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Symmetric matrices and SVD

Symmetric matrices

Def 0.1. A square matrix A is said to be symmetric if AT = A, i.e., aij = aji

for all i, j.

Example 0.1. The following matrices are all symmetric:

[
7 2
2 4

]
,

 3 −2 4
−2 6 2
4 2 1

 ,
1 1 1

1 1 1
1 1 1
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Symmetric matrices and SVD

Remark. Symmetric matrices have many nice properties.

For example, they have no complex eigenvalues, and eigenvectors corresponding
to distinct eigenvalues must be orthogonal to each other.

Additionally, they are always diagonalizable via orthogonal matrices.

We present these results in a theorem, divided into two parts.
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Symmetric matrices and SVD

The Spectral Theorem (part 1)

Let A ∈ Rn×n be any symmetric matrix. Then

• A has n real eigenvalues, counting multiplicities (there are no complex
eigenvalues)

• For each distinct eigenvalue λi, the geometric multiplicity must coincide
with the algebraic multiplicity, i.e., ai = gi. This implies that A must be
diagonalizable.
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Symmetric matrices and SVD

Example 0.2. Diagonalize the following symmetric matrix:

A =
[

7 2
2 4

]

Answer: From

0 = det(A− λI) = (7− λ)(4− λ)− 22 = (λ− 8)(λ− 3)

we obtain two distinct eigenvalues λ1 = 8, λ2 = 3.
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Symmetric matrices and SVD

The corresponding eigenvectors can be found by directly solving (A−λiI)vi = 0:

A− λ1I =
[
−1 2
2 −4

]
−→ v1 =

[
2
1

]

A− λ2I =
[

4 2
2 1

]
−→ v2 =

[
1
−2

]

It follows that A = PDP−1, where

P = [v1 v2] =
[

2 1
1 −2

]
, D =

[
8

3

]
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Example 0.3. Diagonalize the following symmetric matrix:

A =

1 1 1
1 1 1
1 1 1


Answer: We start by computing the characteristic equation of A:

0 = det(A− λI) =

∣∣∣∣∣∣∣
1− λ 1 1

1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣∣ = (3− λ)λ2

This shows that the matrix has two distinct eigenvalues λ1 = 3 and λ2 = 0 with
corresponding algebraic multiplicities a1 = 1 and a2 = 2.
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For the eigenvalue λ1 = 3 (we must have g1 = a1 = 1), there is only one linearly
independent eigenvector, found as follows:

[A− 3I | 0] =

−2 1 1 | 0
1 −2 1 | 0
1 1 −2 | 0

 −→
1 0 −1 | 0

0 1 −1 | 0
0 0 0 | 0

 −→ v1 =

1
1
1


For the eigenvalue λ2 = 0 (we must have g2 = a2 = 2 due to the symmetry of
A), there are two linearly independent eigenvectors, found as follows:

[A− 0I | 0] =

1 1 1 | 0
1 1 1 | 0
1 1 1 | 0

 −→ v2 =

−1
1
0

 , v3 =

−1
0
1
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Thus, if we let

P = [v1 v2 v3] =

1 −1 −1
1 1 0
1 0 1

 , D = diag(λ1, λ2, λ2) =

3
0

0


then we have

A = PDP−1

i.e., 1 1 1
1 1 1
1 1 1


︸ ︷︷ ︸

A

=

1 −1 −1
1 1 0
1 0 1


︸ ︷︷ ︸

P

3
0

0


︸ ︷︷ ︸

D

1 −1 −1
1 1 0
1 0 1


−1

︸ ︷︷ ︸
P−1

.
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Eigenspaces of a symmetric matrix corresponding to
different eigenvalues must be orthogonal to each other

Theorem 0.1. If A is symmetric, then any two eigenvectors corresponding to
different eigenvalues are orthogonal.

Proof. Let Av1 = λ1v1 and Av2 = λ2v2 such that λ1 6= λ2. We need to show
that v1 ·v2 = 0 (i.e., they are orthogonal to each other) based on the assumption
that A is symmetric (i.e., AT = A).

Write

λ1(v1 · v2) = (Av1) · v2 = (Av1)T v2 = vT
1 Av2 = vT

1 (λ2v2) = λ2(v1 · v2)

Since λ2 6= λ1, we must have v1 · v2 = 0.
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Symmetric matrices and SVD

The Spectral Theorem (part 2)

Let A ∈ Rn×n be any symmetric matrix. Then A is orthogonally diagonalizable,
i.e., there exists an orthogonal matrix Q ∈ Rn×n (i.e., Q−1 = QT ) such that

A = QDQT .

