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Prediction of FinFET Current-Voltage and
Capacitance-Voltage Curves Using Machine

Learning With Autoencoder
Kashyap Mehta and Hiu-Yung Wong , Senior Member, IEEE

Abstract— In this letter, we demonstrated the possibil-
ity of predicting full transistor current-voltage (IV ) and
capacitance-voltage (CV ) curves using machines trained
by Technology Computer-Aided Design (TCAD) generated
data. 3D FinFET IDV G and CGV G predictions are used
as examples. The machine is constructed through mani-
fold learning using Autoencoder (AE) to extract the latent
variables which are then correlated to physical parameters
through 3rd-order polynomial regression. No device physics
domain expertise is required in the machine learning
process because there is no need to extract device metrics
such as transconductance (gm) or Drain-Induced-Barrier-
Lowering (DIBL) from the TCAD training data. We show that
the machine can predict not just the full IV/CV curves but
also gm (1st derivative quantity) and DIBL (extracted from
two machines trained by different data). Good results can
be obtained even with < 50 training data. Our work shows
that manifold learning is possible in device IV and CV to
capture the complex physics and, thus, it is expected that
it is possible to predict the IV/CV of novel devices using
limited experimental data before the underlying physics is
well-understood.

Index Terms— Autoencoder, FinFET, machine learning,
simulation, technology computer-aided design (TCAD).

I. INTRODUCTION

RECENTLY, TCAD augmented Machine Learning
(TCAD-ML) has gained increased attention [1]–[7].

Due to the scarcity of experimental data, TCAD has been
proposed to generate appropriate data to train machines to
find the source of defect and process variation of a given
abnormal IV curve [1], [2]. It has been experimentally
demonstrated that a TCAD-trained machine can be used to
deduce the physical parameters (such as the effective contact
workfunction) of a device based solely on its experimental
IV curve [3], [4] for troubleshooting.

TCAD-ML has also been proposed to assist power
device [5] and junctionless nanowire designs [6]. One of
the main purposes of these studies is to avoid additional
TCAD simulations after the machine is trained. However,
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usually, there are two limitations. Firstly, domain expertise is
required. For example, relevant input features (e.g. ON/OFF
state currents, IO N , IO F F ) need to be extracted from the
raw TCAD data for machine learning to predict the threshold
voltage [6]. This precludes the rapid adoption of ML in novel
devices before the underlying physics is well understood.
Secondly, usually 1000-2000 TCAD simulations are required.
This increases the cost and reduces the value of TCAD-ML,
in particular when 3D simulations are required. Neural net-
works have also been used to predict IV/CV curves by training
on TCAD or SPICE data [8]–[10]. However, large amount of
training data [9], domain expertise and significant machine
tuning are usually required.

Therefore, in this letter, we attempt to demonstrate the
possibility of using about 1 order of magnitude less training
data (<200) to train machines to predict n-type FinFET
full IV/CV curves, as an example, without domain expertise.
Autoencoder (AE) [11], a type of manifold learning, is found
to be effective in achieving the goals because of its capability
in performing non-linear dimensionality reduction to latent
variables. We demonstrated that the latent variables can be
mapped to device parameters and thus full IV/CV can be
deduced from unseen device structures/parameters. Note that
this work is different from [7] in which AE was used to
perform p-i-n diode inverse design.

