Chapter 6: Dot product and orthogonality

San Jose State University

Prof. Guangliang Chen

Fall 2022

Outline

Section 6.1 Inner product, length, and orthogonality
Section 6.2 Orthogonal sets

Section 6.3 Orthogonal projections

Section 6.4 Gram Schmidt process
Section 6.5 Least squares problems

Dot product and orthogonality

Introduction

In this lecutre we introduce geometric concepts such as

- length,
- distance,
- angle, and
- orthogonality
for vectors in \mathbb{R}^{n}.
They are all based on the so-called inner/dot product between vectors.

Dot product and orthogonality

Dot product

Def 0.1. The dot product, also called inner product, between any two vectors of \mathbb{R}^{n}

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]
$$

is defined as

$$
\underbrace{\mathbf{u} \cdot \mathbf{v}}_{\text {r dot product }}=u_{1} v_{1}+\cdots+u_{n} v_{n}=\left[u_{1} \ldots u_{n}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\underbrace{\mathbf{u}^{T} \mathbf{v}}_{\text {matrix product }}
$$

Properties of the inner product

Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^{n}, and c a scalar. Then

- $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0$ if and only if $\mathbf{u}=\mathbf{0}$.
- $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
- $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$

$$
\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}
$$

- $(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})=c(\mathbf{u} \cdot \mathbf{v})$

Dot product and orthogonality

The length of a vector

Def 0.2. The length (or norm) of a vector of \mathbb{R}^{n}

$$
\mathbf{u}=\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

is defined as

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}
$$

Properties of vector norm

Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^{n}, and c a scalar. Then

- $\|\mathbf{u}\| \geq 0$ and $\|\mathbf{u}\|=0$ if and only if $\mathbf{u}=\mathbf{0}$.
- $\|c \mathbf{u}\|=|c| \cdot\|\mathbf{u}\|$. In particular, $\|-\mathbf{u}\|=\|\mathbf{u}\|$.
- $\|\mathbf{u} \pm \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2} \pm 2 \mathbf{u} \cdot \mathbf{v}$.

This implies that $\|\mathbf{u} \pm \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$.

Dot product and orthogonality

Proof.

- This is obviously true based on the definition.
- $\|c \mathbf{u}\|=\sqrt{\left(c u_{1}\right)^{2}+\cdots+\left(c u_{n}\right)^{2}}=\sqrt{c^{2}\left(u_{1}^{2}+\cdots+u_{n}^{2}\right)}=|c| \cdot\|\mathbf{u}\|$.
- We show the formula for $\mathbf{u}+\mathbf{v}$ first:

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+\mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v} \\
& =\|\mathbf{u}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}+\|\mathbf{v}\|^{2}
\end{aligned}
$$

Now, apply this formula with \mathbf{u} and $\mathbf{- v}$ gives the other formula:

$$
\|\mathbf{u}+(-\mathbf{v})\|^{2}=\|\mathbf{u}\|^{2}+2 \mathbf{u} \cdot(-\mathbf{v})+\|-\mathbf{v}\|^{2}
$$

Dot product and orthogonality

Unit vectors in \mathbb{R}^{n}

Def 0.3. A vector $\mathbf{u} \in \mathbb{R}^{n}$ whose length is 1 is called a unit vector.

Theorem 0.1. For any nonzero vector $\mathbf{v} \in \mathbb{R}^{n}$, the normalized form

$$
\frac{1}{\|\mathbf{v}\|} \mathbf{v}
$$

is a unit vector.

$$
\text { Proof. }\left\|\frac{1}{\|\mathbf{v}\|} \mathbf{v}\right\|=\frac{1}{\|\mathbf{v}\|} \cdot\|\mathbf{v}\|=1 .
$$

Dot product and orthogonality

Distance in \mathbb{R}^{n}

Def 0.4. The distance between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ is defined as

$$
\begin{aligned}
\operatorname{dist}(\mathbf{u}, \mathbf{v}) & =\|\mathbf{u}-\mathbf{v}\| \\
& =\sqrt{\sum_{i=1}^{n}\left(u_{i}-v_{i}\right)^{2}}
\end{aligned}
$$

Dot product and orthogonality

Orthogonal vectors

Def 0.5. Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are said to be orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.

