
 

 
Reactance and Impedance 
 
 
AC Voltage and Current 
 
In a DC circuit, we learned that the relationship between voltage and current was 
V=IR, also known as Ohm's law.  We need to find a similar law for AC circuits, but 
now there is an important complication.  In an AC circuit, we expect the voltage and 
current to fluctuate, and the fluctuations may be out of phase.   Therefore, there are 
now two relationships between current and voltage.  One is the ratio of the peak 
voltage to the peak current; Vp/Ip.  Another is the phase angle between the voltage 
and the current.  
 
In order to keep track of both of these quantities in as simple a manner as possible, we 
will use the mathematical shorthand known as complex numbers. 
 
 
Complex Numbers 
 
A complex number W consists of real and imaginary parts “a” and “b” respectively, and 
the imaginary constant “j” which is the square root of negative one.∗    
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One can specify the real and imaginary parts of W explicitly: 

! 

Re(W) = a, Im(W) = b . 
 
Because a complex number has two components, it can be plotted on a two 
dimensional graph.  One calls the x-axis the "real axis", and the y-axis the "imaginary 
axis".  The diagram on the right shows a graph of the complex number   
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r 
W = a + jb .  

Note that a complex number is really a vector, with both a magnitude and a direction. 
 
The magnitude of W is the length of the 
vector, |W|, and can be found using the 

Pythagorean theorem: 
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W = a
2
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2 .   
The angle θ signifies the direction of the 
complex vector, and can be found using 

trigonometry: 
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∗ Since “i” is used for current, “j” is traditionally used instead. 
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Further trigonometry yields two more relationships: 
 
 

! 

W cos"= a W sin"= b  
 
which allows the complex number W to be re-written: 
 
 

! 

W = a+ jb = W cos"+ j W sin" = W cos"+ jsin"( )  
 
This form is very useful, because of Euler's formula: 

! 

cos"+ jsin"( ) = e
j"  

 
This formula allows us to write any complex number in an exponential form: 
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W = W e
j"   

 

where as before:   
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W = a
2
+ b

2      and:   
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" = tan
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Finally, since ejθ is a unit vector in the direction of W, the following polar form notation 
is used, where |W| is magnitude and θ is angle with respect to the positive real axis. 
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W = We
j"

= W#" 
  
A vector specified as: 1.74∠32°, for example, has magnitude 1.74 and is oriented 32 
degrees with respect to the real axis. Note that positive angles open (rotate) counter-
clockwise from the positive real axis and negative angles open clockwise as shown. 
 
♦ Example 4.1 (Complex Vector Notation) 
 
Determine the four notational forms associated with the vector of magnitude 2.45 and 
angle 38 degrees. 
 
In polar form:  °!= 3845.2W  
In exponential form:  °

=
38j

e45.2W  
 
In trigonometric form: 
 )38sin38(cos45.2W °+°=   
 
Now since:
 

! 

a = W cos"= 2.45cos 38° = 2.45(0.788) =1.93  
 
And: 

! 

b = W sin" = 2.45sin38° = 2.45(0.616) =1.51 
 
The rectangular form is: 51.1j93.1W +=  



 

Regarding complex vector division: 
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And the conversion process is simplified to: 
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M1"#1

M2"#2
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M1
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Complex Voltage and Current 
 
 Using this complex notation, we can now write the voltage and current in a 
manner that keeps track of both amplitude and phase.  We have already seen one way 
to write a sinusoidal voltage: 

! 

V(t) =V
0
cos "t + #

1
( ) .  Euler's formula tells us that: 

  
 

! 

Re V0e
j "t +#1( ){ } = Re V0 cos "t + #1( ) + jV0 sin "t + #1( ){ } =V0cos "t + #1( )  

 
Therefore, we may also write a sinusoidal voltage as follows: 

! 

V t( ) = Re V0e
j "t +#1( ){ }  

 
Here the imaginary part of V(t) is simply ignored. This sinusoidal-to-exponential 
transformation is done because it is easier perform multiplication and division with 
exponentials rather than sines and cosines. Moreover, it is common to make the 
transformation implicit by not specifying the “Re” operator. This is indicated below for 
both voltage and current, each with a different phase. 
 
 

! 

V t( ) =V0 cos "t + #1( ) $V0e
j "t +#1( )  
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I t( ) = I0 cos "t + #2( ) $ I0e
j "t+# 2( )  

 
From the complex equations above, it is a simple manner to find the ratio of the peak 
voltage to the peak current; this ratio is simply 
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V
o
I
o

.  It is also a simple matter to find 
the relative phase 

! 

