

GUIDED PRACTICE
Class: CS 2012 - Introduction to Programming II
Date assigned: TBA
Date due: TBA
Time estimate to complete this assignment: 80 minutes

Overview/Introduction
Inheritance is an important pillar of OOP(Object Oriented Programming). It is the mechanism in

java by which one class is allow to inherit the features(fields and methods) of another class.

Inheritance supports the concept of “reusability”, i.e. when we want to create a new class and

there is already a class that includes some of the code that we want, we can derive our new class

from the existing class. By doing this, we are reusing the fields and methods of the existing class.

Java supports class reuse through inheritance and composition. In this two-part miniseries we'll

focus on inheritance, one of the fundamental concepts of object-oriented programming.

Students will learn how to use the “extends” and “implements” keyword to derive a child class

from a parent class, invoke parent class constructors and methods, and override methods.

Students also will tour ”java.lang.Object” and its methods. ”Object” is Java's ultimate superclass,

from which every other class inherits.

Learning Objectives
Basic objectives

1. Define what inheritance is.

2. Describe how inheritances are implemented in Java:

a. subclass

b. superclass

c. interface

3. Define the keywords:

a. extends

b. implements

4. Define the keywords:

a. public

b. private

c. protected

Advanced objectives

1. Be able to identify subclasses and superclasses in the real-world.

2. Be able to describe the relationships of among the subclasses and superclasses.

3. Be able to write a program based on Java inheritance, such as:

http://ecatalog.calstatela.edu/preview_course_nopop.php?catoid=11&coid=56745

a. base class: person

b. subclass: student

c. subclass: faculty

Preparatory Activities and Resources:
Step 1: Watch the video “Introducing-inheritance”

“https://www.lynda.com/Java-tutorials/Introducing-inheritance/375490/415281-4.html”

15 minutes

Step 2: Watch the video “Super and Sub Classes (Java)”,

“https://www.youtube.com/watch?v=0PPKccntohM”

15 minutes

Step 3: Watch the video “Extending Classes (Java)”,

“https://www.youtube.com/watch?v=GDG-wzEZW8E”

15 minutes

Step 4: Watch the video “Java extends vs implements”

“https://www.youtube.com/watch?v=BtCVX79KGPw”

20 minutes

Step 5: Watch the video ”Protected Access (J)”

“https://www.youtube.com/watch?v=1MM1F9xK44M”

15 minutes

Exercises: Please complete by __TBA___.
 The exercises for this lesson are found on the Google Form at: Java Inheritance. Work out these

exercises in your own notes so you’ll have a record of your work and then take the quiz.
Remember your work is graded Pass/Fail on the basis of completeness, effort, and timeliness
only.

Questions?
 Students can contact faculty at Moodle message center.

Jiang Guo Page 1

Lesson Plan for Inheritance in Java

CS 2012 - Introduction to Programming II
Jiang Guo

Department of Computer Science

California State University Los Angeles

Lesson: Inheritance in Java

Timeframe: Approximately 50 minutes

Materials needed:

• hardware – Windows or Linux or Mac Computers
• software – Java, Eclipse or any editor

Objectives:
 Basic:

• Define what inheritance is.
• Describe how inheritances are implemented in Java:

a. subclass
b. superclass
c. interface

• Define the keywords:
a. extends
b. implements

• Define the keywords:
a. public
b. private
c. protected

 Advanced:

• Be able to identify subclasses and superclasses in the real-world.
• Be able to describe the relationships of the subclasses and superclasses.
• Be able to write a program based on Java inheritance, such as:

a. base class: person
b. subclass: student
c. subclass: faculty

http://ecatalog.calstatela.edu/preview_course_nopop.php?catoid=11&coid=56745

Jiang Guo Page 2

Background:

Inheritance is an important pillar of OOP(Object Oriented Programming). It is the
mechanism in java by which one class is allow to inherit the features(fields and methods)
of another class. Inheritance supports the concept of “reusability”, i.e. when we want to
create a new class and there is already a class that includes some of the code that we
want, we can derive our new class from the existing class. By doing this, we are reusing
the fields and methods of the existing class.

Introduction to the Lesson:
Java supports class reuse through inheritance and composition. In this two-part
miniseries we'll focus on inheritance, one of the fundamental concepts of object-
oriented programming. Students will learn how to use the “extends” and “implements”
keyword to derive a child class from a parent class, invoke parent class constructors and
methods, and override methods. Students also will tour ”java.lang.Object” and its
methods. ”Object” is Java's ultimate superclass, from which every other class inherits.

Procedure:
Pre-Class Individual Space Activities and Resources [80 minutes]:

Steps Purpose Estimated
Time

Learning
Objective

Step 1: Watch the video “Introducing-inheritance”

“https://www.lynda.com/Java-tutorials/Introducing-
inheritance/375490/415281-4.html”

Introduce students
to concept of
inheritance.