Remark. Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ are orthogonal if and only if

$$
\|\mathbf{u} \pm \mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}
$$

Dot product and orthogonality

Angle between two vectors in \mathbb{R}^{n}

Def 0.6. The angle θ between two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ is defined as

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \frac{\mathbf{v}}{\|\mathbf{v}\|}
$$

Remark. Two special cases:

$$
\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\|\|\mathbf{v}\| \cos \theta
$$

- \mathbf{u}, \mathbf{v} are orthogonal $(\mathbf{u} \cdot \mathbf{v}=0)$:

$$
\cos \theta=0\left(\theta=\frac{\pi}{2}\right)
$$

- \mathbf{u}, \mathbf{v} coincide $(\mathbf{u}=\mathbf{v})$:

$$
\cos \theta=1(\theta=0)
$$

Dot product and orthogonality

Example 0.1. Let $\mathbf{u}=[3,4]^{T}, \mathbf{v}=[-1,1]^{T}$. Compute the following:

- Dot product $\mathbf{u} \cdot \mathbf{v}$
- Norms of $\mathbf{u}, \frac{1}{5} \mathbf{u}, \mathbf{v},-2 \mathbf{v}$
- Distance between \mathbf{u}, \mathbf{v}
- Angle between \mathbf{u}, \mathbf{v}

Dot product and orthogonality

Orthogonal sets

Def 0.7. A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathbb{R}^{n}$ is said to be an orthogonal set if each pair of vectors from the set is orthogonal, that is, if

$$
\mathbf{v}_{i} \cdot \mathbf{v}_{j}=0, \quad \text { for all } i \neq j
$$

Dot product and orthogonality

Example 0.2. The following sets of vectors of \mathbb{R}^{3} are orthogonal sets:

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}$

Dot product and orthogonality

Orthogonal sets must be linearly independent sets

Theorem 0.2. If $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\} \subset \mathbb{R}^{n}$ is an orthogonal set of nonzero vectors, then it is a linearly independent set.

Dot product and orthogonality

Proof: Suppose

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0}
$$

for some scalars $c_{1}, c_{2}, \ldots c_{k}$.
For each $i=1, \ldots, k$, take dot product between \mathbf{v}_{i} and each side of the equation to get

$$
\mathbf{v}_{i} \cdot\left(c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}\right)=\mathbf{v}_{i} \cdot \mathbf{0}
$$

Since $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are orthogonal to each other, we have

$$
c_{i}\left(\mathbf{v}_{i} \cdot \mathbf{v}_{i}\right) \longleftarrow \mathbf{v}_{i} \cdot\left(c_{i} \mathbf{v}_{i}\right)=\mathbf{0}
$$

Since \mathbf{v}_{i} is nonzero, i.e., $\mathbf{v}_{i} \cdot \mathbf{v}_{i} \neq 0$, we obtain that $c_{i}=0$. This thus completes the proof.

Orthogonal basis (basis + orthogonality)

Def 0.8. A basis \mathcal{B} for a subspace W of \mathbb{R}^{n} is called an orthogonal basis for W if \mathcal{B} is also an orthogonal set.

Dot product and orthogonality

Example 0.3. Each of the following two sets of vectors is an orthogonal basis for \mathbb{R}^{3} :

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}$
but the following sets are not:
- $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}$ (only an orthogonal set)
- $\mathbf{v}_{1}=[1,0,0]^{T}, \mathbf{v}_{2}=[1,1,0]^{T}, \mathbf{v}_{3}=[1,1,1]^{T}$ (only a basis)

Under an orthogonal basis, coordinates are easy to compute

Theorem 0.3. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For any vector $\mathbf{x} \in W$, the coordinate vector of \mathbf{x} with respect to the basis is

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
\end{array}\right], \quad \text { with } \quad c_{i}=\frac{\mathbf{x} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}=\frac{\mathbf{x} \cdot \mathbf{v}_{i}}{\left\|\mathbf{v}_{i}\right\|^{2}}
$$

This implies that

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\cdots+\frac{\mathbf{x} \cdot \mathbf{v}_{k}}{\mathbf{v}_{k} \cdot \mathbf{v}_{k}} \mathbf{v}_{k}
$$