II. TCAD SIMULATION AND DATA GENERATION

3D n-type FinFET is constructed in TCAD Sentaurus
Process [12] and its IDVG (VD = 0.8V for saturation, or VD =
0.05V for linear) and CG VG (VS = VD = 0V) are simulated
in Sentaurus Device [13] (Fig. 1). Essential process and device
models are included in the simulations, including stress effect
due to gate-last high-k metal gate and C-doped Si source/drain,
the impact of crystal orientation and stress on mobility and
bandgap, thin layer and high-k induced mobility degradation,
and band-to-band tunneling (BTBT). Model details can be
found in [14]. The FinFET is made realistic with corner
rounding and tapered fin. The fin bottom width is set to 15nm.
To generate the IDVG / CG VG data, the gate length (LG), fin
top width (WT O P ), and gate metal workfunction (WF) are
varied randomly and independently in the ranges of 15nm-
25nm, 5nm-15nm, and 4.4eV-4.7eV, respectively. VG is swept
from −0.6V to 0.8V. Each curve is discretized with 80 equal
intervals and used as the input features for ML (Fig. 2 and
Fig. 3a, b). 250 curves of each type (CG VG , linear ID VG , and
saturation ID VG) are generated.
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Fig. 1. FinFET structure created for the simulation. Channel direction
stress distribution is displayed to show the complexity of the system.
The 3 parameters varied and their ranges are identified. Only Silicon is
shown for clarity. Pink mesh is the mesh of gate contact.

Fig. 2. The ML framework used in this study. Blue path represents the
training flow during which AE and 3rd order PR are trained. Green path
represents the prediction flow. Noise filter is noisy autoencoder + LPF,
which is not needed when there are enough training data (e.g. AE200).
For clarity, only 3-layer AE is shown. In the experiment, actually 5-layer
AE is used.

III. MACHINE LEARNING ALGORITHM AND

IV PREDICTION

CG VG , linear ID VG, and saturation IDVG machines are
trained by the corresponding TCAD curves for predictions.
For each type (e.g. CG VG), 50 of the 250 TCAD curves, e.g.
CG VG , are randomly selected and set aside for testing, and
then three machines are trained, namely, AE200, AE50, and
AE25 by 200, 50 and, 25 curves, e.g. CG VG , respectively,
which are randomly selected from the remaining 200 curves.
While the machines of the 3 types of curves are different, for
simplicity and when there is no confusion, they are all called
AE200, AE50, or AE25.

The ML framework is shown in Fig. 2. The training is
represented by the blue path. It contains 3 major parts.
Firstly, a 5-layer AE is trained. The inputs to the AE are
the scaled (StandardScaler) logarithmic values of the drain
current, yi . The outputs are the corresponding predicted values,
ŷi . The hidden layers use RELU for activation. The first
and last hidden layers have 40 nodes and the middle hidden
layer has 3 nodes (h0, h1, h2). Adam algorithm is used for

Fig. 3. The 50 test data IDV G’s (a-f) in linear and logarithmic scales and
their CV’s (g-h). a) and b) are simulated by TCAD. c) and d) are predicted
by AE200. e) and f) are predicted by AE50. g) are the CV simulated in
TCAD. h) are the CV predicted by AE200.

optimization with 500 epochs. The performance metric is
given by the Mean Squared Error (MSE) defined by

M SE = 1

n

∑n−1

i=0

(
yi − ŷi

)2 (1)

All AE training stops when MSE ∼ 10−3. Autoencoder is
known to be able to perform efficient coding for signals [16].
Therefore, by using 3 hidden nodes in the middle hidden layer,
we essentially encode a full IV or CV curve by 3 values (h0,
h1, h2). The number of hidden nodes is set to 3 because
the variations in the curves are caused by 3 parameters (LG ,
WT O P , and WF). We then need to create a second machine
to map (h0, h1, h2) to (LG , WT O P , WF). However, due to
the non-linear interaction between the parameters, (h0, h1,
h2) are not necessarily the linear combination of (LG , WT O P ,
WF) or vice versa. Indeed, we found that 3rd order polynomial
regression is required to allow accurate prediction. Therefore,
(h0, h1, h2) is regressed against (LG , WT O P , WF) using 3rd

order polynomial.
In the third part, to further improve the results, noise

filtering is used (noisy autoencoder + Low Pass Filter, LPF).
As examples, Fig. 3a and b (Fig. 3g) show the 50 TCAD

saturation IDVG ’s (CG VG) set aside for testing. Fig. 3c and
d (Fig. 3h) show the saturation ID VG ’s (CG V �

