

Row(A), Nul(A) are orthogonal complements
For any matrix A ∈ Rm×n, one can define three kinds of susbpaces, but
only two of them belong to the same vector space:

Row(A), Nul(A) ⊆ Rn (Col(A) ⊆ Rm)

In fact, these two must be orthogonal complements.

Theorem 0.5. For any matrix A ∈ Rm×n,

(Row(A))⊥ = Nul(A)
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Dot product and orthogonality

To prove that Row(A), Nul(A) are orthogonal complements, we need to
verify

(1) The two subspaces are orthogo-
nal to each other:

= 0

(2) Their total dimension is n, i.e.,
dim(Row(A)) + dim(Nul(A)) = n.
This is because

• dim(Row(A)) = rank(A) =
#pivots;

• dim(Nul(A)) = n −
rank(A) =
#free variables
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Dot product and orthogonality

Remark. The theorem implies that the orthogonal complement of Col(A)
in Rm is Nul(AT ):

(Col(A))⊥ =
(
Row(AT )

)⊥
= Nul(AT )

where

Nul(AT ) = {x ∈ Rm | ATx = 0} = {x ∈ Rm | xTA = 0T }
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Dot product and orthogonality

Example 0.8. Consider the following matrix and its RREF

A =
[
1 2 3
4 5 6

]
−→

[
1 0 −1
0 1 2

]

We have

• Row(A) = span{[1, 0,−1]T , [0, 1, 2]T }, and

• Nul(A) = span{[1,−2, 1]T }.

The two subspaces are orthogonal complements of each other (inside R3).

On the other hand, Col(A) = R2 and Nul(AT ) = {0}. The two subspaces
are also orthogonal complements of each other (in R2).
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Dot product and orthogonality

Orthogonal matrix (square matrix w/ orthonormal columns)

Def 0.10. A square matrix Q = [q1, . . . ,qn] ∈ Rn×n is called an orthog-
onal matrix if its columns are an orthonormal set of vectors, i.e.,

qi · qj =

1, i = j ←− Unit norm
0, i 6= j ←− Orthogonality

Remark. The columns of an n × n orthogonal matrix must form an
orthonormal basis for Rn (and vice versa).
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Dot product and orthogonality

Example 0.9. The following is an example of an orthogonal matrix (be-
cause the columns of the matrix form an orthonormal basis for R3):

1√
3

1√
2

1√
6

1√
3 − 1√

2
1√
6

1√
3 0 − 2√

6


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Dot product and orthogonality

Inverse of an orthogonal matrix is its transpose
Theorem 0.6. If Q ∈ Rn×n is an orthogonal matrix, then Q−1 = QT .
The converse is also true.

Proof.

QTQ =


qT1
qT2
...

qTn

 [q1 q2 . . .qn] =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 = In
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Dot product and orthogonality

The orthogonal projection problem

Let B = {v1, . . . ,vk} be an orthog-
onal basis for a subspace W of Rn.
We have showed that if x lies in W ,
then it can be represented as

x = x · v1
v1 · v1

v1 + · · ·+ x · vk
vk · vk

vk

For any vector y outside of W ,
its orthogonal projection onto W ,
ŷ = projWy, will be inside W .

b y

ŷ = projWy
b

v1

v2

W

x

b

It can be shown that ŷ is the closest
point in W to y.

Question: How can we find ŷ?
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Dot product and orthogonality

Remark. In order for ŷ to be the orthogonal projection of y onto W , we
must have

y− ŷ ⊥W.

In particular,

y− ŷ ⊥ vi, 1 ≤ i ≤ k and y− ŷ ⊥ ŷ.

This also leads to a decomposition of y along W and W⊥:

y = ŷ︸︷︷︸
∈W

+ (y− ŷ)︸ ︷︷ ︸
∈W⊥

Lastly, the distance from y to W can be defined as follows:

dist(y,W ) = ‖y− ŷ‖, ŷ = projWy
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Dot product and orthogonality

The case of k = 1

We first consider the projection of a
point onto a 1-dimensional subspace
spanned by a single vector v1.

b y

ŷ = projWy
b

v1 W
b

0

Suppose ŷ = c1v1 (with c1 TBD).
Since y− ŷ must be orthogonal to
W , we have

0 = v1 · (y− ŷ) = v1 · (y− c1v1)
= v1 · y− c1v1 · v1

This yields that

c1 = y · v1
v1 · v1

−→ ŷ = y · v1
v1 · v1

v1
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Dot product and orthogonality

Example 0.10. Let v = [3, 4]T . Find the projection of x = [1, 0]T onto
the subspace spanned by v. What is the distance from x to the subspace?
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The case of k = 2

When k = 2, suppose ŷ = c1v1 + c2v2 (with c1, c2 TBD).