Dot product and orthogonality

Proof. Suppose

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{x}
$$

for some scalars $c_{1}, c_{2}, \ldots c_{k}$. We need to solve for c_{1}, \ldots, c_{k}.
For each $i=1, \ldots, k$, use \mathbf{v}_{i} to take dot product with the equation to get

$$
\begin{aligned}
\mathbf{v}_{i} \cdot \mathbf{x} & =\mathbf{v}_{i} \cdot\left(c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}\right) \\
& =\mathbf{v}_{i} \cdot\left(c_{i} \mathbf{v}_{i}\right)=c_{i}\left(\mathbf{v}_{i} \cdot \mathbf{v}_{i}\right)
\end{aligned}
$$

where we have used the orthogonality of the vectors.
Since \mathbf{v}_{i} is nonzero, i.e., $\mathbf{v}_{i} \cdot \mathbf{v}_{i} \neq 0$, we obtain that

$$
c_{i}=\frac{\mathbf{v}_{i} \cdot \mathbf{x}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}}
$$

This thus completes the proof.

Dot product and orthogonality

Illustration: Coordinates relative to an orthogonal basis

$$
\left(c_{1}, c_{2}\right)=\left(\frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}, \frac{\mathbf{x} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\right)
$$

Dot product and orthogonality

Example 0.4. For the coordinate vector of $\mathbf{x}=[1,2,3]^{T}$ with respect to the orthogonal basis

$$
\mathbf{v}_{1}=[1,1,1]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}, \mathbf{v}_{3}=[1,1,-2]^{T}
$$

Orthonormal $=$ orthogonal + unit length

- A set of vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ in \mathbb{R}^{n} is called an orthonormal set if the vectors are orthogonal to each other and all have unit norm.
- An orthogonal basis for a subspace of \mathbb{R}^{n} is called an orthonormal basis if the basis vectors all have unit norm.

Dot product and orthogonality

Example 0.5. Each of the following sets of vectors is an orthonormal basis for \mathbb{R}^{3} :

- $\mathbf{e}_{1}=[1,0,0]^{T}, \mathbf{e}_{2}=[0,1,0]^{T}, \mathbf{e}_{3}=[0,0,1]^{T}$
- $\mathbf{v}_{1}=\frac{1}{\sqrt{3}}[1,1,1]^{T}, \mathbf{v}_{2}=\frac{1}{\sqrt{2}}[1,-1,0]^{T}, \mathbf{v}_{3}=\frac{1}{\sqrt{6}}[1,1,-2]^{T}$

Dot product and orthogonality

Expansion onto an orthonormal basis is even easier

Corollary 0.4. Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be an orthonormal basis for a subspace W of \mathbb{R}^{n}. For any vector $\mathbf{x} \in W$, the coordinate vector of \mathbf{x} with respect to the basis is

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{k}
\end{array}\right], \quad \text { with } \quad c_{i}=\mathbf{x} \cdot \mathbf{v}_{i}
$$

This implies that

$$
\mathbf{x}=c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\left(\mathbf{x} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\cdots+\left(\mathbf{x} \cdot \mathbf{v}_{k}\right) \mathbf{v}_{k}
$$

Dot product and orthogonality

Example 0.6. Find the coordinates of $\mathbf{x}=[1,2,3]^{T}$ with respect to the orthonormal basis $\mathbf{v}_{1}=\frac{1}{\sqrt{3}}[1,1,1]^{T}, \mathbf{v}_{2}=\frac{1}{\sqrt{2}}[1,-1,0]^{T}, \mathbf{v}_{3}=\frac{1}{\sqrt{6}}[1,1,-2]^{T}$

Dot product and orthogonality

Orthogonal subspaces

Let W be a subspace of \mathbb{R}^{n} and x a vector in \mathbb{R}^{n}. We say that x is orthogonal to W if $\mathbf{x} \cdot \mathbf{w}=0$ for all $\mathbf{w} \in W$, and denote it by $\mathbf{x} \perp W$.

Dot product and orthogonality

Def 0.9 . Let U, V be two subspaces of \mathbb{R}^{n}.

