Lesson Plan

Lesson: Parametric Surfaces and Their Areas
Timeframe: 1:50 min

10 min	10 min	40 min	10 min	30 min	10 min
Q/A	Quiz	Lecture	Break	Worksheet	Summary

Materials needed: Paper, Pencil, Textbook, Computer (to watch videos and to do homework).

Objectives:

Basic:(to be practiced prior to class)

1. Identify and describe special types of surfaces:

Cylinders, Quadric surfaces, Graphs of functions of two variables (i.e. Plane, Paraboloid) (Ch. 10.6, Pg. 574).
2. Recall vector functions (or parametric functions) (Ch. 10.7, Pg. 580)
3. Classify two types of surface parameterizations
4. Express each surface as a parametric function

Advanced: (to be mastered during the class or after class)

1. Distinguish the type of parameterization for given surface
2. Rewrite each surface as a vector function
3. Evaluate normal vector for each surface
4. Compute surface area of each surface

Background:

We describe a space curve by a vector function $\mathrm{r}(t)$ of a single parameter t. Similarly, we can describe a surface by a vector function $\mathrm{r}(u, v)$ of two parameters u and v.

Introduction to Lesson: In this section, we will learn about: Various types of parametric surfaces and computing their areas using vector functions.

Procedure [Time needed, include additional steps if needed]:

Pre-Class Individual Space Activities and Resources:

Steps	Purpose	Estimated Time	Learning Objective
Step 1:Review section 10.6 on "Cylinders and Quadratic Surfaces" Pg. 574-579.	To list all surfaces with the equations and graphs for your reference.	15 min	Surfaces
Step 2: Review section 10.5 on "Vector Functions" Pg. 580-582.	To recall what we call vector functions	10 min	Vector functions
Step 3: Watch following videos: https://www.bing.com/videos/search?q=Surface+parametrization+you+t	To determine parametric equations for a surface	6 min 56 sec	Parameterize a surface
ube\&view=detail\&mid=10251000323E4A33FDE910251000323E4A33			

| Step 5: Study Parametric Surfaces.ppt attached here. | To learn how to
 parameterize
 surface and how
 to find normal
 vector for each
 surface |
| :--- | :--- | :--- | :--- |
| 1 hour | Parametric
 Surfaces and
 Their Areas |

In-Class Group Space Activities and Resources:
Steps Purpose Estimated Time Learning Objective Step 1:Q/A on what you must study before coming to class 10 min Step 2: Parametric Surface Pre-Quiz on "Step 3: watch the video" 10 min Step 3: Lecture on two types of parameterization for special surfaces. Find the normal vector for each case. Evaluate surface area for different examples (Paraboloid, Sphere). 40 min

Step 4: Parametric Surface Worksheet.		30 min	
Step 5: Hints to complete Parametric Surface Summary		10 min	

Closure/Evaluation:

Analysis: Try Parametric Surface Post-Quiz (20 minutes).

Post-Class Individual Space Activities:

1. Complete the Summary page of section 13.6 (posted on blackboard) due the next session
2. Webassign Homework Section 13.6 due next week

Connections to Future Lesson Plan(s): In the next section, we will learn about: Integration of different types of surfaces. The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length. Compare the line integral formula:

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| d t
$$

with surface integral of f over parameterized surface S by vector function $\mathrm{r}(u, v)$
$\iint_{S} f(x, y, z) d S=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A$

Parametric Surfaces Pre-Quiz

10 minutes

1. What does it mean for a parametrization $\mathbf{r}(u, v)=<x(u, v), y(u, v), z(u, v)>$ of a surface to be smooth?
2. What does it mean for a vector field \mathbf{F} to be conservative?
3. Consider the parametric surface defined by $\mathbf{r}(u, v)=\left\langle u^{2}, 3 u^{2} v, \frac{1}{v}\right\rangle$. Find the equation of the plane tangent to this surface when $(u, v)=(3,2)$.

Parametric Surfaces Post-Quiz

20 minutes

1. Find the surface are of the portion of the cone $z^{2}=4 x^{2}+4 y^{2}$ that is above the region in the first quadrant bounded by the line $y=x$ and the parabola $y=x^{2}$.
2. Use an appropriate integral to calculate the volume of the solid in the first octant bounded by the coordinate planes and the plane $2 x+y+z=2$.

