��<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"> <HEAD> <TITLE> Ionization Energy, Charge Shielding and Spin Pairing of Electrons in Atoms and Ions </TITLE> <SCRIPT language=javascript src=""></SCRIPT> <STYLE>BODY { BACKGROUND: #aaffdd; MARGIN-LEFT: 0.2in; COLOR: #000000; MARGIN-RIGHT: 0.2in } H2 { FONT-SIZE: 18pt; COLOR: #ff0000; TEXT-ALIGN: center } H4 {margin-left:2in; margin-right:2in; text-align:center; font-size:20pt; color:#000000; background:#FFFF00; padding:20px; border-style:outset; border-color:#FF0000; border-width:1px;} LI { BORDER-RIGHT: white 5px outset; PADDING-RIGHT: 20px; BORDER-TOP: white 5px outset; PADDING-LEFT: 20px; FONT-SIZE: 18pt; BACKGROUND: #ddffff; PADDING-BOTTOM: 20px; BORDER-LEFT: white 5px outset; TEXT-INDENT: 0.2in; LINE-HEIGHT: 1.2em; PADDING-TOP: 20px; BORDER-BOTTOM: white 5px outset; text-weight: 400 } UL { BORDER-TOP-WIDTH: 20px; PADDING-RIGHT: 20px; PADDING-LEFT: 20px; BORDER-LEFT-WIDTH: 20px; BORDER-LEFT-COLOR: black; BACKGROUND: #aaffff; BORDER-BOTTOM-WIDTH: 20px; BORDER-BOTTOM-COLOR: black; PADDING-BOTTOM: 20px; BORDER-TOP-COLOR: black; PADDING-TOP: 20px; BORDER-RIGHT-WIDTH: 20px; BORDER-RIGHT-COLOR: black; spacing: 20px } TH { FONT-SIZE: 16pt } TD { FONT-SIZE: 16pt; TEXT-ALIGN: LEFT; spacing: 20px } P { FONT-SIZE: 22pt } BLOCKQUOTE { FONT-SIZE: 24pt; COLOR: #ff00ff } </STYLE> <META content="MSHTML 6.00.2800.1601" name=GENERATOR></HEAD> <BODY vLink=#000000 link=#ff0000 bgColor=#9acd32> <CENTER> <TABLE cellPadding=15 bgColor=#0000aa border=9 frame=box> <TBODY> <TR> <TH><FONT color=#ffff00 size=5>San Jos&eacute; State University</FONT> </B></TH></TR></TBODY></TABLE> </CENTER><p> <CENTER> <TABLE cellPadding=15 bgColor=#00ffff border=9 frame=box> <TBODY> <TR> <TH><FONT color=#880000 size=5>applet-magic.com<BR><FONT color=#880000 size=4><I>Thayer Watkins</I><BR>Silicon Valley<BR>&amp; Tornado Alley<BR>USA</FONT></B></FONT></TH></TR></TBODY></TABLE></CENTER> <P><CENTER><TABLE BORDER=9 FRAME=box BGCOLOR=#0000aa CELLPADDING=10><th> <CENTER><FONT SIZE="5" COLOR=#FFFFFF><b> Ionization Energy, Charge<br> Shielding and Spin Pairing<br> of Electrons in Atoms and Ions </b></FONT></CENTER> </th></TABLE> </CENTER> <b><p> <p>This is a continuation of a study on the ionization energy for electrons in different positions within atoms and ions. Ionization energy, or as it is usually called <i>the ionization potential</i>, for an electron is the amount of energy required to dislodge it. The previous <a href="chargeshielding2.htm">study</a> focused on the variation in ionization as a function of the number of protons in the nucleus. This one focuses on the variation wirh respect to electron position with the specific goal of discerning whether the ionization energergy is depends upon whether or not the electron is a member of a pair <h2>Ionization Energies</h2> <p>The Bohr model of a hydrogen-like atom or ion indicates that the energy I required to remove an electron should follow the formula <h4> I = <i>R</i>Z&sup2;/n&sup2; </h4> <p>where <i>R</i> is the Rydberg constant (approximately 13.6 electron Volts (eV), Z is the net charge experienced by the electron and n is the principal quantum number of the electron, effectively the shell number. The net charge Z is equal to the number of protons P in the nucleus less the number charges V shielded by the electrons which are in inner shells or subshells or in the same subshell. <p>The generalization of the Bohr formula is then <h4> I = &beta;<sub>n</sub>(P&minus;V)&sup2; + &zeta;J </h4> <p>where &beta;<sub>n</sub> is a constant closely related to <i>R</i>//n&sup2; and J is 1 if the electron number E is even and 0 otherwise. <p>Let N be the number of electrons in inner shells or subshells and S the number in the same subshell. The relationship of N, S and E is <h4> N + S = E &minus; 1 </h4> <p>The number of charges shielded V is related linearly to N and S, say <h4> V = &rho;<sub>N</sub>N + &rho;<sub>S</sub>S </h4> <p>A previous study found that the shielding ratio &rho;<sub>N</sub> is approximately equal to 1.0 and &rho;<sub>S</sub> to 0.5. <p>Electrons are organized in shells and subshells within the shells. In each shell the first subshell can contain two electrons. Where there is a second subshell it can contain at most six electrons. For the third subshell the capacity is ten. The capacities 2, 6 and 10 are twice the first three odd numbers 1, 3 and 5. The total capacities of the shells are 2, 2+6=8, and 2+6+10=18. <p>Here is a graph of the ionization energies of the different electrons in an Argon atom. <p><center><img src="cargeshielding3a.gif"></center> <p>Clearly the relationship depends on the shell number and within a shell ionization energy depends upon the number of electrons in the shell. It is difficult to detect any variation with respect to the subshell. It is also difficult to detect any quadratic dependence. <p>Let Z<sub>1</sub> be the net charge experienced by an electron in a subshell. Then <h4> I = &beta;<sub>n</sub>(Z<sub>1</sub>&minus;&rho;<sub>2</sub>S)&sup2; + &zeta;J <br> which expanded is<br> I = &beta;<sub>n</sub>(Z<sub>1</sub>&sup2; &minus;2Z<sub>1</sub>&rho;<sub>2</sub>S + &rho;<sub>2</sub>&sup2;S&sup2;) + &zeta;J </h4> <p>If Z<sub>1</sub> is kept constant the dependence of I on S should be of the form <h4> I = c<sub>0</sub> + c<sub>1</sub>S + c<sub>2</sub>S&sup2; + c<sub>4</sub>J <br>where<br> J = mod (S+1) </h4> <p>This regression equation for the electrons in the second subshell of the second shell for Argon (P=18) is <h4> I = 758.51786 &minus; 76.27679S + 1.73786S&sup2; &minus; 0.80250J <br> &nbsp; &nbsp; &nbsp;&nbsp; [121.0] &nbsp;&nbsp;&nbsp; [-13.3] &nbsp;&nbsp;&nbsp; [1.6] &nbsp;&nbsp;&nbsp; [-0.1] </h4> <!-- -0.8025 1.737857143 -76.27678571 758.51778571 5.703283502 1.093108252 5.714911004 6.26884849 0.998889035 6.679001743 #N/A #N/A 599.4122802 2 #N/A #N/A 80217.66282 89.21812857 #N/A #N/A -0.140708418 1.589830778 -13.346977 120..9979565 --> <p>The t-ratio for c<sub>4</sub> indicate that there is no statistically significant effect on ioinization energy due to spin pairing. <p>The ratio c<sub>1</sub>/c<sub>2</sub> should be <h4> &minus;2Z<sub>1</sub>&rho;<sub>2</sub>/(&rho;<sub>2</sub>&sup2;) = &minus;2Z<sub>1</sub>/&rho;<sub>2</sub> </h4> <p>The actual value of this ratio is &minus;43.89129. Thus Z<sub>1</sub>/&rho;<sub>2</sub> should be 21.94564. The value of Z<sub>1</sub> is approximately 14 and that of &rho;<sub>2</sub> approximately 0.5. The ratio of 28 is the same order of magnitude as the value of about 22 from the regression results. <p>The ratio c<sub>0</sub>/c<sub>1</sub> should be &minus;Z<sub>1</sub>/(2&rho;<sub>2</sub>); its actual value is &minus;9.94428. Using the approximate value of 14 and 0.5 that ratio should be 14. Again the values are the same order of magnitude. <p>Since the coefficient for J is not statistically significant it is appropriate to eliminate it from the regression. The results are: <h4> I = 758.28857 &minus; 76.34557S + 1.73786S&sup2; <br> &nbsp; &nbsp; &nbsp;&nbsp; [152.7] &nbsp;&nbsp;&nbsp; [-16.3] &nbsp;&nbsp;&nbsp; [1.9] </h4> <p>The ratio c<sub>1</sub>/c<sub>2</sub> from these results is &minus;43.93087, essentially the same as for the regression including J. The ratio c<sub>0</sub>/c<sub>1</sub> is &minus;9.93232, again essentially the same. <!