- The two subspaces U, V are said to be orthogonal to each other if every vector $\mathbf{u} \in U$ is orthogonal to V and every vector $\mathbf{v} \in V$ is orthogonal to U. That is,

$$
\mathbf{u} \cdot \mathbf{v}=0, \quad \text { for all } \mathbf{u} \in U, \mathbf{v} \in V
$$

- They are called orthogonal complements of each other in \mathbb{R}^{n} if they are orthogonal to each other and their total dimension is equal to n (i.e., $\operatorname{dim}(U)+\operatorname{dim}(V)=n$). In this case, we write $U=V^{\perp}$ and $V=U^{\perp}$.

Dot product and orthogonality

Example 0.7. In the right picture, U, V, W are all subspaces of \mathbb{R}^{3}.

- orthogonal subsapces:
U and V, U and W
- orthogonal complements: only U and W.

We thus write $U=W^{\perp}$ and $W=U^{\perp}$.

Dot product and orthogonality

$\operatorname{Row}(\mathbf{A}), \operatorname{Nul}(\mathbf{A})$ are orthogonal complements

For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, one can define three kinds of susbpaces, but only two of them belong to the same vector space:

$$
\operatorname{Row}(\mathbf{A}), \operatorname{Nul}(\mathbf{A}) \subseteq \mathbb{R}^{n} \quad\left(\operatorname{Col}(\mathbf{A}) \subseteq \mathbb{R}^{m}\right)
$$

In fact, these two must be orthogonal complements.

Theorem 0.5. For any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$,

$$
(\operatorname{Row}(\mathbf{A}))^{\perp}=\operatorname{Nul}(\mathbf{A})
$$

Dot product and orthogonality

To prove that $\operatorname{Row}(\mathbf{A}), \operatorname{Nul}(\mathbf{A})$ are orthogonal complements, we need to verify
(1) The two subspaces are orthogonal to each other:

(2) Their total dimension is n, i.e., $\operatorname{dim}(\operatorname{Row}(\mathbf{A}))+\operatorname{dim}(\operatorname{Nul}(\mathbf{A}))=n$. This is because

- $\operatorname{dim}(\operatorname{Row}(\mathbf{A}))=\operatorname{rank}(\mathbf{A})=$ \#pivots;
- $\operatorname{dim}(\operatorname{Nul}(\mathbf{A})) \quad=\quad n-$ $\operatorname{rank}(\mathbf{A})=$ \#free variables

Dot product and orthogonality

Remark. The theorem implies that the orthogonal complement of $\operatorname{Col}(\mathbf{A})$ in \mathbb{R}^{m} is $\operatorname{Nul}\left(\mathbf{A}^{T}\right)$:

$$
(\operatorname{Col}(\mathbf{A}))^{\perp}=\left(\operatorname{Row}\left(\mathbf{A}^{T}\right)\right)^{\perp}=\operatorname{Nul}\left(\mathbf{A}^{T}\right)
$$

where

$$
\operatorname{Nul}\left(\mathbf{A}^{T}\right)=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid \mathbf{A}^{T} \mathbf{x}=\mathbf{0}\right\}=\left\{\mathbf{x} \in \mathbb{R}^{m} \mid \mathbf{x}^{T} \mathbf{A}=\mathbf{0}^{T}\right\}
$$

Dot product and orthogonality

Example 0.8. Consider the following matrix and its RREF

$$
\mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right]
$$

We have

- $\operatorname{Row}(\mathbf{A})=\operatorname{span}\left\{[1,0,-1]^{T},[0,1,2]^{T}\right\}$, and
- $\operatorname{Nul}(\mathbf{A})=\operatorname{span}\left\{[1,-2,1]^{T}\right\}$.

The two subspaces are orthogonal complements of each other (inside \mathbb{R}^{3}).
On the other hand, $\operatorname{Col}(\mathbf{A})=\mathbb{R}^{2}$ and $\operatorname{Nul}\left(\mathbf{A}^{T}\right)=\{\mathbf{0}\}$. The two subspaces are also orthogonal complements of each other (in \mathbb{R}^{2}).

Orthogonal matrix (square matrix w/ orthonormal columns)

Def 0.10. A square matrix $\mathbf{Q}=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{n}\right] \in \mathbb{R}^{n \times n}$ is called an orthogonal matrix if its columns are an orthonormal set of vectors, i.e.,

$$
\mathbf{q}_{i} \cdot \mathbf{q}_{j}= \begin{cases}1, & i=j \longleftarrow \text { Unit norm } \\ 0, & i \neq j \longleftarrow \text { Orthogonality }\end{cases}
$$

Remark. The columns of an $n \times n$ orthogonal matrix must form an orthonormal basis for \mathbb{R}^{n} (and vice versa).