Parametric Surfaces Worksheet

30 minutes

1. Let σ be the surface parametrized by

$$
\begin{aligned}
\mathbf{r}(u, v)=\langle\cos u, \quad \sin u, \quad v\rangle ; & 0 \leq u \leq 2 \pi \\
& 0 \leq v \leq 1
\end{aligned}
$$

(a) Sketch σ in 3-space.
(b) Evaluate $\iint_{\sigma} z d S$
2. Let σ be the unit sphere. Find the surface area of σ by appropriate parametrization.

Chapter 13.6
Tuesday, July 25, 2017 11:14 AM
Summary of 13.6

There are two different ways to parametrize a given surfaces. 1) Describe each of the following as a parametric equation. 2) Find the normal vector for each surface. 3) What will be the magnitude of this normal vector?

1. If the surface can be considered as a graph of two variables functions like:
a. Plane
b. Paraboloid
2. If the surface can be easily described in a new coordinate system like:
. Sphere in spherical system
Cylinder in cylindrical system
Cone in spherical system

VECTOR CALCULUS

So far, we have considered special types of surfaces:

- Cylinders
- Quadric surfaces
- Graphs of functions of two variables

Here, we use vector functions to describe more general surfaces, called parametric surfaces, and compute their areas.

VECTOR CALCULUS

13.6

Parametric Surfaces and their Areas

In this section, we will learn about:
Various types of parametric surfaces and computing their areas using vector functions.

INTRODUCTION

We describe a space curve by a vector function $\mathbf{r}(t)$ of a single parameter \boldsymbol{t}.

Similarly, we can describe a surface by
a vector function $\mathbf{r}(u, v)$ of two parameters u and v.

INTRODUCTION

Equation 1

We suppose that

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

is a vector-valued function defined on a region D in the $u v$-plane.

PARAMETRIC SURFACE

Equations 2

The set of all points (x, y, z) in R^{3} such that

$$
x=x(u, v) \quad y=y(u, v) \quad z=z(u, v)
$$

and (u, v) varies throughout D, is called a parametric surface S.

- Equations 2 are called parametric equations of S.

PARAMETRIC SURFACES

The surface S is traced out by the tip of the position vector $\mathbf{r}(u, v)$ as (u, v) moves throughout the region D.

PARAMETRIC SURFACES
 Example 1

Identify and sketch the surface with vector equation

$$
\mathbf{r}(u, v)=2 \cos u \mathbf{i}+v \mathbf{j}+2 \sin u \mathbf{k}
$$

PARAMETRIC SURFACES
 Example 1

Since $y=v$ and no restriction is placed on v, the surface is a circular cylinder with radius 2 whose axis is the y-axis.

PARAMETRIC SURFACES

If we restrict u and v by writing:
$0 \leq u \leq \pi / 2$
$0 \leq v \leq 3$
then

$$
x \geq 0 \quad z \geq 0 \quad 0 \leq y \leq 3
$$

PARAMETRIC SURFACES

In that case, we get the quarter-cylinder with length 3.

PARAMETRIC SURFACES

If a parametric surface S is given by a vector function $\mathbf{r}(u, v)$, then there are two useful families of curves that lie on S-one with u constant and the other with v constant.

- These correspond to vertical and horizontal lines in the uv-plane.

PARAMETRIC SURFACES

Keeping u constant by putting $u=u_{0}, \mathbf{r}\left(u_{0}, v\right)$ becomes a vector function of the single parameter v and defines a curve C_{1} lying on S.

GRID CURVES

Similarly, keeping v constant by putting $v=v_{0}$,

 we get a curve C_{2} given by $\mathbf{r}\left(u, v_{0}\right)$ that lies on S.- We call these curves grid curves.

GRID CURVES

Example 2
Use a computer algebra system to graph the surface

$$
\begin{aligned}
\mathbf{r}(u, v)= & \langle(2+\sin v) \cos u \\
& (2+\sin v) \sin u, u+\cos v\rangle
\end{aligned}
$$

- Which grid curves have u constant?
- Which have v constant?

GRID CURVES

We graph the portion of the surface with parameter domain

$$
0 \leq u \leq 4 \pi, 0 \leq v \leq 2 \pi
$$

- It has the appearance of a spiral tube.

Example 2

PARAMETRIC REPRESENTATION

In Examples 1 and 2 we were given a vector equation and asked to graph the corresponding parametric surface.