Gs) predicted
by AE200. Although the result is not perfect, it is able to
reconstruct the shape of the TCAD IV (CV) and capture vari-
ous small and important features. In particular, it can capture
the crossovers of various IV’s in the sub-threshold region
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TABLE I
SATURATION ID AND GM PREDICTION ACCURACY (R2)

OF VARIOUS MACHINES

TABLE II
OTHER METRICS PREDICTION ACCURACY (R2)

OF VARIOUS MACHINES

and the voltages at which BTBT tunneling starts dominating.
And it also can capture the transition from accumulation to
depletion to inversion regions in Fig. 3h. Fig. 4a-4d show the
scatter plots of predicted IO N , IO F F, DIBL, and gm2. It is
worth noting that the coefficient of determination [17], R2,
higher than 0.85 can be achieved in gm2 (1st derivative of the
curve) and IO F F predictions, and R2 is almost 1 for IO N .
By reducing the training data to only 50 (AE50), it still can
capture the features mentioned earlier, although with larger
errors (Fig. 3e and f). Fig. 4e-4h show the scatter plots of
predicted IO N , IO F F, DIBL, and gm2 by AE50. It shows
similar performance in predicting IO N and IO F F as AE200.
For gm2, it can achieve R2 = 0.61. Note that since the machine
takes milliseconds to perform one prediction, one may vary
many combinations of (LG , WT O P , WF) to study the trend and
effect of the parameters on the full IV to gain physical insight.

The machines trained by 25 data points, AE25, are also
investigated. It still can capture the shape of the IV and CV
but with more noise. It can predict the IO N , IO F F , Clow,

and SS with R2 of 0.82, 0.54, 0.83, and 0.75 respectively.
Tables I and II show the R2 of ID and gm predictions at
various VG and also other metrics important in the expertise
domain.

IV. DISCUSSIONS

This study shows that AE can be used to capture the
relationship between the design parameters and the IV/CV
curves without learning any process/device physics a priori
even with as few as 25-50 training curves. Our demonstration
does not limit the training data to be TCAD curves. If we treat
FinFET as a novel device, one can perform experiments with 4
wafers to generate the desired training curves (each wafer has
different WT O P while LG and WF variations can be achieved
through a special mask on the same wafer). Since in real
experiment, there are other variables. To demonstrate that this
approach is still possible when there are variations not known
to the machine, the whole process is repeated with TCAD

Fig. 4. Scatter plots (blue dots) showing the prediction of ION, IOFF,
DIBL, and gm2 in the test IV’s by AE200, a) – d) and by AE50, e) – h).
DIBL is calculated based on the difference between linear and saturation
VTH’s, where VTH is defined as VG@ ID = 10−7A. gm2 is defined at
V G = 0.8V in an 87.5mV interval. Green dots are the data with WTOP =
3 or 4nm.

training curves generated with S/D carbon doping randomly
varied by +/− 5%, which changes the strain distribution
and currents. Tables I and II show that even with the extra
variation, the machine (AE50SD) has a similar performance
as AE50 using the same set of 50 test curves.

The purpose of the study is to train a machine with limited
data in the parameter ranges of interest. It is found that we
need to ensure the parameters do not concentrate at a certain
corner (e.g. data with WT O P = 5nm, 10nm, and 15nm is better
than WT O P = 10nm, 12nm, and 15nm). To further test if the
machines can predict parameters outside of the training range
(which is not the main purpose of this work), the machines
are used to predict the IV’s of WTOP = 3nm and 4nm with
various LG and WF. The results are plotted as green dots
in Fig. 4. It can be seen there are only a few outliers. It is
also worthy to point out that DIBL is a quantity extracted
from two different machines, each trained by saturation and
linear IV’s respectively and separately. The high R2 (0.84 to
0.98) indicates that the physics is correctly captured in this
methodology.

V. CONCLUSION

In this letter, we demonstrated the possibility of predicting
full device IV and CV curves by training machines with
limited training data (25-50) and minimal domain expertise.
The machines are used to extract IO N , IO F F , gm , DIBL, and
SS with high R2. It is expected the same methodology can be
used to understand novel devices through training with limited
experimental data before the underlying physics is understood.
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