Dot product and orthogonality

Example 0.9. The following is an example of an orthogonal matrix (because the columns of the matrix form an orthonormal basis for \mathbb{R}^{3}):

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}
\end{array}\right]
$$

Dot product and orthogonality

Inverse of an orthogonal matrix is its transpose

Theorem 0.6. If $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is an orthogonal matrix, then $\mathbf{Q}^{-1}=\mathbf{Q}^{T}$.
The converse is also true.

Proof.

$$
\mathbf{Q}^{T} \mathbf{Q}=\left[\begin{array}{c}
\mathbf{q}_{1}^{T} \\
\mathbf{q}_{2}^{T} \\
\vdots \\
\mathbf{q}_{n}^{T}
\end{array}\right]\left[\mathbf{q}_{1} \mathbf{q}_{2} \ldots \mathbf{q}_{n}\right]=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]=\mathbf{I}_{n}
$$

Dot product and orthogonality

The orthogonal projection problem

Let $\mathcal{B}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. We have showed that if \mathbf{x} lies in W, then it can be represented as

$$
\mathbf{x}=\frac{\mathbf{x} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\cdots+\frac{\mathbf{x} \cdot \mathbf{v}_{k}}{\mathbf{v}_{k} \cdot \mathbf{v}_{k}} \mathbf{v}_{k}
$$

It can be shown that $\hat{\mathbf{y}}$ is the closest
For any vector \mathbf{y} outside of W, point in W to \mathbf{y}. its orthogonal projection onto W, $\hat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}$, will be inside W.

Dot product and orthogonality

Remark. In order for $\hat{\mathbf{y}}$ to be the orthogonal projection of \mathbf{y} onto W, we must have

$$
\mathbf{y}-\hat{\mathbf{y}} \perp W
$$

In particular,

$$
\mathbf{y}-\hat{\mathbf{y}} \perp \mathbf{v}_{i}, 1 \leq i \leq k \quad \text { and } \quad \mathbf{y}-\hat{\mathbf{y}} \perp \hat{\mathbf{y}} .
$$

This also leads to a decomposition of \mathbf{y} along W and W^{\perp} :

$$
\mathbf{y}=\underbrace{\hat{\mathbf{y}}}_{\in W}+\underbrace{(\mathbf{y}-\hat{\mathbf{y}})}_{\in W^{\perp}}
$$

Lastly, the distance from y to W can be defined as follows:

$$
\operatorname{dist}(\mathbf{y}, W)=\|\mathbf{y}-\hat{\mathbf{y}}\|, \quad \hat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}
$$

Dot product and orthogonality

The case of $k=1$

We first consider the projection of a point onto a 1-dimensional subspace spanned by a single vector \mathbf{v}_{1}.

Suppose $\hat{\mathbf{y}}=c_{1} \mathbf{v}_{1}$ (with c_{1} TBD). Since $\mathbf{y}-\hat{\mathbf{y}}$ must be orthogonal to W, we have

$$
\begin{aligned}
0 & =\mathbf{v}_{1} \cdot(\mathbf{y}-\hat{\mathbf{y}})=\mathbf{v}_{1} \cdot\left(\mathbf{y}-c_{1} \mathbf{v}_{1}\right) \\
& =\mathbf{v}_{1} \cdot \mathbf{y}-c_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{1}
\end{aligned}
$$

This yields that

$$
c_{1}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \longrightarrow \hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}
$$

Dot product and orthogonality

Example 0.10. Let $\mathbf{v}=[3,4]^{T}$. Find the projection of $\mathbf{x}=[1,0]^{T}$ onto the subspace spanned by \mathbf{v}. What is the distance from \mathbf{x} to the subspace?