15 min. #1,
(Basic)

Step 2: Watch the video “Super and Sub Classes
(Java)”,

“https://www.youtube.com/watch?v=0PPKccntohM”

Introduce students
to concepts of
subclass and
superclass.

15 min. #2,
(Basic)

Jiang Guo Page 3

Step 3: Watch the video “Extending Classes (Java)”,

“https://www.youtube.com/watch?v=GDG-wzEZW8E”

Introduce students
to concepts of
extends and
implements.

15 min #3,
(Basic)

Step 4: Watch the video “Java extends vs implements”

“https://www.youtube.com/watch?v=BtCVX79KGPw”

Help students to
distinguish concepts
of extends and
implements.

20 min #3,
(Basic)

Step 5: Watch the video ”Protected Access (J)”

“https://www.youtube.com/watch?v=1MM1F9xK44M”

Introduce students
to concepts of
public, private, and
protected.

15 min #4,
(Basic)

In-Class Group Space Activities and Resources [50 minutes]:

Steps Purpose Estimated
Time

Learning
Objective

• Step 1: Open Minutes:
 Students in groups draw a picture to show

the definition of the inheritance and give
three examples of the inheritance in
different areas. (5 minutes) (Computer)

 Students in groups describe the difference
of: extends and implements. (5 minutes)
(Computer)

 Students in groups describe the difference
among: public, private, and protected. (5
minutes) (Computer)

• Clear up any
general
confusion or
misconceptions.

• Review and

reinforce the
material
introduced in
the individual
space.

15 min. All Basic
LOs

https://www.youtube.com/watch?v=BtCVX79KGPw
https://www.youtube.com/watch?v=1MM1F9xK44M

Jiang Guo Page 4

• Step 2: Main Activities:
 Draw the diagram to describe the

relationships among: person, student,
faculty. (5 minutes) (Computer)

 Based on the diagram, write a simple
framework of the program of: person,
student, faculty by using:

a. extends or/and
b. implements

keywords. (10 minutes) (Computer)
 Extend the framework into a program of:

person, student, faculty. Add data
attributes:

a. age,
b. id,
c. cin,
d. salary,
e. phone number,

(10 minutes) (Computer)

• Have students
apply the
concepts they
learned in the
individual space
to a practical
case study.

• Improve student
critical thinking
ability

• Provide students
deep learning
opportunities.

25 min. All
Advanced
LOs

• Step 3: Main Activities:
 Review the program and identify the

improvement space (better structure,
balanced design) of the program (10
minutes) (Computer)

Provide students
opportunities to
applying concepts to
more difficult case
studies.

10 min. All
Advanced
LOs

Closure/Evaluation [5 minutes]:

Describe the upcoming homework assignment and discuss how it relates to the group space
activities that were completed in class.

Analysis:

Inheritance is a programming construct that software developers use to establish is-a
relationships between categories. Inheritance enables us to derive more-specific categories
from more-generic ones. The more-specific category is a kind of the more-generic category. For

Jiang Guo Page 5

example, a checking account is a kind of account in which you can make deposits and
withdrawals. Similarly, a truck is a kind of vehicle used for hauling large items.

Students in this class are primarily majoring in the computer science and they are trained to
write simple programs. The in-class group space activity is designed to allow students to apply
the general concepts they learn in the pre-class individual space activities in design and develop
real Java programs. Eclipse software is extremely powerful software development environment.
Students in the class will focus on applying the concepts to write Java programs and they will
reinforce their skills learned in classroom by doing the post-class individual space activity.

Post-Class Individual Space Activities:

Students will apply their knowledge of Java inheritance in a homework assignment. Specifically,
they will design a program to implement the Java inheritance. Their assignment will be to use
an Eclipse to write a complex program based on UML diagram and create all the relationships
between the classes.

Connections to Future Lesson Plan(s):

The topic that comes next is polymorphism means to process objects differently based on their
data type. Polymorphism is based on Inheritance. Polymorphism means: one method with
multiple implementations, for a certain class of action can be decided at runtime depending
upon the situation to use the correct implementation. This can be implemented by designing a
generic interface, which provides generic methods for a certain class of action and there can be
multiple class inheritance, which provides the implementation of these generic methods.

Jiang Guo Page 6

Appendix A: Homework Assignment
Design a program to implement inheritance as describe in below diagram.

