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Introduction

How long do you think it takes Ford Motor Company to run 
one crash simulation?

About 36-160 hours*

Ford Motor Company. 1965 Mustang Fastback With Cammer Engine. Digital image. 1965 Ford Mustang - 1st Gen 65 Mustangs for Sale & Parts. Ford Motor Company, n.d. Web. 13 
May 2013. <http://www.mustang.com/1st-gen-mustangs/1965-ford-mustang/>.
*Gu, L., "A Comparison of Polynomial Based Regression Models in Vehicle Safety Analysis," in: Diaz, A. (Ed.), ASME Design Engineering Technical Conferences - Design Automation 
Conference, ASME, Pittsburgh, PA, September 9-12, DAC-21063. 



Introduction
Two-variable Optimization Problem
vAssumptions:
v50 iterations on average (optimization)
vOne crash simulation each iteration

vTotal computation time is 3 to 11 
months

vUnacceptable in practice

Brown, Adam. Crash Testing. Digital image. [ESC]ape Testing Crash Test Dummies - Using Realistic Test Data. N.p., 25 Mar. 2011. Web. 13 May 2013. 
<http://testing.gobanana.co.uk/?p=743>.



Introduction

NOAA. Global Climate Model. Digital image. File:Global Climate Model.png - Wikipedia, the Free Encyclopedia. Wikipedia, 18 Feb. 2012. Web. 13 May 2013. 
<http://en.wikipedia.org/wiki/File:Global_Climate_Model.png>.



Metamodeling
vApproximation method for time-consuming, costly 
simulation models

vApproximates computationally intensive functions using 
simple analytical methods



Regression
vFour standard assumptions 
about the random errors !
vZero mean
vConstant variance
vNormality
vIndependence

vAccounts for the inherent 
variability of the data

Linear Regression Surface. Digital image. Linear Regression and Least Squares Estimation - Statistical Machine Learning and Visualization. N.p., n.d. Web. 13 May 2013. 
<http://smlv.cc.gatech.edu/2010/10/06/linear-regression-and-least-squares-estimation/>.



Standard Kriging
vOriginated in geostatistics
(i.e. spatial statistics)
vValue at an unknown point 
approximated by average of 
the known values at 
neighbors, weighted by 
distance
vAccounts for uncertainty 
about the response surface

ESRI. Calculating the Difference Squared between the Paired Locations. Digital image.ArcGIS Help 10.1 - How Kriging Works. N.p., 8 Nov. 2012. Web. 13 May 2013. 
<http://resources.arcgis.com/en/help/main/10.1/index.html>.



Stochastic Kriging
vA metamodeling
methodology developed for 
stochastic simulation 
experiments
vDistinguishes the (extrinsic) 
uncertainty about the 
response surface from the 
(intrinsic) uncertainty 
inherent in the stochastic 
simulation



Applications
Coffee Shop

Expected Arrival Rate

Expected Service Rate

Queue Length



Applications
Call Centers

Staffing Levels

Response-time 
Performance

Load Assignments



Applications
Risk Management

Portfolio Holdings
Risk Measures



General Models
Regression

Standard kriging

Stochastic kriging

M " extrinsic uncertainty
#$ " intrinsic uncertainty

%$ " = ' " () +M " + #$ "

%$ " = ' " () +M +

%$ " = ' " () + #$ "
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Stochastic Kriging
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MSE-Optimal Predictor
Suppose that all parameters are known
!Y #$ = &$ + () #$,+ , () + (- ./ 01 − &$34

&$ overall response mean
01 average response 
() extrinsic covariance matrix 
(- intrinsic covariance matrix 



Assumptions
vM " is a stationary Gaussian random field
vConstant mean 0
vConstant variance $%
v&' = $% exp − " − "- .,%

%

v01 " is 2 0, 3 "



Parameter 
Estimation



Estimation of Predictor
v!", #$, %&, and '
vVariances not observable, even at design points
vEstimate with sample variances

vCovariance matrix of diagonals (i.i.d. of "()

vUse maximum likelihood estimator for rest



Likelihood Function
vFunction of parameters
vLikelihood of observing given outputs for a set of 
parameters
vComplementary to probability function
vHigher likelihood is better



Gummi Bears. Digital image. Episode 49: It Was A Gummy Bear | Mattandmondo. N.p., 29 May 2012. Web. 13 May 2013. 
<http://www.mattandmondo.com/podcast/archives/438>.

x100x100



Likelihood Function
vFunction of parameters
vLikelihood of observing given outputs for a set of 
parameters
vComplementary to probability function
vHigher likelihood is better



Nonlinear Optimization
vFind the combination of parameters to maximize the 
likelihood function for our predictor

vR package MLEGP
v“Maximum Likelihood Estimates of Gaussian Processes”

vPlug resulting parameters into predictor
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Preliminary 
Results



Polynomials
vSimple to use as test case

vCan test as high-dimensional as we want

vEvenly distributed noise



Sample Replication



Results
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Queuing Model



MM1 Queue
vSingle server, single queue
v! is expected arrival rate, " is expected service rate

vExpected queue length is #
$%#

vAssume no trend
vAssume 0 < ! < "
vAverage queue length
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Results—Comparison



Experimental 
Design



Experimental Design
vGoal is to minimize !"#$ % = ∫()∈+"#$ (,; % .(,
v+ ⊆ ℝ1 is the experimental design space
v2 is the number of fixed design points
v%3 = 45, 47, … , 49
v4:∗ = 4:∗ <, = (5 , … , = (9 , >?, @ (,



Two-Stage Design
Stage 1
vSelect ! predetermined design points "#, … , "& and 
allocate '( replications to each ")

vEstimate * and +,
v* can be estimated by standard kriging method * " = ./ + 1 "
v+, = 2/ exp − " − "7 8,/

/



Two-Stage Design
Stage 2
vJointly select ! −# additional design points

vOptimally allocate $ −#%& additional replications among 
all design points

v%'∗ = %'∗ $, + ,- , … , + ,/ , 01, 2 ,&



Algorithm



Algorithm
Stage 1
vGenerate ! points from Latin Hypercube Sampling

vCalculate distances of given design points and theoretical 
points

vChoose the design points closest to the theoretical points



Algorithm

Theoretical design points 

Given design points

Design points selected for stage 1 



Algorithm
Stage 2
vSimulate stage 1 data with ! design points

vAllocate optimal replications to all design points



Results
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Results—Comparison



Results—Allocations



Simulation Effort
vHow many replications to allocate in stage 1?
vToo few implies inadequate estimation in !", #$, and %
vToo many implies reduced advantage of 2-stage procedure

vHow many design points to pick?
vDepends on structure of simulation model





Problems and 
Future Work



Problems
vNonidentical simulation output at each design point
vEstimated variance may end up nonpositive
vOverestimated MSE and variance in stage 1
vBumps



Problems
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Future Work
vImpose additional conditions to enforce smoothness
vDifferent experimental designs
vDifferent ways of implementing 2-stage
vHow to pick design points
vEnforce positive estimated variance



Questions?
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