-- 1.737857143 -76.34557143 758.2885714 #N/A -43.93086724 0.896925986 4.672057529 4.966951199 #N/A 21.96543362 0.998878037 5.480308299 #N/A #N/A 1335.442661 3 #N/A #N/A -9.932319023 80216.77961 90.10133714 #N/A #N/A 1.93757029 -16.34088856 152.6668052 #N/A --> <p>If the regression is applied to the figures for the electron in the second subshell of the third shell for Argon the results are: <h4> I = 91.86681 &minus; 17.91746S + 0.5175S&sup2; &minus; 0.3124 <br> &nbsp; &nbsp; &nbsp;&nbsp; [46.6] &nbsp;&nbsp;&nbsp; [-10.0] &nbsp;&nbsp;&nbsp; [1.5] &nbsp;&nbsp;&nbsp; [-0.2] </h4> <!-- -0.312458333 0.517517857 -17.91746429 911.86680952 -34.62192471 1.792393634 0.343535486 1.796047855 1.970135997 17.31096235 0.997874557 2.099036494 #N/A #N/A 312.9934 2 #N/A #N/A -5.127221579 4137.103758 8.811908405 #N/A #N/A -0.174324617 1.506446576 -9.976050601 466.62967921 --> <p>Again there is no statistically significant effect on ioinization energy due to spin pairing. <p>The approximate value of Z<sub>1</sub> is 6. With an approximate value of &rho;<sub>2</sub> of 0.5 the value of c<sub>1</sub>/c<sub>2</sub> should be &minus;24. Its actual value for this case is &minus;34.6. <p>The ratio c<sub>0</sub>/c<sub>1</sub> should be &minus;Z<sub>1</sub>/(2&rho;<sub>2</sub>)=&minus;6; its actual value is &minus;5.12722. This is no too bad of a correspondence. <p>For Potassium (P=19) the value Z<sub>1</sub> is approximately 15 for the electrons in the second subshell of the second shell. The ratio c<sub>1</sub>/c<sub>2</sub> should be &minus;60; whereas its actual value is &minus;44.75879. <p>The ratio c<sub>0</sub>/c<sub>1</sub> should be &minus;15. It's actual value is &minus;10.57069. <h2>Conclusions</h2> <p>An extension of the Bohr model for the ionization energies of the outer electron in Hydrogen-like ions which takes into account shielding by electrons in the same subshell gives a resonably good statistical explanation of ionization energies for electrons in general. <p>There is no evidence in terms of ionization energies for an effect of spin pairing of electrons. <HR> <CENTER> <TABLE cellPadding=20 bgColor=#00ff00 border=9 frame=box> <TBODY> <TR> <TD> <CENTER><A href="http://www.applet-magic.com/index.html">HOME PAGE OF <I>applet-magic</I> <BR><A href="http://www.sjsu.edu/faculty/watkins/watkins.htm">HOME PAGE OF <I>Thayer Watkins</I></A>, </CENTER></TD></TR></TBODY></TABLE></CENTER> </body> </html> <!-- text below generated by server. PLEASE REMOVE --><!-- Counter/Statistics data collection code --><script language="JavaScript" src="http://l.yimg.com/d/lib/smb/js/hosting/cp/js_source/whv2_001.js"></script><script language="javascript">geovisit();</script><noscript><img src="http://visit.webhosting.yahoo.com/visit.gif?us1486417055" alt="setstats" border="0" width="1" height="1"></noscript><script type="text/javascript">(function (d, w) {var x = d.getElementsByTagName('SCRIPT')[0];var f = function () {var s = d.createElement('SCRIPT');s.type = 'text/javascript';s.async = true;s.src = "//np.lexity.com/embed/YW/2e0a836bd84a7d3d6e6099e241ea40b5?id=b8ba2a90c970";x.parentNode.insertBefore(s, x);};w.attachEvent ? w.attachEvent('onload',f) :w.addEventListener('load',f,false);}(document, window));</script>