- In the following examples, however, we are given the more challenging problem of finding a vector function to represent a given surface.
- In the rest of the chapter, we will often need to do exactly that.

PARAMETRIC REPRESENTATIONS Example 4

The vector equation of the sphere

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

is given by:
$\mathbf{r}(\Phi, \theta)=a \sin \Phi \cos \theta \mathbf{i}+a \sin \Phi \sin \theta \mathbf{j}+a \cos \Phi \mathbf{k}$

- where $0 \leq \Phi \leq \pi$ and $0 \leq \theta \leq 2 \pi$.

APPLICATIONS-COMPUTER GRAPHICS

One of the uses of parametric surfaces is in computer graphics.

COMPUTER GRAPHICS

The figure shows the result of trying to graph the sphere $x^{2}+y^{2}+z^{2}=1$ by:

- Solving the equation for z.
- Graphing the top and bottom hemispheres separately.

Part of the sphere appears to be missing because of the rectangular grid system used by the computer.

COMPUTER GRAPHICS

The much better picture here was produced by a computer using the parametric equations found in Example 4.

PARAMETRIC REPRESENTATIONS Example 5

Find a parametric representation for the cylinder

$$
x^{2}+y^{2}=4 \quad 0 \leq z \leq 1
$$

PARAMETRIC REPRESENTATIONS Example 6

Find a vector function that represents the elliptic paraboloid $z=x^{2}+2 y^{2}$.

PARAMETRIC REPRESENTATIONS

In general, a surface given as $z=f(x, y)$ can be parameterized as:

$$
x=x \quad y=y \quad z=f(x, y)
$$

PARAMETRIZATIONS

Parameterizations of surfaces are not unique.

- The next example shows two ways to parametrize a cone.

PARAMETRIZATIONS

Example 7

Find a parametric representation for the surface

$$
z=2 \sqrt{x^{2}+y^{2}}
$$

PARAMETRIZATIONS

E. g. 7-Solution 1

One possible representation is:

$$
x=x \quad y=y \quad z=2 \sqrt{x^{2}+y^{2}}
$$

- So, the vector equation is:

$$
\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+2 \sqrt{x^{2}+y^{2}} \mathbf{k}
$$

PARAMETRIZATIONS
 E. g. 7-Solution 2

If we use the polar coordinates, then:

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=2 \sqrt{x^{2}+y^{2}}=2 r
$$

Therefore:

$$
\begin{aligned}
& \mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+2 r \mathbf{k} \\
& r \geq 0 \quad \text { and } \quad 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

PARAMETRIZATIONS

In certain situations, Solution 2 might be preferable.

For instance, if we are interested only in the part of the cone that lies below the plane $z=1$, all we have to do in Solution 2 is change the parameter domain to:

$$
0 \leq r \leq 1 / 2 \quad 0 \leq \theta \leq 2 \pi
$$

TANGENT PLANE

If a surface S is given by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

Then the a normal vector for the tangent plane at a point P_{0} is given by $\mathbf{r}_{u} \times \mathbf{r}_{v}$

TANGENT PLANES

Example 9
Find the tangent plane to the surface with parametric equations

$$
x=e^{2 u} \quad y=\cos \left(v^{2}\right) \quad z=1+u+v
$$

at the point $(1,1,1)$.

TANGENT PLANES
 Example 9

Note that the point $(1,1,1)$ corresponds to the parameter values $u=0$ and $v=0$.

SURFACE AREAS

Suppose a surface S is given by $\mathbf{r}(u, v)$, where $(u, v) \in D$.

Then, the surface area of S is

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A
$$

SURFACE AREAS

Example 10

A parameterization for a sphere of radius a is $r(\Phi, \theta)=<a \sin \Phi \cos \theta, a \sin \Phi \sin \theta, a \cos \Phi>$ Then:

$$
\begin{aligned}
\mathbf{r}_{\varphi} \times \mathbf{r}_{\theta} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a \cos \phi \cos \theta & a \cos \phi \sin \theta & -a \sin \phi \\
-a \sin \phi \sin \theta & a \sin \phi \cos \theta & 0
\end{array}\right| \\
& =a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}
\end{aligned}
$$