Dot product and orthogonality

The case of $k=2$

When $k=2$, suppose $\hat{\mathbf{y}}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}$ (with c_{1}, c_{2} TBD).
Since $\mathbf{y}-\hat{\mathbf{y}}$ must be orthogonal to W, and in particular, $\mathbf{y}-\hat{\mathbf{y}}$ must be orthogonal to \mathbf{v}_{1}, we have

$$
\begin{aligned}
0 & =\mathbf{v}_{1} \cdot(\mathbf{y}-\hat{\mathbf{y}}) \\
& =\mathbf{v}_{1} \cdot\left(\mathbf{y}-c_{1} \mathbf{v}_{1}-c_{2} \mathbf{v}_{2}\right) \\
& =\mathbf{v}_{1} \cdot \mathbf{y}-c_{1} \mathbf{v}_{1} \cdot \mathbf{v}_{1}-0
\end{aligned}
$$

from which we obtain that

$$
c_{1}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}
$$

Dot product and orthogonality

Similarly, $\mathbf{y}-\hat{\mathbf{y}}$ must be orthogonal to \mathbf{v}_{2} :

$$
0=\mathbf{v}_{2} \cdot(\mathbf{y}-\hat{\mathbf{y}})
$$

From this, we obtain that

$$
c_{2}=\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}
$$

Putting everything together,

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}
$$

Dot product and orthogonality

Geometric interpretation

Projection onto a subspace (with an orthogonal basis) is equal to the sum of projections onto the basis vectors individually:

$$
\hat{\mathbf{y}}=\underbrace{\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}}_{\hat{\mathbf{y}}_{1}}+\underbrace{\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}}_{\hat{\mathbf{y}}_{2}}
$$

Dot product and orthogonality

Example 0.11. Let $\mathbf{v}_{1}=[1,1,0]^{T}, \mathbf{v}_{2}=[1,-1,0]^{T}$. Find the projection of $\mathbf{x}=[2,3,4]^{T}$ onto the subspace spanned by $\mathbf{v}_{1}, \mathbf{v}_{2}$.

Dot product and orthogonality

The general case of any k

The previous approach applies to any k, leading the following result.
Theorem 0.7. The orthogonal projection of any vector $\mathbf{y} \in \mathbb{R}^{n}$ onto a subspace W, with an orthogonal basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$, is

$$
\operatorname{proj}_{W} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{v}_{k}}{\mathbf{v}_{k} \cdot \mathbf{v}_{k}} \mathbf{v}_{k}
$$

Remark. If the orthogonal basis is orthonormal, then the formula simplifies to

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{v}_{1}\right) \mathbf{v}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{v}_{k}\right) \mathbf{v}_{k}
$$

The Gram-Schmidt Orthogonalization Process

Orthogonal bases are great because they simplify the math in many cases, such as finding coordinate vectors and orthogonal projections.

An important question would be, how do we construct orthogonal bases?
The Gram-Schmidt process is a procedure that converts any given basis of a subspace to an orthogonal basis for the same subspace:
$\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ (general basis) $\longrightarrow\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ (orthogonal basis)

Dot product and orthogonality

Theorem 0.8 (Gram-Schmidt Orthogonalization). Given a basis $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ for a nonzero subspace $W \subseteq \mathbb{R}^{n}$, the following vectors u_{1}, \ldots, u_{k} form an orthogonal basis for W :

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{1} \\
& \mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{v}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} \\
& \mathbf{u}_{3}=\mathbf{v}_{3}-\operatorname{proj}_{\mathbf{u}_{1}, \mathbf{u}_{2}} \mathbf{v}_{3}=\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}
\end{aligned}
$$

$$
\mathbf{u}_{k}=\mathbf{v}_{k}-\operatorname{proj}_{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k-1}} \mathbf{v}_{k}=\mathbf{v}_{k}-\frac{\mathbf{v}_{k} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\cdots-\frac{\mathbf{v}_{k} \cdot \mathbf{u}_{k-1}}{\mathbf{u}_{k-1} \cdot \mathbf{u}_{k-1}} \mathbf{u}_{k-1}
$$

Remark. To further get an orthonormal basis, just normalize each \mathbf{u}_{i}.

Dot product and orthogonality

Gram Schmidt: $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \longrightarrow\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$

Dot product and orthogonality

Example 0.12. Given a basis for $\mathbb{R}^{2}: \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$, construct an orthogonal basis from it.