" between the voltage and the current, simply by taking the 
difference 

! 
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1
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2
.  These two values are all one needs to determine the AC current 

from the AC voltage, or vice-versa, and they can be combined into one complex term 
known as the impedance, which is signified by "Z": 
 

 

! 

Z =
Vo

I0
e
j"1 #"2( )  

From the above equations, one can find that the general relationship between the 
complex voltage, the complex current, and the complex impedance, is simply: 
 
 

! 

V(t) = I(t) Z  



  

 
This equation looks much like Ohm's law, but be warned: these values are all complex.  
The rest of this chapter will concern how to calculate the impedance for a given circuit.  
Once this is accomplished, the real and imaginary parts of the impedance fully 
determine the magnitude and phase relationships between the current and the voltage 
for any AC circuit. 
 
 
Impedance 
 
In general, a complex impedance vector will take the following form: 
 
 

! 

Z = Re(Z) + jIm(Z)  
 

To find the ratio of the peak voltage to the peak current, one simply finds the 
magnitude of the impedance.  To find the relative phase between the current and the 
voltage, one must find the phase angle of the impedance.  Both of these equations are 
given here: 
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Therefore, the two (real) numbers Re(Z) and Im(Z) fully determine the relationship 
between the current and the voltage.  These values are typically given the symbols "R" 
and "X" respectively, yielding the equation: 
 
 jXRZ +=  
 
The value R is simply the resistance of the circuit.  The value X  is something known as 
the reactance of the circuit.  Resistance, as we already know, determines the ratio 
between the voltage and current magnitudes without contributing to the relative phase.  
Reactance, however, contributes to both the voltage/current ratio as well as the phase 
between them.  For example, a capacitor (as we will learn in the next section) 
contributes a negative reactance XC.   
 

The impedance diagram below corresponds to the RC circuit on the right. 
Resistance vector R represents the resistor and reactance vector XC represents the 
capacitor.   Because the circuit elements are in series, the impedance vector Z is the 
vector sum of these two vectors; Z= R + XC.  Since impedance is a vector quantity, it is 
specified in terms of magnitude and direction angle.  A two-dimensional plane with real 
and imaginary axes is used to depict impedance vectors., where resistance R corresponds 
to the real (horizontal) axis and reactance X corresponds to the imaginary (vertical) axis. 
.XC is directed along the negative imaginary axis because it is a negative quantity. 
 



 

    
 
 
Magnitude is calculated by use of the Pythagorean relation and angle is calculated 
using the inverse tangent relation. Note that angle is referenced to the positive real axis, 
and negative angles rotate in the clockwise direction. 
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The impedance vector allows for calculation of associated voltage and current 
quantities, as shown above.  Current through the circuit corresponds to current 
through the resistor, which is the same current that flows through the capacitor 
because it is a series circuit. Note that this is consistent with the fact that capacitor 
current changes instantaneously. 

 
The left diagram (large angle) corresponds to a circuit that is dominated by capacitive 
reactance, in which the current is nearly 90 degrees ahead of the voltage. The right 
diagram (small angle) corresponds to a circuit that is dominated by resistance, in which 
the current is nearly in phase with the voltage. The middle diagram corresponds to 
equality between capacitive reactance and resistance, in which the current lead is 
midway between the 90 and zero degree limits. 
 

     
 

 
 
 
 



  

Capacitive Reactance 
 
One way of arriving at capacitive reactance is to examine the current through a 
capacitor in relation to the voltage across it. In doing so; however, we first discover a 
phase difference between the applied voltage and resulting current. This phase difference 
is graphed below. Note that current leads voltage (by 90 degrees). 
 
 

         
   

 
For the voltage source:  

! 

V(t) =V0 sin"t   
 

And for the capacitor:   

! 

I(t) = C
dv

dt
= C(V0")cos"t = I0 cos"t  

  
Where:       !=

00
CVI  

 
Thus, a sinewave voltage across a capacitor results in cosine current through the device. 
Note that both signals have the same frequency )(! . 
 
Now for a sinewave and cosine wave of the same frequency, the cosine is essentially a 
sinewave that is advanced in phase by 90 degrees. This is based on the general relation: 

)
2

tsin(tcos
!

+"="  

 
In summary, it is characteristic for capacitors that current leads voltage by a 90-degree 
phase-shift, or alternatively, that voltage lags current by 90-degrees. 
 