Jiang Guo Page 7

Appendix B: Program Example

Relating classes through inheritance

The extends keyword specifies a parent-child relationship

class Vehicle

{

 // member declarations

}

class Car extends Vehicle

{

 // inherit accessible members from Vehicle

 // provide own member declarations

}

class Account

{

 // member declarations

}

class SavingsAccount extends Account

{

 // inherit accessible members from Account

 // provide own member declarations
}

An Account parent class

class Account

{

 private String name;

 private long amount;

Jiang Guo Page 8

 Account(String name, long amount)

 {

 this.name = name;

 setAmount(amount);

 }

 void deposit(long amount)

 {

 this.amount += amount;

 }

 String getName()

 {

 return name;

 }

 long getAmount()

 {

 return amount;

 }

 void setAmount(long amount)

 {

 this.amount = amount;

 }
}

A SavingsAccount child class extends its Account parent class

class SavingsAccount extends Account

{

 SavingsAccount(long amount)

 {

 super("savings", amount);

Jiang Guo Page 9

 }
}

A CheckingAccount child class extends its Account parent class

class CheckingAccount extends Account

{

 CheckingAccount(long amount)

 {

 super("checking", amount);

 }

 void withdraw(long amount)

 {

 setAmount(getAmount() - amount);

 }
}

AccountDemo demonstrates the account class hierarchy

class AccountDemo

{

 public static void main(String[] args)

 {

 SavingsAccount sa = new SavingsAccount(10000);

 System.out.println("account name: " + sa.getName());

 System.out.println("initial amount: " + sa.getAmount());

 sa.deposit(5000);

 System.out.println("new amount after deposit: " + sa.getAmount());

 CheckingAccount ca = new CheckingAccount(20000);

 System.out.println("account name: " + ca.getName());

 System.out.println("initial amount: " + ca.getAmount());

 ca.deposit(6000);

Jiang Guo Page 10

 System.out.println("new amount after deposit: " + ca.getAmount());

 ca.withdraw(3000);

 System.out.println("new amount after withdrawal: " + ca.getAmount());

 }
}

Declaring a print() method to be overridden

class Vehicle

{

 private String make;

 private String model;

 private int year;

 Vehicle(String make, String model, int year)

 {

 this.make = make;

 this.model = model;

 this.year = year;

 }

 String getMake()

 {

 return make;

 }

 String getModel()

 {

 return model;

 }

 int getYear()

 {

 return year;

Jiang Guo Page 11

 }

 void print()

 {

 System.out.println("Make: " + make + ", Model: " + model + ", Year: " +

 year);

 }
}

Overriding print() in a Truck subclass

class Truck extends Vehicle

{

 private double tonnage;

 Truck(String make, String model, int year, double tonnage)

 {

 super(make, model, year);

 this.tonnage = tonnage;

 }

 double getTonnage()

 {

 return tonnage;

 }

 void print()

 {

 super.print();

 System.out.println("Tonnage: " + tonnage);

 }
}

Jiang Guo Page 12

Appendix C: Program Example

In below example of inheritance, class Bicycle is a base class, class MountainBike is a derived
class which extends Bicycle class and class Test is a driver class to run program.

//Java program to illustrate the
// concept of inheritance

// base class
class Bicycle
{
 // the Bicycle class has two fields
 public int gear;
 public int speed;

 // the Bicycle class has one constructor
 public Bicycle(int gear, int speed)
 {
 this.gear = gear;
 this.speed = speed;
 }

 // the Bicycle class has three methods
 public void applyBrake(int decrement)
 {
 speed -= decrement;
 }

 public void speedUp(int increment)
 {
 speed += increment;
 }

 // toString() method to print info of Bicycle
 public String toString()
 {
 return("No of gears are "+gear
 +"\n"
 + "speed of bicycle is "+speed);
 }
}

// derived class
class MountainBike extends Bicycle
{

 // the MountainBike subclass adds one more field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int gear,int speed,
 int startHeight)

Jiang Guo Page 13

 {
 // invoking base-class(Bicycle) constructor
 super(gear, speed);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one more method
 public void setHeight(int newValue)
 {
 seatHeight = newValue;
 }

 // overriding toString() method
 // of Bicycle to print more info
 @Override
 public String toString()
 {
 return (super.toString()+
 "\nseat height is "+seatHeight);
 }

}

// driver class
public class Test
{
 public static void main(String args[])
 {

 MountainBike mb = new MountainBike(3, 100, 25);
 System.out.println(mb.toString());

 }
}

	CSULA_LP_Guo_Java_Inheritancefinal.pdf
	Step 4: Watch the video “Java extends vs implements”
	Relating classes through inheritance
	The extends keyword specifies a parent-child relationship
	An Account parent class
	A SavingsAccount child class extends its Account parent class
	A CheckingAccount child class extends its Account parent class
	AccountDemo demonstrates the account class hierarchy
	Declaring a print() method to be overridden
	Overriding print() in a Truck subclass