Dot product and orthogonality

Example 0.13. Find an orthogonal basis for the span of

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

Dot product and orthogonality

Example 0.14. Find an orthogonal basis for the span of

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
5
\end{array}\right] .
$$

How can we further obtain an orthonormal basis?

Dot product and orthogonality

Least-squares (LS) problems

Often we encounter inconsistent systems of linear equations (e.g., due to contradictions among the equations):

$$
\mathbf{A x}=\mathbf{b}
$$

Though an exact solution does not exist, we can still hope to find an \mathbf{x} such that $\mathbf{A x}$ is as close to \mathbf{b} as possible, i.e.,

$$
\mathbf{A x} \approx \mathbf{b}
$$

The specify what we mean by "close", we need to choose a criterion. Then the solution is said to be optimal under the chosen criterion.

Dot product and orthogonality

For example, the following system has no exact solution:

$$
\left\{\begin{array}{l}
x+y=3 \\
x-y=1 \\
2 x+3 y=6.4
\end{array} \quad \longrightarrow\left[\begin{array}{cc}
1 & 1 \\
1 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
3 \\
1 \\
6.4
\end{array}\right]\right.
$$

but the pair of $x=1.92, y=0.88$ makes all equations nearly true (2.8, 1.04, 6.48).

We shall see that this solution is optimal under the so-called least squares criterion.

Dot product and orthogonality

Mathematical formulation of LS problems

Formally, we formulate the following LS problem:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{A x}-\mathbf{b}\|
$$

where $\mathbf{A}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{n}\right] \in \mathbb{R}^{m \times n}$ (with $m \geq n$), and $\mathbf{b} \in \mathbb{R}^{m}$ are both given.

The solution to the above LS problem is called the LS solution of the equation $\mathbf{A x}=\mathbf{b}$.

Dot product and orthogonality

Since $\mathbf{A x} \in \operatorname{Col}(\mathbf{A})$ for all \mathbf{x}, we are looking for the closest vector to \mathbf{b} in the column space of \mathbf{A}.

The least squares solution \mathbf{x} should be such that $\mathbf{b}-\mathbf{A x} \perp \operatorname{Col}(\mathbf{A})$. In particular, it is orthogonal to every column of \mathbf{A} :

$$
\mathbf{a}_{1}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=0, \quad \mathbf{a}_{2}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=0, \quad \ldots, \quad \mathbf{a}_{n}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=0
$$

These equations can be combined together as follows:

$$
\mathbf{A}^{T}(\mathbf{b}-\mathbf{A} \mathbf{x})=\mathbf{0} \longrightarrow \mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{b}
$$

This equation has a unique solution when $\mathbf{A}^{T} \mathbf{A} \in \mathbb{R}^{n \times n}$ is invertible:

$$
\mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Dot product and orthogonality

Remark. The invertibility condition for $\mathbf{A}^{T} \mathbf{A}$ holds true if and only if all the columns of \mathbf{A} are linearly independent, in which case we say that \mathbf{A} is of full column rank.

The reason is that for any matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$

$$
\operatorname{rank}\left(\mathbf{A}^{T} \mathbf{A}\right)=\operatorname{rank}(\mathbf{A})
$$

We prove this result by showing that the two matrices have the same null space, i.e., $\operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right)=\operatorname{Nul}(\mathbf{A})$.

Dot product and orthogonality

Proof of $\operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right)=\operatorname{Nul}(\mathbf{A}):$
(1) $\operatorname{Nul}(\mathbf{A}) \subseteq \operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right):$ Suppose that $\mathbf{x} \in \operatorname{Nul}(\mathbf{A})$, i.e., $\mathbf{A x}=\mathbf{0}$. Multiplying both sides by \mathbf{A}^{T} gives that $\mathbf{A}^{T} \mathbf{A} \mathbf{x}=\mathbf{A}^{T} \mathbf{0}=\mathbf{0}$. This shows that $\mathbf{x} \in \operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right)$.
(2) $\operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right) \subseteq \operatorname{Nul}(\mathbf{A}):$ Suppose that $\mathbf{x} \in \operatorname{Nul}\left(\mathbf{A}^{T} \mathbf{A}\right)$, i.e., $\mathbf{A}^{T} \mathbf{A x}=$ $\mathbf{0}$. Multiplying both sides by \mathbf{x}^{T} gives that

$$
\mathbf{0}=\mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}=(\mathbf{A} \mathbf{x})^{T}(\mathbf{A} \mathbf{x})=\|\mathbf{A} \mathbf{x}\|^{2}
$$

This implies that $\mathbf{A x}=\mathbf{0}$ and thus that $\mathbf{x} \in \operatorname{Nul}(\mathbf{A})$.