 
But knowing the phase is not enough; we want to know the capacitive reactance. We 
are now in position to do so by way of the sinusoidal voltage and current equations 
above. The procedure is simple in that only the amplitude coefficients V0 and I0 are used. 
By finding the ratio between them, we arrive at the mathematical relation for capacitive 
reactance. 
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Combining the phase and magnitude information, we must add a minus sign (see 
example 4.8 for a full derivation), which gives us the reactance for a capacitor: 
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♦ Example 4.2 (Capacitive Reactance Calculation) 
 
For the simple AC capacitor circuit, a 100-microfarad load 
has capacitive reactance of 26.5 ohms when subjected to a 
source frequency of 60 hertz. 
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XC =
"1

2#fC
=

1

2#(60 $100x10
"6
)

= "26.5% 

 
 
♦ Example 4.3 (RC Circuit Impedance) 
 
A 5-kilohertz sinewave voltage source is used to drive a series RC circuit comprised of a 
270-ohm resistor and 0.068-microfarad capacitor. The associated impedance vector has 
magnitude 540 ohms and angle –60 degrees. The associated capacitive reactance, 
calculated first, is –468 ohms. 
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♦ Example 4.4 (RC Circuit Voltage and Current) 
 
Regarding the circuit of example 4.2, a 10-volt (rms) sinusoidal source results in 18.5 
milliamps (rms) of current. Since the voltage vector is along the impedance vector, 
which has an angle of –60 degrees, current is advanced in phase by 60 degrees relative to 
the source voltage. Note that RMS amplitudes are used. 
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Inductive Reactance 
 
An inductor is the electronic complement of a capacitor.  
The simple AC inductor circuit (on the right) can be used 
to formulate the following expression for inductive 
reactance.  (See example 4.9 for a derivation.) 
 
 

! 

X
L

="L = 2#fL      
 
Inductive reactance is directly proportional to frequency and is also measured in ohms. 
As with capacitors, one can derive the important inductor characteristic; that current 
lags voltage by a 90-degree phase-shift, or alternatively, that voltage leads current by 90-
degrees. 
 
At this point, we can summarize the impedances of individual resistors, capacitors, and 
inductors. 
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ZL = jXL = j2"fL = j#L  
 
 
However, knowing the impedance for a single circuit element is not enough if the 
circuit has more than one element.  Fortunately, impedances add together very much 
like resistors; they add in series and add reciprocally in parallel.   
 
For two circuit elements in series, the impedances are simply added together to find the 
equivalent total impedance:  
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For two circuit elements in parallel, one adds reciprocals: 
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♦ Example 4.5 (RCL Circuit Analysis) 
 
The series RCL circuit on the right consists of a 270-ohm resistor, 0.068-microfarad 
capacitor, and 1.1-millihenry inductor. It is driven by a 20-volt (rms) sinewave at 26-
kilohertz. The aim is to calculate associated impedance and current vectors. 
 

   
 
Because this is a series circuit, capacitive and inductive reactances are individually 
calculated, and then added together to obtain the total reactance XT. 
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The impedance vector comprises resistance and total reactance, from which magnitude 
and angle are calculated. Refer to impedance diagram above. 
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Current through the circuit corresponds to current through the resistor, and so the 
current vector lies along the positive real axis, as does the impedance vector for the 
resistor. The magnitude (rms) of the current vector is calculated using Ohm’s law. 
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The voltage vector corresponds to the driving source, and 
lies along the impedance vector Z, which is 18.4 degrees 
above the real axis. The source voltage, therefore, is 
advanced in phase by 18.4 degrees with respect to current. 
This corresponds to an inductive circuit, which is 
consistent in that the inductive reactance is larger than 
the capacitive reactance. Refer to the diagram on the right. 
  
 
 
♦ Example 4.6 (Parallel RC Circuit Impedance) 
 
The following impedance vector is obtained for the parallel 
RC circuit with source frequency 63.7 hertz, resistance 500 
ohms, and capacitance 10 microfarads. 
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Because this is a parallel circuit, this expression is obtained by calculation of the 
parallel combination of individual impedances. 
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♦ Example 4.7 (Impedance of a Resistor) 
 
Regarding a resistive load driven by a sinusoidal source: 
 
 

! 

V(t) =V0e
j"t  

 

By Ohm’s law:  
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I(t) =
V(t)

R
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A resistor’s impedance, therefore, is equal to its resistance: RZ
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♦ Example 4.8 (Capacitive Reactance Derivation) 
 
Regarding a capacitor load driven by a sinusoidal source: 
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V(t) =V0e
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♦ Example 4.9 (Inductive Reactance Derivation) 
 
Regarding an inductor load driven by a sinusoidal source: 
 

 

! 

V(t) =V0e
j"t   and: 
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V = L
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dt
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Where:  
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