Since y− ŷ must be orthogonal to W , and in particular, y− ŷ must be
orthogonal to v1, we have

0 = v1 · (y− ŷ)
= v1 · (y− c1v1 − c2v2)
= v1 · y− c1v1 · v1 − 0

from which we obtain that

c1 = y · v1
v1 · v1
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Dot product and orthogonality

Similarly, y− ŷ must be orthogonal to v2:

0 = v2 · (y− ŷ)

From this, we obtain that

c2 = y · v2
v2 · v2

Putting everything together,

ŷ = y · v1
v1 · v1

v1 + y · v2
v2 · v2

v2
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Geometric interpretation

Projection onto a subspace (with an
orthogonal basis) is equal to the sum
of projections onto the basis vectors
individually:

ŷ = y · v1
v1 · v1

v1︸ ︷︷ ︸
ŷ1

+ y · v2
v2 · v2

v2︸ ︷︷ ︸
ŷ2

b y

ŷb

v2

v1W ŷ1

ŷ2

b

b
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Dot product and orthogonality

Example 0.11. Let v1 = [1, 1, 0]T ,v2 = [1,−1, 0]T . Find the projection
of x = [2, 3, 4]T onto the subspace spanned by v1,v2.
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The general case of any k

The previous approach applies to any k, leading the following result.

Theorem 0.7. The orthogonal projection of any vector y ∈ Rn onto a
subspace W , with an orthogonal basis {v1, . . . ,vk}, is

projWy = y · v1
v1 · v1

v1 + · · ·+ y · vk
vk · vk

vk

Remark. If the orthogonal basis is orthonormal, then the formula simplifies
to

projWy = (y · v1)v1 + · · ·+ (y · vk)vk
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The Gram-Schmidt Orthogonalization Process

Orthogonal bases are great because they simplify the math in many cases,
such as finding coordinate vectors and orthogonal projections.

An important question would be, how do we construct orthogonal bases?

The Gram-Schmidt process is a procedure that converts any given basis of
a subspace to an orthogonal basis for the same subspace:

{v1, . . . ,vk} (general basis) −→ {u1, . . . ,uk} (orthogonal basis)
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Theorem 0.8 (Gram-Schmidt Orthogonalization). Given a basis {v1, . . . ,vk}
for a nonzero subspace W ⊆ Rn, the following vectors u1, . . . ,uk form
an orthogonal basis for W :

u1 = v1

u2 = v2 − proju1v2 = v2 −
v2 · u1
u1 · u1

u1

u3 = v3 − proju1,u2v3 = v3 −
v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2

· · ·

uk = vk − proju1,...,uk−1vk = vk −
vk · u1
u1 · u1

u1 − · · · −
vk · uk−1

uk−1 · uk−1
uk−1

Remark. To further get an orthonormal basis, just normalize each ui.
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Dot product and orthogonality

Example 0.12. Given a basis for R2: v1 =
[
1
2

]
,v2 =

[
3
1

]
, construct an

orthogonal basis from it.
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Dot product and orthogonality

Example 0.13. Find an orthogonal basis for the span of

v1 =

1
1
1

 , v2 =

1
2
3

 .
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Dot product and orthogonality

Example 0.14. Find an orthogonal basis for the span of

v1 =

1
1
1

 ,v2 =

1
2
3

 ,v3 =

0
1
5

 .
How can we further obtain an orthonormal basis?
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Least-squares (LS) problems
Often we encounter inconsistent systems of linear equations (e.g., due to
contradictions among the equations):

Ax = b

Though an exact solution does not exist, we can still hope to find an x
such that Ax is as close to b as possible, i.e.,

Ax ≈ b

The specify what we mean by “close”, we need to choose a criterion. Then
the solution is said to be optimal under the chosen criterion.
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For example, the following system has no exact solution:
x+ y = 3
x− y = 1
2x+ 3y = 6.4

−→

1 1
1 −1
2 3

[x
y

]
=

 3
1

6.4


but the pair of x = 1.92, y = 0.88 makes all equations nearly true
(2.8, 1.04, 6.48).

We shall see that this solution is optimal under the so-called least squares
criterion.
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Mathematical formulation of LS problems

Formally, we formulate the following
LS problem:

min
x∈Rn

‖Ax− b‖

where A = [a1 a2 . . .an] ∈ Rm×n

(with m ≥ n), and b ∈ Rm are
both given.

