Lesson Plan

Lesson: Understanding and applying Laplace transform to analyze electrical circuits for ECE 3709 Control Systems Engineering

Timeframe:

Pre-class: 1-2 hours to prepare the material

Post-class: 1 hour to go over examples

Materials needed:

Textbook, presentation and example handouts

Objectives:

Basic: 1. Understanding the definition of Laplace and inverse Laplace transform.

- 2. Laplace transform properties
- 3. Laplace transform table
- 4. Reviewing examples of Laplace and inverse Laplace transform.

Advanced: Applying them to circuit analysis.

Background ("Situation"):

Students should finish 2000 level courses and be familiar with Laplace transform from pre-requisite classes. However, some of them found the concept of Laplace transform confusing and difficult to apply them in the circuit analysis. I would like to link the mathematical concept (Laplace transform) with applications in electrical and computer engineering.

Introduction to Lesson:

The Laplace transform is a useful tool for dealing with linear systems described by ordinary differential equations. Laplace transform methods can be employed to study circuits in the s-domain. Laplace techniques convert circuits with voltage and current signals that change with time to the s-domain so you can analyze the circuit's action using only algebraic techniques.

Connection constraints are those physical laws that cause element voltages and currents to behave in certain ways when the devices are interconnected to form a circuit. There are also constraints on the individual devices themselves, where each device has a mathematical relationship between the voltage across the device and the current through the device. I would like students to learn what connection constraints, device constraints, impedances, and admittances in the sdomain using Laplace transform.

Procedure:

Pre-class individual space activities and resources:

I will ask to form a group (2-3 students) to prepare the presentation. I will assign one topic (Laplace transform or inverse Laplace transform) to each group (e.g. even group number: Laplace transform, odd group number: inverse Laplace transform) and they will prepare the presentation about the topic. I will announce that I will randomly select one or two groups for each topic to present.

Steps	Purpose	Estimated time	Learning
			objective
Reviewing	Define the	20 minutes	Understanding
Laplace	definition of		the concept of
transform	Laplace		Laplace
	transform		transform
Reviewing	Define the	20 minutes	Understanding
inverse Laplace	definition of		the concept of
transform	inverse Laplace		inverse Laplace
	transform		transform

Going over	Familiarize the	20 minutes	Applying the
Laplace and	properties of		Laplace and
inverse Laplace	Laplace		inverse Laplace
transform	transform		transform to
examples			various
_			functions

In-class group space activities and resources:

Steps	Purpose	Estimated time	Learning objective
Presentation of	Defining	15 minutes	Understanding
Laplace	Laplace		Laplace
transform	transform		transform
Presentation of	Defining	15 minutes	Understanding
inverse Laplace	inverse Laplace		inverse Laplace
transform	transform		transform
Explaining the	Show the	15 minutes	Understanding
meaning behind	relation		why we use
Laplace	between t-		Laplace
transform	domain and s-		transforms
	domain		
Going over	Familiarize	15 minutes	Familiarize
examples	Laplace and		Laplace and
	inverse Laplace		inverse Laplace
	transforms		transforms
Applying to	Interpreting the	15 minutes	Applying
circuit analysis	circuit		Laplace and
	components for		inverse Laplace
	applying		transforms to
	Laplace and		circuit analysis
	inverse Laplace		
	transform		

Post-class individual space activities and resources:

Steps	Purpose	Estimated time	Learning objective
Doing homework problems	Reviewing the classroom material	1 hour	Reviewing the concept of Laplace transform and its application

Evaluation:

Analysis

From homework assignment, I can analyze the effectiveness of the class. I can check they understand the concept of Laplace transform and its application.

Connections to future lessons:

Laplace transform will be used to analyze more complicated control systems in the course. If students are not familiar with the concept, it would be difficult to apply to general control systems.