Dot product and orthogonality

We have thus obtained the following result.
Theorem 0.9. If \mathbf{A} is of full column rank (i.e., it has linearly independent columns), then the following problem

$$
\min _{\mathbf{x}}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|
$$

has a unique solution

$$
\mathbf{x}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

Remark. The LS approximation error is

$$
\|\underbrace{\mathbf{A}\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T}}_{\mathbf{H} \in \mathbb{R}^{n \times n}, \text { Hat matrix }} \mathbf{b}-\mathbf{b}\|
$$

Dot product and orthogonality

Example 0.15. Verify that the least squares solution of the following linear system

$$
\left\{\begin{array}{l}
x+y=3 \\
x-y=1 \\
2 x+3 y=6.4
\end{array}\right.
$$

is $x=1.92, y=0.88$.

Dot product and orthogonality

Application to simple linear regression

Given data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, we would like to fit a line $y=$ $\beta_{0}+\beta_{1} x$ (exactly or as closely as possible to the data):

$$
\beta_{0}+\beta_{1} x_{i}=y_{i}, \quad i=1, \ldots, n
$$

This is a linear system consisting of n
 equations, in two unknowns (β_{0}, β_{1}). It typically has no exact solution due to noise.

Dot product and orthogonality

We can derive the matrix equation corresponding to the above problem, as well as its LS solution.

Let

$$
\mathbf{X}=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right], \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Then the linear system can be written as

$$
\mathbf{X} \beta=\mathbf{y}
$$

Dot product and orthogonality

The least squares solution is given by

$$
\boldsymbol{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

It follows that the LS regression line is given by

$$
y=\beta_{0}+\beta_{1} x
$$

where β_{0}, β_{1} are the components of $\boldsymbol{\beta}$.
Remark. The LS fitted values are

$$
\mathbf{X} \boldsymbol{\beta}=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

and the LS fitting error is

$$
\|\mathbf{y}-\mathbf{X} \boldsymbol{\beta}\|=\left\|\left(\mathbf{I}-\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}\right) \mathbf{y}\right\|
$$

Dot product and orthogonality

Example 0.16. Given the following data, find the least-squares regression line. What are the LS fitted values and total fitting error?

Dot product and orthogonality

Remark. To perform linear regression on larger data sets, use software.

Dot product and orthogonality

The multiple linear regression problem

Consider a linear model with multiple predictors

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}
$$

where

- y : response,
- x_{1}, \ldots, x_{k} : predictors
- $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$: coefficients (unknown)

Dot product and orthogonality

Prof. Guangliang Chen | Mathematics \& Statistics, San José State University 67/69

Dot product and orthogonality

Assume n observations of the response and predictors (subject to noise),

$$
\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}, y_{i}\right), \quad 1 \leq i \leq n
$$

We would like to use the data to estimate $\beta_{0}, \beta_{1}, \ldots, \beta_{k}$ such that

$$
y_{i} \approx \beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\cdots+\beta_{k} x_{i k}, \quad 1 \leq i \leq n
$$

Let $p=k+1$ (\#regression coefficients including the intercept) and

$$
\mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], \quad \mathbf{X}=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 k} \\
1 & x_{21} & x_{22} & \cdots & x_{2 k} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n k}
\end{array}\right], \quad \boldsymbol{\beta}=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right]
$$

Dot product and orthogonality

The goal of multiple linear regression is to estimate β such that

$$
\underbrace{\mathbf{y}}_{n \times 1} \approx \underbrace{\mathbf{X}}_{n \times p} \cdot \underbrace{\boldsymbol{\beta}}_{p \times 1}
$$

Under the LS criterion, the regression coefficients can be found by using symbolically the same formula.

Theorem 0.10. If \mathbf{X} is of full column rank, then the LS solution of the multiple linear regression problem is

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