The solution to the above LS prob-
lem is called the LS solution of the
equation Ax = b.

b b

Ax
b

W=Col(A)

b
0

a1 a2

an
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Since Ax ∈ Col(A) for all x, we are looking for the closest vector to b in
the column space of A.

The least squares solution x should be such that b−Ax ⊥ Col(A). In
particular, it is orthogonal to every column of A:

aT1 (b−Ax) = 0, aT2 (b−Ax) = 0, . . . , aTn (b−Ax) = 0

These equations can be combined together as follows:

AT (b−Ax) = 0 −→ ATAx = ATb

This equation has a unique solution when ATA ∈ Rn×n is invertible:

x = (ATA)−1ATb.
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Dot product and orthogonality

Remark. The invertibility condition for ATA holds true if and only if all
the columns of A are linearly independent, in which case we say that A is
of full column rank.

The reason is that for any matrix A ∈ Rm×n

rank(ATA) = rank(A).

We prove this result by showing that the two matrices have the same null
space, i.e., Nul(ATA) = Nul(A).

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 57/69



Dot product and orthogonality

Proof of Nul(ATA) = Nul(A):

(1) Nul(A) ⊆ Nul(ATA): Suppose that x ∈ Nul(A), i.e., Ax = 0.
Multiplying both sides by AT gives that ATAx = AT0 = 0. This
shows that x ∈ Nul(ATA).

(2) Nul(ATA) ⊆ Nul(A): Suppose that x ∈ Nul(ATA), i.e., ATAx =
0. Multiplying both sides by xT gives that

0 = xTATAx = (Ax)T (Ax) = ‖Ax‖2.

This implies that Ax = 0 and thus that x ∈ Nul(A).
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We have thus obtained the following result.

Theorem 0.9. If A is of full column rank (i.e., it has linearly independent
columns), then the following problem

min
x
‖Ax− b‖

has a unique solution
x = (ATA)−1ATb.

Remark. The LS approximation error is

‖ A(ATA)−1AT︸ ︷︷ ︸
H∈Rn×n,Hat matrix

b− b‖
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Dot product and orthogonality

Example 0.15. Verify that the least squares solution of the following
linear system 

x+ y = 3
x− y = 1
2x+ 3y = 6.4

is x = 1.92, y = 0.88.
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Application to simple linear regression

Given data (x1, y1), . . . , (xn, yn),
we would like to fit a line y =
β0 + β1x (exactly or as closely as
possible to the data):

β0 + β1xi = yi, i = 1, . . . , n

This is a linear system consisting of n
equations, in two unknowns (β0, β1).
It typically has no exact solution due
to noise.
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Dot product and orthogonality

We can derive the matrix equation corresponding to the above problem,
as well as its LS solution.

Let

X =


1 x1
1 x2
...

...
1 xn

 , β =
[
β0
β1

]
, y =


y1
y2
...
yn


Then the linear system can be written as

Xβ = y
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The least squares solution is given by

β = (XTX)−1XTy

It follows that the LS regression line is given by

y = β0 + β1x

where β0, β1 are the components of β.

Remark. The LS fitted values are

Xβ = X(XTX)−1XTy

and the LS fitting error is

‖y−Xβ‖ =
∥∥∥(I−X(XTX)−1XT

)
y
∥∥∥
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Example 0.16. Given the following data, find the least-squares regression
line. What are the LS fitted values and total fitting error?
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Remark. To perform linear regression on larger data sets, use software.
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The multiple linear regression problem

Consider a linear model with multiple predictors

y = β0 + β1x1 + β2x2 + · · ·+ βkxk

where

• y: response,

• x1, . . . , xk: predictors

• β0, β1, . . . , βk: coefficients (unknown)
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Assume n observations of the response and predictors (subject to noise),

(xi1, xi2, . . . , xik, yi), 1 ≤ i ≤ n

We would like to use the data to estimate β0, β1, . . . , βk such that

yi ≈ β0 + β1xi1 + β2xi2 + · · ·+ βkxik, 1 ≤ i ≤ n

Let p = k + 1 (#regression coefficients including the intercept) and

y =


y1
y2
...
yn

 , X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
... . . . ...

1 xn1 xn2 · · · xnk

 , β =


β0
β1
...
βk


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The goal of multiple linear regression is to estimate β such that

y︸︷︷︸
n×1

≈ X︸︷︷︸
n×p

· β︸︷︷︸
p×1

Under the LS criterion, the regression coefficients can be found by using
symbolically the same formula.

Theorem 0.10. If X is of full column rank, then the LS solution of the
multiple linear regression problem is

β̂ = (XTX)−1XTy

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 69/69


