Exercise 1. Let A be a countable subset of \mathbb{R}.

(a) A is Borel measurable and Lebesgue measurable. In other words, $A \in \mathcal{B}(\mathbb{R}) \subseteq \mathcal{L}(\mathbb{R})$.

(b) $\lambda(A) = 0$.

Exercise 2. (λ^* is translation invariant.) For $A \subseteq \mathbb{R}$ and $t \in \mathbb{R}$, define $A + t = \{a + t : a \in A\}$. Then $\lambda^*(A + t) = \lambda^*(A)$.

Exercise 3. Prove in detail the first inequality in Lemma 25.2 of the Lecture Notes.

Exercise 4. (Improper Riemann and Lebesgue Integrals) Consider the measure space $(\mathbb{R}, \mathcal{L}(\mathbb{R}), \lambda)$. Let $a \in \mathbb{R}$. Let $f : [a, \infty) \to \mathbb{R}$.

(a) Assume $f(1_{[a,b]}$ is measurable and f is Lebesgue integrable on $[a, b]$ (meaning $\int_{[a,b]} f$ is defined and finite) for every $b \geq a$. Assume that there exists an $M \in [0, \infty)$ such that $\int_{[a,b]} |f|d\lambda \leq M$ for every $b \geq a$. Then f is Lebesgue integrable on $[a, \infty)$ (meaning $\int_{[a,\infty]} f$ is defined and finite) and

$$\int_{[a,\infty]} f d\lambda = \lim_{b \to \infty} \int_{[a,b]} f d\lambda.$$

(b) Assume f is Riemann integrable on $[a, b]$ for every $b \geq a$. Assume that there exists an $M \in [0, \infty)$ such that $\int_{[a,b]} |f| \leq M$ for every $b \geq a$. Then f is Lebesgue integrable on $[a, \infty)$ (meaning $\int_{[a,\infty]} f$ is defined and finite) and

$$\int_{[a,\infty]} f d\lambda = \lim_{b \to \infty} \int_{[a,b]} f d\lambda = \lim_{b \to \infty} \int_{a}^{b} f.$$

Exercise 5. Let X be a set. Let \mathcal{E} be a demi-ring on X. Let $\mu_0 : \mathcal{E} \to [0, \infty]$ be countably monotone and finitely additive. Let μ^* be the outer measure on X generated by μ_0. Define \mathcal{E}_δ to be the collection of all countable unions of sets in \mathcal{E}. In other words, $\mathcal{E}_\delta = \{\bigcup_{i=1}^{\infty} E_i : E_1, E_2, \ldots \in \mathcal{E}\}$. Define $\mathcal{E}_{\delta}^\ast$ to be the collection of all countable intersections of sets in \mathcal{E}_δ. In other words, $\mathcal{E}_{\delta}^\ast = \{\bigcap_{i=1}^{\infty} E_i : F_1, F_2, \ldots \in \mathcal{E}_\delta\}$. Let $A \in \mathcal{P}(X)$.

(a) Assume there exist $E_1, E_2, \ldots \in \mathcal{E}$ such that $A \subseteq \bigcup_{i=1}^{\infty} E_i$. For every $\epsilon > 0$ there exists $G_\epsilon \in \mathcal{E}_\sigma$ such that $A \subseteq G_\epsilon$ and $\mu^*(A) \leq \mu^*(G_\epsilon) \leq \mu^*(A) + \epsilon$. Moreover, there exists $H \in \mathcal{E}_{\delta}^\ast$ such that $A \subseteq H$ and $\mu^*(A) = \mu^*(H)$.

(b) If $\mu^*(A) < \infty$, then the following are equivalent:

(i) $A \in M(\mu^*)$

(ii) For every $\epsilon > 0$ there exists $G_\epsilon \in \mathcal{E}_\sigma$ such that $A \subseteq G_\epsilon$ and $\mu^*(G_\epsilon \setminus A) \leq \epsilon$

(iii) There exists $H \in \mathcal{E}_{\delta}^\ast$ such that $A \subseteq H$ and $\mu^*(H \setminus A) = 0$.

(c) If X is σ-finite with respect to μ_0, then the following are equivalent:

(i) $A \in M(\mu^*)$

(ii) For every $\epsilon > 0$ there exists $G_\epsilon \in \mathcal{E}_\sigma$ such that $A \subseteq G_\epsilon$ and $\mu^*(G_\epsilon \setminus A) \leq \epsilon$.

(iii) There exists $H \in \mathcal{E}_{\delta}^\ast$ such that $A \subseteq H$ and $\mu^*(H \setminus A) = 0$.

1
Exercise 6. The following are equivalent:

(i) $A \in \mathcal{L}(\mathbb{R})$

(ii) For every $\epsilon > 0$ there is an open set G_ϵ such that $A \subseteq G_\epsilon$ and $\lambda^*(G_\epsilon \setminus A) \leq \epsilon$.

(iii) There is a Borel set H such that $A \subseteq H$ and $\lambda^*(H \setminus A) = 0$.

(iv) For every $\epsilon > 0$ there is a closed set C_ϵ such that $C_\epsilon \subseteq A$ and $\lambda^*(A \setminus C_\epsilon) \leq \epsilon$.

(v) There is a Borel set B such that $B \subseteq A$ and $\lambda^*(A \setminus B) = 0$.