Remark. This is also a spectral decomposition of A:

• Q consists of (orthonormal) eigenvectors of A: Q = [v1 . . .vn]

• D contains the corresponding eigenvalues of A along its diagonal: D =
diag(λ1, . . . , λn)
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Example 0.4. Orthogonally diagonalize the following symmetric matrix:

A =
[

7 2
2 4

]
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Example 0.5. Orthogonally diagonalize the following symmetric matrix:

A =

1 1 1
1 1 1
1 1 1


Answer: We have previously obtained that A = PDP−1, where

P = [v1 v2 v3] =

1 −1 −1
1 1 0
1 0 1

 , D = diag(λ1, λ2, λ2) =

3
0

0


Since {v1} and {v2,v3} correspond to different eigenvalues (λ1 = 3, λ2 = 0) of
the symmetric matrix A, we must have that v1 is orthogonal to both of v2,v3
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Symmetric matrices and SVD

(but v2,v3 are not necessarily orthogonal because they come from the same
eigenvalue λ2 = 0).

To obtain an orthogonal matrix for diagonalizing A, we just need to

(1) normalize v1 and

(2) apply the Gram-Schmidt process to convert {v2,v3} to an orthonormal
basis for the eigenspace associated to λ2 = 0.

Specifically,

(1) u1 = 1
‖v1‖v1 = 1√

3

1
1
1
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(2) u2 = v2 =

−1
1
0

 −→ 1√
2

−1
1
0

 and

u3 = v3 − proju2v3 = v3 −
v3 · u2

u2 · u2
u2

=

−1
0
1

− 1
2

−1
1
0

 =

− 1
2
− 1

2
1

 −→ 1√
6/4

− 1
2
− 1

2
0

 =

−1/
√

6
−1/
√

6
2/
√

6


Therefore, the orthogonal matrix Q that is needed for diagonalizing A
(i.e., A = QDQT for the same diagonal matrix D) is

Q =

1/
√

3 −1/
√

2 −1/
√

6
1/
√

3 1/
√

2 −1/
√

6
1/
√

3 0 2/
√

6
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Quadratic forms
Symmetric matrices can be used to define the so-called quadratic forms.

Def 0.2. Let A ∈ Rn×n be a symmetric matrix. A quadratic form based on
A is a function Q : Rn 7→ R with

Q(x) = xT Ax, for all x ∈ Rn.

Remark. A quadratic form is a second-order polynomial in the components of x
without linear or constant terms:

xT Ax =
n∑

i=1

n∑
j=1

aijxixj =
n∑

i=1
aiix

2
i + 2

∑
i<j

aijxixj

For all symmetric matrices A, we have Q(0) = 0T A0 = 0
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For example, if A =
(

1 3
3 2

)
and x =

(
x1
x2

)
, then

Q(x) = xT Ax = x2
1 + 2x2

2 + 6x1x2
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Question: Which symmetric matrix corresponds to

Q(x) = x2
1 + 2x2

2 + 3x2
3 + 6x1x2 − 4x1x3 + 10x2x3
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Positive (semi)definite matrices
Consider the following symmetric matrices, and their associated quadratic forms(

1 2
2 4

)
,

(
2 3
3 5

)
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For some symmetric matrices (like those two on the preceding slide), their
quadratic forms are never negative.

A symmetric matrix A ∈ Rn×n is said to be positive definite ifQ(x) = xT Ax >

0 for all x 6= 0 ∈ Rn.

A symmetric matrix A ∈ Rn×n is said to be positive semidefinite if Q(x) =
xT Ax ≥ 0 for all x ∈ Rn.

Positive definite matrices must be positive semidefinite; the converse is not true.
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It turns out that one can check the eigenvalues of a symmetric matrix to determine
its positive definiteness.

Theorem 0.2. A symmetric matrix is positive definite (positive semidefinite) if
and only if all of its eigenvalues are strictly positive (nonnegative).

Example 0.6. Determine the positive definiteness of each of the following sym-
metric matrices by finding their eigenvalues:(

1 3
3 2

)
,

(
1 2
2 4

)
,

(
2 3
3 5

)
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Theorem 0.3. Let A ∈ Rm×n be any matrix. Then AT A is square, symmetric
and positive definite.

Proof.

• square: AT A ∈ Rn×n.

• symmetric: (AT A)T = (A)T (AT )T = AT A.

• positive semidefinite: For any x ∈ Rn,

xT (AT A)x = xT AT Ax = (Ax)T (Ax) = ‖Ax‖2 ≥ 0.

This result will be used later when deriving the singular value decomposition.
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Further learning
Math 250: Mathematical Data Visualization1

Refer to the following lectures:

• Basic matrix algebra: Diagonalization of idempotent matrices, matrix
square roots, the generalized eigenvalue problem

• Matrix computing in Matlab

• Singular value decomposition (SVD)

Math 251: Statistical and Machine Learning Classification2

1https://www.sjsu.edu/faculty/guangliang.chen/Math250.html
2https://www.sjsu.edu/faculty/guangliang.chen/Math251.html
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