$+a^{2} \sin \phi \cos \phi \mathbf{k}$

Example 10

Thus,
$\left|r_{\phi} \times r_{\theta}\right|$
$=\sqrt{a^{4} \sin ^{4} \phi \cos ^{2} \theta+a^{4} \sin ^{4} \phi \sin ^{2} \theta+a^{4} \sin ^{2} \phi \cos ^{2} \phi}$
$=\sqrt{a^{4} \sin ^{4} \phi+a^{4} \sin ^{2} \phi \cos ^{2} \phi}$
$=a^{2} \sqrt{\sin ^{2} \phi}=a^{2} \sin \phi$

SURFACE AREAS

Example 10

Therefore for the sphere, if $r(\Phi, \theta)=<a \sin \Phi \cos \theta, a \sin \Phi \sin \theta, a \cos \Phi>$ Then:

$$
\left|\mathrm{r}_{\varphi} \times \mathrm{r}_{\theta}\right|=a^{2} \sin (\phi)
$$

SURFACE AREAS

Example 10

Find the surface area of a sphere of radius a by using the following parameterization of the sphere:
$r(\Phi, \theta)=<a \sin \Phi \cos \theta, a \sin \Phi \sin \theta, a \cos \Phi>$

SURFACE AREAS

Example 10

The area of the sphere is:

$$
\begin{aligned}
A=\iint_{D}\left|r_{\phi} \times r_{\theta}\right| d A & =\int_{0}^{2 \pi} \int_{0}^{\pi} a^{2} \sin \phi d \phi d \theta \\
& =a^{2} \int_{0}^{2 \pi} d \theta \int_{0}^{\pi} \sin \phi d \phi \\
& =a^{2}(2 \pi) 2=4 \pi a^{2}
\end{aligned}
$$

SURFACE AREAS
 Example

Find the area of the part of the sphere
$x^{2}+y^{2}+z^{2}=16$ that lies above the cone
$z=\sqrt{x^{2}+y^{2}}$

SURFACE AREA OF THE GRAPH OF A FUNCTION If a surface S is given by $z=f(x, y)$, then

- The parametric equations are:

$$
x=x \quad y=y \quad z=f(x, y)
$$

GRAPH OF A FUNCTION

Equation 7

Thus,

$$
\mathbf{r}_{x}=\mathbf{i}+\left(\frac{\partial f}{\partial x}\right) \mathbf{k}
$$

$$
\mathbf{r}_{y}=\mathbf{j}+\left(\frac{\partial f}{\partial y}\right) \mathbf{k}
$$

and

$$
\mathbf{r}_{x} \times \mathbf{r}_{y}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 0 & \frac{\partial f}{\partial x} \\
0 & 1 & \frac{\partial f}{\partial y}
\end{array}\right|=-\frac{\partial f}{\partial x} \mathbf{i}-\frac{\partial f}{\partial y} \mathbf{j}+\mathbf{k}
$$

GRAPH OF A FUNCTION

Equation 8

Thus, we have:

$$
\begin{aligned}
\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| & =\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}+1} \\
& =\sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}}
\end{aligned}
$$

And so we have the next formula:

Formula 9
If S is given by $z=f(x, y)$,
Then, the surface area is given by:

$$
A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
$$

GRAPH OF A FUNCTION

Example 11

Find the area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies under the plane $z=9$.

GRAPH OF A FUNCTION

Example 11

The plane intersects the paraboloid in the circle $\quad x^{2}+y^{2}=9, z=9$

Therefore, the surface
lies above the disk D
with center the
origin and radius 3 .

So we have:

$$
\begin{aligned}
A & =\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A \\
& =\iint_{D} \sqrt{1+(2 x)^{2}+(2 y)^{2}} d A \\
& =\iint_{D} \sqrt{1+4\left(x^{2}+y^{2}\right)} d A
\end{aligned}
$$

GRAPH OF A FUNCTION

Example 11

Converting to polar coordinates,
we obtain:

$$
\begin{aligned}
A & =\int_{0}^{2 \pi} \int_{0}^{3} \sqrt{1+4 r^{2}} r d r d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{0}^{3} r \sqrt{1+4 r^{2}} d r \\
& \left.=2 \pi\left(\frac{1}{8}\right) \frac{2}{3}\left(1+4 r^{2}\right)^{3 / 2}\right]_{0}^{3} \\
& =\frac{\pi}{6}(37 \sqrt{37}-1)
\end{aligned}
$$

Surface Area Formulas

$$
\begin{aligned}
& A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d A \\
& A(S)=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d A
\end{aligned}
$$

